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Proof: by the “circular” implications:

t is typable

t can reach a Some reduction strategy
terminal state normalizes t

e.g., 3 red. path to a B-NF e.g., the leftmost-o. strat.
(Weak Normalization)

[ t is WN iff the leftmost-o. stategy terminates on ¢ ]

nothing to do with types
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“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

t is typable

t can reach a Some reduction strategy
terminal state normalizes t

e.g., 3 red. path to a B-NF e.g., the leftmost-o. strat.
(Weak Normalization)

@ Perhaps too expressive. . .

@ ...but certify reduction strategies!
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INTUITIONS (SYNTAX)

e Naively, A A B stands for AN B:
t is of type AN B if t can be typed with A as well as B.
I:A— A I:(A— B)— (A— B)
I:(A—=A)AN((A— B)— (A— B))

A —intro  (with I = A\z.z)
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t is of type AN B if t can be typed with A as well as B.
I:A— A I:(A— B)— (A— B)
I:(A—=A)AN((A— B)— (A— B))

A —intro  (with I = A\z.z)

o Intersection = kind of finite polymorphism.

(A— A)A((A— B) = (A — B)) = double instance of VX.X — X
(with X = A and X =A— B)

e But less constrained:
assigning x : 0 A (0 — 0') A (0 — 0) — 0 is legal.

(not an instance of a polymorphic type except VX.X := False!)
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SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Expansion (SE):
Typing is stable under anti-
reduction.

Subject Reduction (SR):
Typing is stable under reduction.

SE is usually not verified by simple or

polymorphic type systems
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reduction.

Subject Reduction (SR):
Typing is stable under reduction.

SE is usually not verified by simple or

polymorphic type systems

typing the 4+ SE

t is typable
term. states

t can reach a
terminal state

SR + extra arg.

Some reduction strategy
normalizes ¢

obvious Extra arg. =
@ reducibility cand.
@ non-trivial well-founded order.

@ can it be simpler?
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ENSURING SUBJECT EXPANSION

Subject Reduction (SR):
Typing is stable under reduction.
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ENSURING SUBJECT EXPANSION

Subject Expansion (SE):
Typing is stable under anti-reduction.

2
ax : 3
X ? ax H; s A2 Hg
ax ? ! :
x:? T S Al o A3
z:7FHr: B abe __HS__ rls/a]: B
Aer:?7— B 5:7 app
(Az.r)s: B
Solution: x: A1 AN A A Az

@ Allow several type assignments
for a same variable/subterm
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ENSURING SUBJECT EXPANSION

Subject Expansion (SE):
Typing is stable under anti-reduction.

2
ax N 3
x:? I} 51 Az T
ax S . A
x:? r s: Al 54

- I —— .

.2 . s B
z:?7Fr:B abs r[s/x]
Ar.or:?— B s:7

app
(Az.r)s: B
Solution: w: Ay A Ag A As
@ Allow several type assignments Fa: A (i=1,2,3)

for a same variable/subterm
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TYPING EVERY NORMAL FORM

e Consider (y(z (A\z.2))) (z (Az.z¢))
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TYPING EVERY NORMAL FORM

e Consider (y(z (A\z.2))) (z (Az.z¢))
o Wewant x : & — F

@ \zz: A— Aws. Az.zc: (C— D) — D
E=A—Aor E=(C— D)— D?

Solution:
o Allow several type assignments
for a same variable/subterm

e Typing normal form: just structural induction (no clash).

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

8 /36



NON-IDEMPOTENCY

Computation causes duplication.

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types ]

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.
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NON-IDEMPOTENCY

Computation causes duplication.

[Non—idempotent intersection types

Disallow duplication for typing certificates.
~+ Possibly many certificates (subderivations) for a subprogram.

~ Size of certificates decreases.

Initial
certificate

STOP
(cannot be

reduced more)

Initial state
.~ of the prog. Terminal

...... state reached!!

Execution

Exact bounds in A P. Vial 1 OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES) 9 /36



PLan

© NON-IDEMPOTENT INTERSECTION TYPES

Exact bounds in A P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 10 /36



HEAD NORMALIZATION ()

head variable

@

Head Normal Form Head Reducible Term

Exact bounds in A P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 11 /36



HEAD NORMALIZATION ()

head variable

Head Normal Form Head Reducible Term

e ¢ is head normalizing (HN) if 3 reduction path from ¢ to a HNF.

