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Opérateurs de typage non-idempotents, au delà du λ-calcul

Contributions: L’objet de cette thèse est l’extension des méthodes de la théorie des
types intersections non-idempotents, introduite par Gardner et de Carvalho, à des cadres
dépassant le λ-calcul stricto sensu.

• Nous proposons d’abord une caractérisation de la normalisation de tête et de la
normalisation forte du λµ-calcul (déduction naturelle classique) en introduisant
des types unions non-idempotents. Comme dans le cas intuitionniste, la non-
idempotence nous permet d’extraire du typage des informations quantitatives ainsi
que des preuves de terminaison beaucoup plus élémentaires que dans le cas idem-
potent. Ces résultats nous conduisent à définir une variante à petits pas du λµ–
calcul, dans lequel la normalisation forte est aussi caractérisée avec des méthodes
quantitatives.

• Dans un deuxième temps, nous étendons la caractérisation de la normalisation
faible dans le λ-calcul pur à un λ-calcul infinitaire étroitement lié aux arbres de
Böhm et dû à Klop et al. Ceci donne une réponse positive à une question connue
comme le problème de Klop. À cette fin, il est nécessaire d’introduire conjointe-
ment un système (système S) de types infinis utilisant une intersection que nous
qualifions de séquentielle, et un critère de validité servant à se débarrasser des
preuves dégénérées auxquelles les grammaires coinductives de types donnent nais-
sance. Ceci nous permet aussi de donner une solution au problème 20 de TLCA
(caractérisation par les types des permutations héréditaires). Il est à noter que ces
deux problèmes n’ont pas de solution dans le cas fini (Tatsuta, 2007).

• Enfin, nous étudions le pouvoir expressif des grammaires coinductives de types,
en dehors de tout critère de validité. Nous devons encore recourir au système S et
nous montrons que tout terme est typable de façon non triviale avec des types in-
finis et que l’on peut extraire de ces typages des informations sémantiques comme
l’ordre (arité) de n’importe quel λ-terme. Ceci nous amène à introduire une méth-
ode permettant de typer des termes totalement non-productifs, dits termes muets,
inspirée de la logique du premier ordre. Ce résultat prouve que, dans l’extension
coinductive du modèle relationnel, tout terme a une interprétation non vide. En
utilisant une méthode similaire, nous montrons aussi que le système S collapse
surjectivement sur l’ensemble des points de ce modèle.

Mots-clés: lambda calcul, type, non-idempotent, type intersection, typage infinitaire,
coinduction, intersection séquentielle, type rigide, lambda-mu calcul, logique classique,
Curry-Howard, collapse, réduction productive, réduction non-productive
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Non-idempotent typing operators, beyond the λ-calculus

Abstract In this dissertation, we extend the methods of non-idempotent intersection
type theory, pioneered by Gardner and de Carvalho, to some calculi beyond the λ-
calculus.

• We first present a characterization of head and strong normalization in the λµ
calculus (classical natural deduction) by introducing non-idempotent union types.
As in the intuitionistic case, non-idempotency allows us to extract quantitative
information from the typing derivations and we obtain proofs of termination that
are far more elementary than those in the idempotent case. These results leads us
to define a small-step variant of the λµ calculus, in which strong normalization is
also characterized by means of quantitative methods.

• In the second part of the dissertation, we extend the characterization of weak nor-
malization in the pure λ-calculus to an infinitary λ-calculus narrowly related to
Böhm trees, which was introduced by Klop et al. This gives a positive answer to
a question known as Klop’s problem. In that purpose, it is necessary to simulta-
neously introduce a system (system S) featuring infinite types and resorting to an
intersection operator that we call sequential, and a validity criterion in order to
discard unsound proofs that coinductive grammars give rise to. This also allows
us to give a solution to TLCA problem # 20 (type-theoretic characterization of
hereditary permutations). It is to be noted that those two problem do not have a
solution in the finite case (Tatsuta, 2007).

• Finally, we study the expressive power of coinductive type grammars, without any
validity criterion. We must once more resort to system S and we show that every
term is typable in a non-trivial way with infinite types and that one can extract
semantical information from those typings e.g. the order (arity) of any λ-term.
This leads us to introduce a method that allows typing totally unproductive terms
(the so-called mute terms), which is inspired from first order logic. This result es-
tablishes that, in the coinductive extension of the relational model, every term has
a non-empty interpretation. Using a similar method, we also prove that system S

surjectively collapses on the set of points of this model.

Key words: lambda calculus, type, non-idempotent, intersection type, infinitary typ-
ing, coinduction, sequential intersection, rigid type, lambda-mu calculus, classical-logic,
Curry-Howard, collapse, productive reduction, non-productive reduction
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Chapter 1

Introduction

Mise en bouche

This thesis is about the relations between type theory and mathematical logic. We
specialize into the non-idempotent intersection type theory applied to the λ-
calculus. Type theory provides syntactic certificates that some programs behave well
e.g., terminate and the λ-calculus can be seen as the mold on which functional pro-
gramming is designed. Thus, forgetting temporarily about the words “intersection” and
“non-idempotent”, we are interested in finding guarantees that some programs of a lan-
guage called the λ-calculus terminate.

The matter of finding such certificates of good behavior is indeed fundamental when
working with expressive programming languages and it is a crucial step for having pro-
grams that meet their specification: the specification of a program is everything what it
is supposed to do e.g., you do not want the embedded system of your aircraft to open
the doors while it is flying1 or to bug because of an unnoticed coding mistake)

The syntactic nature of the certificates – meaning that they rely on the source code–
provided by type theory is an invaluable asset: this avoids all coding mistakes, contrary
to semi-random benchmarking methods that only sample the instances of a program.
As it turns out, type theory also ensures that streams – i.e. programs running without
limit of time – keep on producing computations instead e.g., of looping in a cycle of
states.

But what is a type? Roughly speaking, typing is a very simple idea: it just consists
in describing what kind of data (integer? floating number? string of characters? array of
integers? function?) is stored in the memory (in the variables) used by the program. We
may then assign types to programs e.g., the function sumLength that takes two strings s1

and s2 and outputs the sum of their respective lengths has the type (String×String)→
int. On the left-hand side (the source), we find the types of the inputs2 and on its
right-hand side (the target), the type of the output. From the practical perspective,
typing provides a form of safety for the program developer: one cannot inadvertently
switch the name of an integer variable with that of a string variable without having an
error, whereas some untyped languages may let the mistake pass unbeknownst to the
programmer.

It is not this kind of type-safety we are interested in in this thesis, but that of the
types as a guarantee of termination. But how does such a guarantee hold? Here is where

1Except if you are Tom Cruise.
2Separated by the operator ×, roughly corresponding to a cartesian product.

15
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mathematical logic comes into play. William A. Howard, extending some observations by
Haskell Curry, noticed that type systems really look like some inference systems coming
from mathematics, not only because assignment rules of types system and inference
rules of logic are oddly similar (statical correspondence), but also because the execution-
steps of programs are in almost every point homologous to the so-called cut-elimination
steps (dynamical correspondence). As we will see, the cut-elimination procedure was
introduced by Gerhard Gentzen [44] to give a (partial) proof of coherence of some
logic underlying arithmetic: from a high-level perspective, this procedure consists in
transforming a proof of an assertion A subdivided in several lemmas into a self-contained
one-block proof of the same statement A.

An interesting aspect of Gentzen’s contribution, later extended to intuitionistic3 Nat-
ural Deduction by Prawitz [94], is that he proved that this cut-elimination procedure is
terminating. As a consequence of the correspondence developed by Curry and Howard
(the so called Curry-Howard correspondence), the fact that the typed programs
(w.r.t. some type systems) are terminating became a straightforward consequence of
some proofs of cut-elimination. This was the first of many fruitful back-and-forth ex-
changes between programming languages and logic – each one shedding light on the
other–, leading to powerful type theories (as the Martin-Löf type theory) and proof
assistants like Coq or Agda, used both in the industry and in fundamental mathematics.

This introduction chapter is dedicated to making the keywords of this foreword
explicit as “function”, “types”, “λ-calculus”, “intersection”, “non-idempotent” as well as
some important phenomena and difficulties occurring in functional programming, before
presenting our contributions in an informal way, then in a more concise and technical
manner from p. 38 on. We also present some historical elements regarding the birth of
computation theory (before the invention of the first computers!) and the undecidability
of the so-called halting problem, which is the limitation result that intersection types
are constantly at odds with. More precisely, we follow the plan below:

• Section 1.1:

– We first present some very basic features of functional programming and typ-
ing and also very basic examples of terminating/non-terminating programs.

– We present the circumstances leading to the creation of computer science (the
Entscheidungsproblem, Gödel incompleteness theorems, Turing machines and
the undecidable of the halting problem).

• Section 1.2: we say a few words on the λ-calculus as a paradigm of functional pro-
gramming and present some fundamental notions (duplication, creation, reduction
paths, reduction strategies) related to functional computation.

• Section 1.3: we explain how intersection types are situated in the general picture
of type theory (notably in regard to higher-order typing), we present some of their
uses and sketch the mechanisms of non-idempotent intersection.