Exact bounds in A P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 11 /36



HEAD NORMALIZATION ()

N/
N/
@ O\

head variable " W head redex W
© ©
Head Normal Form Head Reducible Term
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HEAD NORMALIZATION ()

obvious

the head reduction strategy t is HN
terminates on t (Ipath from ¢ to a HNF)

true but not obvious

(Intersection types come to help!)

@ The head reduction strategy: reducing head redexes while it is possible.
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INTERSECTION TYPES (COPPO-DEZANI 80)

e Type constructors: o € &, — and A (intersection).
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[Assoc.: (A/\B)/\CNA/\(B/\C)] [Comm.:A/\BwB/\A ]
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e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A

[Assoc.: (A/\B)/\CNA/\(B/\C’)] [Comm.:A/\BwB/\A ]
Yes Idempotency? ANA~ A No
Coppo-Dezani 80 Gardner 94 - de Carvalho 07
Typing= qualitative info. ] [Typing: quantitative info.

e Collapsing A A B A C into [A, B,C] (multiset) ~» no need for perm rules etc.
ANBAA=[A,B A = [A,A,B] £ A, B] [A, B, A] = [, B] + [4]
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)
Types: 7,0 = o | |[ojlier =T

o intersection = multiset of types [o;];cr

@ only on the left-h.s of — (strictness)
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— abs
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F"t:[ai]iEI%T (F,-Fu:ai),-ez
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app

Remark
e Relevant system (no weakening, cf. ax-rule)
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Types: 7,0 u= o0 | [0ilier—=T

@ intersection = multiset of types [0;];cr

@ only on the left-h.s of — (strictness)

ax s x:o]ierFt:T

.—F. abs
z:[rlFx:T Tk Xzt [oilier > 7

F"t:[Oi]ie]—)T (Fi}_uZUi)iej
I'+icrDi-tu:r

app

Remark
e Relevant system (no weakening, cf. ax-rule)
e Non-idempotency (o Ao # o):
in app-rule, pointwise multiset sum e.g.,

(@:lohy:[T)+(z:lo7]) =2:lo,0,7]5y: [7]
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Types: 7,0 u= o0 | [0ilier—=T

o intersection = multiset of types [o;];cr

@ only on the left-h.s of — (strictness)

s x:o]ierFt:T

PRI abs
z:[rlFz:T Tk Xzt [oilier > 7
F'kt:folier =17 (DibFuw:oi)ier
app
I'+icrDi-tu:r
Ezxzample
ax ax
filo]—o T:o0
ax app
filo]—o fz:o
app

f(fz):o
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o0 | [0ilier—=T

o intersection = multiset of types [o;];cr

@ only on the left-h.s of — (strictness)

s x:o]ierFt:T

PRI abs
z:[rlFz:T Tk Xzt [oilier > 7
F'kt:folier =17 (DibFuw:oi)ier
app
I'+icrDi-tu:r
Ezxzample
ax ax
filo]—o T:o0
ax app
filo]—=o fzxz:o
app

fllo] = o,[0] = o],z :[o]F f(fx):0
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o0 | [0ilier—=T

o intersection = multiset of types [o;];cr

@ only on the left-h.s of — (strictness)

ax s x:o]ierFt:T

— abs
z:[rlkz:T DEAxt:|oi]icr =T

F"t:[ai]iEI%T (F,-Fu:ai),-ez
I'+icrDi-tu:r

app
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o0 | [0ilier—=T
@ intersection = multiset of types [0;];cr

@ only on the left-h.s of — (strictness)

ax s x:o]ierFt:T

z:[rlFz:T Tk Xzt [oilier > 7

abs

F"t:[Oi]ie]—)T (Fi}_uZUi)iej
I'+icrDi-tu:r

app

Head redexes
always typed!
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o0 | [0ilier—=T
@ intersection = multiset of types [0;];cr

@ only on the left-h.s of — (strictness)

ax s x:o]ierFt:T

z:[rlFz:T Tk Xzt [oilier > 7

abs

F"t:[Oi]ie]—)T (F,-Fu:ai)ief
I'+icrDi-tu:r

app

Head redexes
always typed!

but an arg. may
be typed 0 time
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PROPERTIES (%)

e Weighted Subject Reduction
o Reduction preserves types and environments, and. ..
o ... head reduction strictly decreases the number of nodes of the deriv. tree (size).
(actually, holds for any typed redex)

e Subject Expansion
o Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a A-term. Then equivalence between:
Q t is typable (in %)
Q tis HN

@ the head reduction strategy terminates on t (~ certification!)