• Section 1.4: we discuss infinitary semantics of the λ-calculus and how unsoundness
arises from infinitary type systems.

To the reader who is familiar with the concepts above, we suggest to pass directly to
Sec. 1.5 and Sec. 1.6, respectively presenting a technical description of all the contribu-
tions of this thesis and a road-map with the dependencies between chapters.

3We say a few words about intuitionism p. 33.
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1.1 Functions and Termination

Functional Programming Functional programming is a high-level paradigm of lan-
guage, in which a program is thought as a function, that takes parameters as inputs,
performs a computation on these parameters, and then outputs a return value, if the
computation terminates. The main aspects that differentiate functional programming
from other paradigms (e.g., imperative/assembler programming) are the following:

• Functions are taken as first-class objects. Some programs can be applied to func-
tions (and not only to data). Such programs are said to be of higher-order. For
instance, the function map can take e.g., a function f from N to N as input and
then outputs the lifted function from the set of the arrays of integers to itself, that
applies f to each element of the array: thus, map(f) is the function that takes an
array [n1 n2 . . . nk] and outputs [f(n1) f(n2) . . . f(nk)].

• Absence of side-effects: side-effects occur when the state e.g., of a variable is
modified because some function/routine has been executed. For instance, arrays
are sensitive to side-effects in most languages, particularly when imperative fea-
tures are involved. The modification of a variable by a function call is often a
convenient feature, but because of side-effects, a function fed with the same ar-
guments can output different results, depending on the place of the call in the
execution. This makes programs with side-effects difficult to verify, especially
those with lengthy source codes. In contrast to that, functional programming ad-
vocates referentially transparent or pure functions i.e. functions that do not cause
side-effects. Most usual functional languages actually have imperative features
and are thus not impervious to side-effects, except for instance Haskell, which is
an example of purely4 functional language.

• Functions are suitable for typing, which helps avoid bugs and coding errors. They
also help developers to organize their programs, to make them more readable, to
subdivide them into modules and thus, to make them easier to maintain.

The Problem of Termination One very simple observation is that some programs
do not terminate. This problem is pervasive in most expressive programming language
(and is independent from the functional features of the language). For instance, in
imperative style, the program below never ends:

x = 1
while (x 6= 0) {

x = x + 1 }
print(“It′s quite late, don′t you think?′′)

That is: the initial value of x is 1. One keeps on incrementing x so long that the value
of x is not 0, so that x is equal to 1, then to 2, then to 3, etc. . . Of course, x will never
be equal to 0, so that the while loop will keep on running and the message will never
be printed.

4Haskell features explicit monadic constructions to process side-effects.
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Some other programs also obviously terminate (although one is never sure that no
mistake has been made) e.g., the one below, computing the sum 1+2+. . .+100:

sum = 0
for(n = 0; n < 100; n++){

sum = sum + n}
return sum

Since this is computers and programs we are talking about, one may wonder whether
there is an automatic way to check whether a given program P terminates when applied
to a given input x. This is the core of the Halting Problem which, more precisely,
consists in finding (for a given programming or computing language) an algorithmic
procedure that, given a source code of a program P and an input x of P , determines
whether P terminates on x or not, if such a procedure exists. As it turns out, the halting
problem does not have a solution. We present in the next section how this negative
result came to knowledge.

Hilbert’s Program stops, some computations do not

To understand the importance of termination problems in programming, one must go
back to the early 30s. Hilbert’s program of formalizing completely mathematics, pre-
sented in 1901, was brought to a sudden stop following the publishing of Gödel’s incom-
pleteness theorems. According to the first incompleteness theorem, effective axiomati-
zation of arithmetic cannot be both consistent and complete. The three italicized words
demand precision:

1. By effective axiomatization, one means that it can be checked whether a possible
proof Π in this axiomatization is correct or not.

2. By consistent, one means that one cannot prove both a proposition and its negation
in the axiomatization. Here, consistent is a synonym of coherent.

3. By complete, one means that, for any given closed formula5 F of the arithmetic,
there is, in the axiomatization, a proof of F or there is a proof of ¬F , the negation
of F .

If other words, by this theorem, no effective and consistent theory T axiomatizing arith-
metic can ensure that every arithmetic statement is provable or disprovable. Thus,
there are arithmetic theorems that are true, but the fact that they are true cannot be
established by syntactical means (i.e. by human-designed means!). The second incom-
pleteness theorem states that the consistency of an effective theory T cannot be proved
by means of a proof of T i.e. an effective theory cannot prove its own consistency (unless
it is contradictory, in which case the proofs of T do not mean anything).