Bonus (quantitative information)

If II types ¢, then size(II) bounds the number of steps
of the head red. strategy on ¢
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HEAD vS WEAK AND STRONG NORMALIZATION

Let t be a A-term.

e Head normalization (HN):
there is a path from ¢ to a head normal form.

e Weak normalization (WN):
there is at least one path from ¢ to a f-Normal Form (NF)

e Strong normalization (SN):
there is no infinite path starting at ¢.

SN = WN = HN

Nota Bene: y Q HNF but not WN (Az.y)Q? WN but not SN
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CHARACTERIZING WEAK AND STRONG NORMALIZATION

HN

WN

SN

System Zo
[any arg. can be left untyped]

System Zo
+ unforgetfulness criterion

[non-erasable args must be typed]

Modify system %o
with choice operator

[all args must be typed]

sz(II) bounds the number of
head reduction steps

sz(II) bounds the number
of leftmost-outermost red.
steps (and more)

sz(IT) bounds the length of
any reduction path

Exact bounds in Ap

P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /36




SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
'k Az.r:fo1,02,01] = 7 AfFs:or  Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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- ax :

z:fo1] Fxion

————ax
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. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Lk Azor:fo1,00,00] = 7 AfFs:or  Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Pk Az.r:fo,02,001] > 7 Afks:or  Agbsior Abbs:og
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. Iy 11, Hlf
05 z:[o1,00,01] Fr:7
abs
Pk Az.r:fo,02,001] > 7 AfFs:or  Agbsios Abbs:iog
a
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

—ax
z:foi] Fxioq
—ax :
z:[o1] Fxioq : [By relevance and non—idempotency!]

— Y aX
x:lo2] Fxion

. 1y I, Iy
05 z:[o1,00,01] Fr:7
abs
'k Az.r:fo1,02,01] = 7 Afksior Axksioa Abbs:o
a

F—i—A‘l‘—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

ax

z:[o2] b z:[og

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
't Az.r:fo1,00,01] = T AtFsiol]  Asbs:og A‘{I—s;app
F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

ax

z:[o2] b z:[og

‘ 1Y I, I
I; x:lo1,02,01)Fr:7
abs
[ omomriar atVe) AVepl Al om
DAL AL L A+—Orr)s: T o
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SUBJECT REDUCTION AND EXPANSION IN %

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

Al{}js:al
Afts:o1 :

Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

/'\
—

AfFs:oq

Al{ }—s ezl [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

/'\
—

Al{}js:al

AfFs:on [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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PLan

© EXTRACTING EXACT LENGTHS OF REDUCTION
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EXACT MEASURES FOR THE A-CALCULUS (PRINCIPLES)

@ Building on [Accatoli-Kesner-Lengrand,ICFP’18] and [Bernadet-Lengrand, LCMS’13]
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EXACT MEASURES FOR THE A-CALCULUS (PRINCIPLES)

@ Building on [Accatoli-Kesner-Lengrand,ICFP’18] and [Bernadet-Lengrand, LCMS’13]

o Consider 3 reduction strategies S:

[head —hd ] [leftmost-o. —10 ] maximal —px
(computes a longest red. path)
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@ Building on [Accatoli-Kesner-Lengrand,ICFP’18] and [Bernadet-Lengrand, LCMS’13]

o Consider 3 reduction strategies S:

[head —hd ] [leftmost-o. —10 ] maximal —px
(computes a longest red. path)

e Goal: finding a type system with annotated judg. T' ) ¢ : 7 such that:

t =5t a S-norm. form with |t'|s = f

iff T I—g’f) t : 7 derivable
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EXACT MEASURES FOR THE A-CALCULUS (PRINCIPLES)

@ Building on [Accatoli-Kesner-Lengrand,ICFP’18] and [Bernadet-Lengrand, LCMS’13]

o Consider 3 reduction strategies S:

[head —hd ] [leftmost-o. —10 ] maximal —px
(computes a longest red. path)

e Goal: finding a type system with annotated judg. T' ) ¢ : 7 such that:

t =5t a S-norm. form with |t'|s = f

iff T I—g{’f) t : 7 derivable

Remark:

e hd-NF=HNF
v.5. lo/mx-NF= full NF (no redex).

o |Az1...zpxt1.. .. tgla=p+q+1
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NEW FORMALISM

e Persistent elements
(remain in the NF)

e Consuming elements
(used during red.)

ex: (A\z.yxrz)az g Yz 2
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NEW FORMALISM

e Persistent elements e Explicit persistent arrow: -
(remain in the NF) (new type constructor)

e Consuming elements e One type constant e

(used during red.) (meaning “not applied”)

ex: (A\z.yxrz)az g Yz 2 ex: Az.w:[e] — @ ok

Az.z : [8] » @ not ok
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e Persistent elements e Explicit persistent arrow: -
(remain in the NF) (new type constructor)

e Consuming elements e One type constant e

(used during red.) (meaning “not applied”)

ex: (A\z.yxrz)az g Yz 2 ex: Az.w:[e] — @ ok

Az.z : [8] » @ not ok
Az.x : ® ok
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NEW FORMALISM

e Persistent elements e Explicit persistent arrow: -
(remain in the NF) (new type constructor)
e Consuming elements e One type constant e
(used during red.) (meaning “not applied”)
ex: (A\z.yxrz)az g Yz 2 ex: Az.w:[e] — @ ok
Az.z : [8] » @ not ok
° Az.z : e ok
(Elementary types) o,T n= e | [oilict =T | [0ilict =T
(Tight elem. types-hd) tight,, == e|[]-»tight,,
(Tight elem. types-full) tight.,, == e]|[e]-»tight

Remark: Itightg([oi]ier) iff the o are tight (tight intersection).
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(used during red.) (meaning “not applied”)
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(Elementary types) o,T n= e | [oilict =T | [0ilict =T
(Tight elem. types-hd) tight,, == e|[]-»tight,,
(Tight elem. types-full) tight.,, == e]|[e]-»tight

Remark: Itightg([oi]ier) iff the o are tight (tight intersection).
This should ax
be ok: x:[e]-»[e]»e up: e

app
Tuy:[e]»e U @ ®

app
TULU . ®

AT.ZULUD : ®
AYT.T UL U ;@
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NEW FORMALISM

e Persistent elements
(remain in the NF)

e Consuming elements
(used during red.)

e Explicit persistent arrow: -
(new type constructor)

e One type constant e
(meaning “not applied”)

ex: (A\z.yxrz)az g Yz 2 ex: Az.w:[e] — @ ok
Az.z : [8] » @ not ok
° Az.z : e ok
(Elementary types) o,T = o ||oilict =7 ||oi]ict > T
(Tight elem. types-hd) tight,, = eo|[]»tight,,
(Tight elem. types-full) tight.,, == e]|[e]-»tight

Remark: Itightg([oi]ier) iff the o are tight (tight intersection).

This should

ax
be ok: x:[ ]»] |]»e
app
Tur:[ |+~ e
app
TULU . ®
AT.TULUD : ®

AYT.T UL U @
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RULES

r I—(H) t:T

f ]
number of S-steps size of the norm. form

(ax)

x: [o] FOD 2 o

ARG o DO ¢ tight  tight(D(x))
—i L4
D\ & T #TED) 2\t T(x) —» o DO Nt o (o)
CEEr 4. F A FE ) gy dom(F)
(apps)

T AA Rt itfut#F) 4, codom(F)

with #,7 7 = 0 and #,? »? = 1.

Systems Xhﬁ/lo
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r I—(H) t:T

f ]
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z:[o]FO 20
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—i L4
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Systems Xhﬁ/lo

Exact bounds in A P. Vial 3 EXTRACTING EXACT LENGTHS OF REDUCTION 21 /36



RULES

r I—(H) t:T

f ]
number of S-steps size of the norm. form

(ax)

x: [o] FOD 2 o

ARG o DO ¢ tight  tight(D(x))
— .
D\ & T #ED 2\t T(x) —» o DO Nt o (o)
CEEr 4. F A FE ) gy dom(F)
(apps)

T AA Rt itfut#F) 4, codom(F)

with #,7 7 = 0 and #,? »? = 1.

Systems Xhﬁ/lo

Exact bounds in A P. Vial 3 EXTRACTING EXACT LENGTHS OF REDUCTION 21 /36



RULES

r I—(H) t:T

f ]
number of S-steps size of the norm. form

(ax)

x: [o] FOD 2 o

ARG o DO ¢ tight  tight(D(x))
—i L4
D\ & T #TED) 2\t T(x) —» o DO Nat: e (=)
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ARG o DO ¢ tight  tight(D(x))
—i L4
D\ & T #TED) 2\t T(x) —» o LD gt e (¢5)
CEEr 4. F A FE ) gy dom(F)
(apps)
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f ]
number of S-steps size of the norm. form
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D\ & T #TED) 2\t T(x) —» o DO Nt o (o)
CEEr 4. F A FE ) gy dom(F)
(apps)
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RULES

r I—(?J{) t:T

f ]
number of S-steps size of the norm. form

(ax)

x: [o] FOD 2 o

ARG o DO ¢ tight  tight(D(x))
—i L4
D\ & T #TED) 2\t T(x) —» o DO Nt o (o)
CEEr 4. F A FE ) gy dom(F)
(apps)

T A A R Ha et fut#e7) 4 codom(F)

with #,7 7 = 0 and #,? »? = 1.

Systems Xhﬁ/lo
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RULES

r I—(H) t:T

f ]
number of S-steps size of the norm. form

(ax)

x: [o] FOD 2 o

ARG o DO ¢ tight  tight(D(x))
—i L4
D\ & T #TED) 2\t T(x) —» o DO Nt o (o)
CEEr 4. F A FETw) 4 Gom(F)
(apps)

T AA Rt itfut#F) 4, codom(F)

with #,7 7 = 0 and #,? »? = 1.
Systems Xhﬁ/lo

N (Tx [OOSR ) ke K
Auxiliary: Z A
AeeiTr ke letrerfr) ¢ . [Th]kex
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A SIMPLE EXAMPLE

Let I = A\x.x.

(Aaxz)Il s II—sI (S € {hd, lo,mx})

Expected counter (2,2)
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A SIMPLE EXAMPLE

Let I = A\z.x.

(AM.zz)I 55 II —5I (S € {hd,lo,mx})

Expected counter (2,2)

o [[o]se] FOVa [o] v @i [[o]] OV e

z: [[0] e, o] O pyp e z:[o]F®Vz: e z: (o] F"Vz: e
_ (=) (=) - (o5)
FO272=0 Agza : [[o]—e, 0] e FOO T (o] e FOII=D 1o

p(F1=2,2) (Az.zz)I
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PROPERTIES OF X

hd/lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).
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PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f
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PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f

Idem for SN and a maximal reduction strategy.
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PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f

Idem for SN and a maximal reduction strategy.

- Just modify dom(F) with domyx([] — 7) = [e]
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PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f

Idem for SN and a maximal reduction strategy.

- Just modify dom(F) with domyx([] — 7) = [e]
- Erasable args must now be typed
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PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f

Idem for SN and a maximal reduction strategy.

- Just modify dom(F) with domyx([] — 7) = [e]
- Erasable args must now be typed
- Specify the size of what is erased in t

Exact bounds in A P. Vial 3 EXTRACTING EXACT LENGTHS OF REDUCTION 23 /36



PROPERTIES OF X

hd/1lo
Definition:
o Tight judgment: T F%) ¢:tight with T tight.
e Tight deriv.: ccl with tight judg. (local criterion).

Let t € A. Then:
T HOD ¢ tight  iff e £ ), ' HNF or NF

o ‘t/|hd/lo = f

Theorem (SN)

Idem for SN and a maximal reduction strategy.

Unique - Just modify dom(F) with domyx([] — 7) = [e]
. - Erasable args must now be typed
parametrlzed - Specify the size of what is erased in t
system

for the 3 strategies
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THE LAMBDA-MU CALCULUS

o Intuit. logic 4+ Peirce’s Law ((A — B) - A) - A
gives classical logic.
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THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law ((A — B) —» A) — A
gives classical logic.

o Griffin 90: call—cc and Felleisen’s C-operator typable with Peirce’s Law
(A—=-B)—A)—- A
~» the Curry-Howard iso extends to classical logic

classical logic backtracking
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THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law ((A — B) —» A) — A
gives classical logic.

o Griffin 90: call—cc and Felleisen’s C-operator typable with Peirce’s Law
(A—=-B)—A)—- A
~» the Curry-Howard iso extends to classical logic

classical logic backtracking

e Parigot 92: Ap-calculus = computational interpretation of classical natural
deduction (e.g., vs. \ufi).
judg. of the foom A, A — B+ A| B,C
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PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

AFAB
(A-B)>AFA—-B)— A FA—BA
(A->B)—>AFAA
(A-B)—>AFA
F((A—-B)—=A) — A

Standard Style
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PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

AFA|B
AFB|A e
(A-B)—> A+ (A— B) = A| FA—-BJ|A
(A-B)—>AFAA
(A—->B)—> AFA|
F(A—-B)—A)— A|

Focussed Style
In the right hand-side of ' - F'| A

@ 1 active formula F'

@ inactive formulas A

Exact bounds in A P. Vial 4 RESOURCES FOR CLASSICAL LoGIic 26 /36



PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

AFA|B
AFB|A e
(A-B)—> A+ (A— B) = A| FA—-BJ|A
(A-B)—>AFAA
(A—->B)—> AFA|
F(A—-B)—A)— A|

Focussed Style
In the right hand-side of ' - F'| A

@ 1 active formula F'

@ inactive formulas A

Exact bounds in A P. Vial 4 RESOURCES FOR CLASSICAL LoGIic 26 /36



THE Ap-CALCULUS

e Syntax: A-calculus
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e Syntax: A-calculus
+ names «, 8,7 (store inactive formulas)

z1:Dyy:EF-t:Cla:ApB:B

+ two constructors [a]t (naming) and pa (u-abs.)

de/activation

o Typed and untyped version
Simply typable = SN

e call——cc := \y.ua.[a]y(Az.uf.[a]z) :
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+ two constructors [a]t (naming) and pa (u-abs.)

de/activation

o Typed and untyped version
Simply typable = SN

e call——cc := \y.ua.[a]y(Az.pfB.la]z) : (A— B) - A) — A
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THE Ap-CALCULUS

Syntax: A-calculus
+ names «, 8,7 (store inactive formulas)

z1:Dyy:EF-t:Cla:ApB:B

+ two constructors [a]t (naming) and pa (u-abs.)

de/activation

Typed and untyped version
Simply typable = SN

e call——cc := \y.ua.[a]y(Az.pfB.la]z) : (A— B) - A) — A

[-reduction
+ (pee[Blt)u =y poc[Blt{ua}

where t{u/a}: replace every [a]v in t by [a]vu
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THE Ap-CALCULUS

Syntax: A-calculus
+ names «, 8,7 (store inactive formulas)

z1:Dyy:EF-t:Cla:ApB:B

+ two constructors [a]t (naming) and pa (u-abs.)

de/activation

Typed and untyped version
Stmply typable = SN

e call——cc := \y.ua.[a]y(Az.pfB.la]z) : (A— B) - A) — A

B-reduction
+ (pa[Blt)u =y po [Blt{uf o}

where t{u/a}: replace every [a]v in t by [a]vu

[How do we adapt the non-idempotent machinery to /\M?]
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CUT-ELIMINATION STEPS (CLASSICAL CASE)

—ax
IZ?:A|A1
X

—Fa
$ZA|A2

z:AFt:B|A W
-  abs

Az.r: A— B|A st A
(Az.r)s: B|A

app
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CUT-ELIMINATION STEPS (CLASSICAL CASE)

C|A—B :;
————act

ASBlCT s: A
B[C

app

Exact bounds in A P. Vial 4 RESOURCES FOR CLASSICAL LoGIic 28 /36



CUT-ELIMINATION STEPS (CLASSICAL CASE)

A= B|C;
RS- { 04

C|A—B :;
————act

ASBlCT s: A
B[C

app
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CUT-ELIMINATION STEPS (CLASSICAL CASE)

A= B|C;
RS- { 04

C|A—B :;
————act

ASBlCT s: A
B[C
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CUT-ELIMINATION STEPS (CLASSICAL CASE)

A= B|C;
_ acC

t t A
app
C|A—B
————act
A— B|C s: A
B[O app

@ Duplication of s
@ Creation of app-rules

@ B saved instead of A -+ B
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THE TYPING SYSTEM

Intersection: 7,7 := Uilrex U,V =: (0k)rex: Union
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THE TYPING SYSTEM

Intersection: 7,7 := Uilrex U,V =: (0k)rex: Union

x: U, Us); y: VIEE: U | a:{o1,02),8: (11,72, 7T3)
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THE TYPING SYSTEM

Intersection: 7,7 := Urlkek U,V =: (okr)rex: Union

x: U, Us); y: VIFE: U | a: (o1,02),8: (11,72,73)

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.
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Intersection: 7,7 := Urlkek U,V =: (okr)rex: Union

x: U, Us); y: VIFE: U | a: (o1,02),8: (11,72,73)

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

A - B1V...VA, = B AL NN Ag G}S'AA)B A )
Bi V...V Bg
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Intersection: 7,7 := Urlkek U,V =: (okr)rex: Union

x: U, Us); y: VIFE: U | a: (o1,02),8: (11,72,73)

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

A - B1V...VA, = B AL NN Ag G}S'AA)B A )
BiV...V By B
[call—cc : [[[A]=B]—A] — (A, A) vs. (A= B)—=A) — A]
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THE TYPING SYSTEM

Intersection: 7,7 := Urlkek U,V =: (okr)rex: Union

x: U, Us); y: VIFE: U | a: (o1,02),8: (11,72,73)

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

A - B1V...VA, = B AL NN Ag G}S'AA)B A )
BiV...V By B
[call—cc  [[[A]=B]—A] — (A, A) vs. (A= B)—=A) — A]
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SYSTEM H ), (HEAD NORMALIZATION)

o Weighted Subject Reduction + Subject Expansion

number of nodes of IT +
31ze(H) = size of the type arities of all the names of commands +
multiplicities of arguments in all the app. nodes
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SYSTEM H ), (HEAD NORMALIZATION)

o Weighted Subject Reduction + Subject Expansion

number of nodes of II +
31ze(H) = size of the type arities of all the names of commands +
multiplicities of arguments in all the app. nodes

o Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:
Let t be a Au-term. Equiv. between:
o tis Hy,-typable
o tis HN
o The head red. strategy terminates on ¢

+ quantitative info.
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SYSTEM H ), (HEAD NORMALIZATION)

o Weighted Subject Reduction + Subject Expansion

number of nodes of II +
31ze(H) = size of the type arities of all the names of commands +
multiplicities of arguments in all the app. nodes

o Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:
Let t be a Au-term. Equiv. between:
o tis Hy,-typable
o tis HN
o The head red. strategy terminates on ¢

+ quantitative info.

e Small-step version.
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© ExACT MEASURES FOR A
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CAPTURING EXACT MEASURES IN A\u

U#() rEE™D gy A
(0,0,1) (ax) @) (c) ()
[ UETT 2 U D CES™ D alt | AVa:U
T &™) ¢ gtight o | A Ttight o (T'(z
(=) ght g | ght o (T'(z)) (o5)

D\ z O™ agt: (o) | A

r=emn . | A )
1
[ FEmtar@@D i 140 (A@) 4y 00 A()' | AN a

D ECemed A, T, -G 4 doms (F) | A,
Ty AT, Gt bu metma, fot fut#eoF) 4, codom(F) | A¢ V Ay

(appg)
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CAPTURING EXACT MEASURES IN A\u

U#() rEE™D gy A
(0,0,1) (ax) @) (c) ()
[ UETT 2 U D CES™ D alt | AVa:U
T &™) ¢ gtight o | A Ttight o (T'(z
(=) ght g | ght o (T'(z)) (o5)

D\ z O™ agt: (o) | A

r=emn . | A )
1
[ FEmtar@@D i1+ (A@) g 00 A()' | AN a

D ECemed A, T, -G 4 doms (F) | A,
Ty AT, Gt bu metma, fot fut#eoF) 4, codom(F) | A¢ V Ay

(appg)

o UT = transforms top-level - into —
e.g., ((Z+V)]»9)" = ((Z+V)]—% with & = (o).
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1
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CAPTURING EXACT MEASURES IN A\u

U#() rEE™D gy A
] (0,0,1) . (ax) @) (c) (N)
x: U+ z:U|D IS [t | AVa:U
Emf) 4. U .
(=) I+ t:Utightg | A Itight o(I'(x)) (o5)
—i ®s
D\ z O™ agt: (o) | A
rEE™D el A
T |_(€7m+ar(A(Q)T),f+l+r0b(ﬂ(ﬁ))) pac A(a)T | A\ a (1)
D ECemed A, T, -G 4 doms (F) | A,
(apps)

Ty AT, Gt bu metma, fot fut#eoF) 4, codom(F) | A¢ V Ay

o UT = transforms top-level - into —
e.g., ((Z+V)]»9)" = ((Z+V)]—% with & = (o).

@ rob(U) = counts top-level » (= number of future @-nodes)
9., Tob({T+8,T — (T (T +8)),3)) =3
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CAPTURING EXACT MEASURES IN A\u

U#() rEE™D gy A
(0,0,1) (ax) @) (c) ()
[ UETT 2 U D CES™ D alt | AVa:U
T &™) ¢ gtight. | A Ttight . (T'(z
(=) ght g | ght o (T'(z)) (o5)

D\ z O™ agt: (o) | A

r=emn . | A )
W
[ FEmtar@@D i 140 (A@) 4y 00 A()' | AN a

D ECemed A, T, IFCome ) 4 s doms (F) | A
Ty AT, Gt bu metma, fot fut#eoF) 4, codom(F) | A¢ V Ay

(appg)
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PARAMETRIZATION

o Parametrized system (tightness + domains)

Tight types Domains
(spec. normal forms) (spec. if erasable args are typed)
e hd: empty domains o dompg/1,([] = U) =[]
o lo/mx: singleton domains o domyx([] — U) =singleton
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o Parametrized system (tightness + domains)

Tight types Domains
(spec. normal forms) (spec. if erasable args are typed)
e hd: empty domains o dompg/1,([] = U) =[]
o lo/mx: singleton domains o domyx([] — U) =singleton

let S € {hd,lo,mx} and ¢ a A\u-term.

t =% ¢ o S-NF with |t'|s = f
iff T &™) ¢ | A tight for some T', U, A
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PARAMETRIZATION

o Parametrized system (tightness + domains)

Tight types Domains
(spec. normal forms) (spec. if erasable args are typed)
e hd: empty domains o dompg/1,([] = U) =[]
o lo/mx: singleton domains o domyx([] — U) =singleton

Theorem (Kesner,V)

let S € {hd,lo,mx} and ¢ a Au-term. Then:
t _)E;{,m) t' a S-NF with |t/‘5 =7 (f — e when S = mx)
iff T &™) ¢ | A tight for some T', U, A

[Bonus: completely factorized proofs!]
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DoGaGy BAG
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DoGcaGy BAG

Non-idempotency:
forbid duplication of typing deriv.

Very simple
operational semantics

Simple proofs of termina-
tion.

typing brings qualt. and quanti. charac.

Persistence Exact measures
vs. consumption (red. length + NF)

[Adapts to other higher-order calculi]

e.g., feat. classical logic
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DoGcaGy BAG

Non-idempotency:
forbid duplication of typing deriv.

Very simple
operational semantics

Simple proofs of termina-
tion.

typing brings qualt. and quanti. charac.

Persistence Exact measures
vs. consumption (red. length + NF)

[Adapts to other higher-order calculi]

e.g., feat. classical logic

Future work:

Mufi (seq. calc.)? Call-by-push-value?
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THANK YOU

Thank you for your attention!
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