5In short, a formula of first order arithmetic is a well-formed expression (e.g., not “) + 5 × 8 =)”)
using the operators “+”, “-”, “×”, the connective ∧ (“and”), ∨ (“or”) and ¬ (“not”), the quantifiers “∀”
(“for all”) and ∃ (“there exists”), the binary relation “=” and possibly involving variables. This is enough
to express most concepts involving integers (e.g., comparison 6, euclidean division, etc). A formula is
closed when every variable is quantified.
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The Decision Problem Hilbert had complemented his consistency program with
the so-called Entscheidungsproblem (literally, the Decision Problem), which consisted in
finding an algorithmic procedure that, given a first order formula F and an (effective) set
of axioms, would output True if F is a syntactic consequence of the axioms and False

if not, in the case such a procedure existed. Gödel’s theorems were a shock for many
mathematicians, philosophers and logicians, and moreover, they were a strong indication
that an algorithm of the Entscheidungsproblem did not exist as well, which had not been
hitherto suspected. However, Gödel’s results did not straightforwardly give this negative
answer, because their proof did not address the topic of computation, which was essential
to understand what algorithmic procedures are and how they behave. Thus, the notion
of computation, that had actually been overlooked by mathematicians and by logicians
since the introduction of mathematics, came into light and caused intense reflection
on its nature. Several alternative paradigms were proposed to provide a formal and
comprehensive definition of computation. In his proof of the incompleteness theorems,
Gödel had considered some obviously computable functions that are nowadays known
as the primitive recursive functions. Integrating some remarks from Herbrand, he then
defined the set of (partial) recursive functions, despite the fact he did not believe them
to capture all possible computations (see [99], chapter 17). Church, who had introduced
the λ-calculus in 1928, was convinced that a function was effectively computable iff it
could be encoded by a λ-term, but many researchers, including Gödel, were skeptical.
Finally, Turing defined his celebrated abstract machine [103] model, ever since known
as the Turing machines. Turing explicitly conceived his machines by emulating (i.e.
imitating in an abstract way) the human mind, seen as a device having a finite number
of possible states and a reading/writing head interacting with an infinite tape, that
is empty at the beginning of the execution (except for finitely many symbols). Very
roughly, this captured the idea that (1) a human mind (or a cluster thereof) can handle
only a finite number of data (i.e. what is already written on the tape) and this, in finitely
many ways (captured by a finite transition function) (2) a human being writes/erases
one letter after the other. Last, the assumption that the tape is infinite gives rise to
the possibility to conduct a computation (or a reasoning) without limitation in space or
time (just, the computation or the reasoning must stop at some point), which is what
the notions of decidability and computability are about.

The very design of Turing machines made them a very convincing comprehensive
formalization of computation. It soon turned out [24, 25, 66, 104] that they had an
equivalent expressive power to those of the λ-calculus and of the Herbrand-Gödel re-
cursive functions up to some encoding i.e. the complete behavior of each one of these
three models of computation can be implemented in the two others. This led to the
Church-Turing thesis:

A function is effectively computable iff it can be implemented in a Turing
Machine/by means of a recursive function/a λ-term.

This is a thesis, and not a theorem, because there is still the very thin possibility
that one day, one may find effective computing devices/languages that compute more
than Turing machines. What is sure for now is that (1) every such devices/languages
that has been made or conceived hitherto has been proved to fit within the scope of
the Church-Turing thesis (2) for now, nothing suggests that this thesis could become
obsolete.
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With a formal definition of computation, it was a small step to adapt Gödel’s tech-
niques and to prove that the Entscheidungsproblem did not have a solution. Turing
proved this negative result along with the introduction of his machines in 1936 [103]
(Church [25] had a proof of the same fact using λ-calculus dating back from 1934, when
it was not yet surely established that the λ-calculus encompassed the whole notion of
computation). For instance, with Turing machines, the technique of Gödel consisting
in arithmetizing6 the set of arithmetic statements is replaced by the implementation
of a Universal Turing Machine i.e. a Turing machine that emulates any other Turing
machine (modulo some encodings).

The Church-Turing thesis gave rise to the notion of Turing-complete languages:
a programming language L or a calculus is Turing-complete when its expressive power
is equivalent to that of Turing-machines/the λ-calculus i.e. one can encode and emulate
the Turing-machines in the language L . The Church-Turing thesis reformulates into:
every implementable calculus is at best Turing-complete.

Termination Along with the negative answer to the Entscheidungsproblem came other
limitation results. Let us just talk about two of them:

• The halting problem is undecidable: there is no algorithmic procedure that can
decide, given any program P and input x, whether P terminates on x.

• Extensional equality is undecidable: there is no algorithmic procedure that can
decide, given any programs P and Q, whether P and Q are extensionaly equal
i.e. whether, for all input x, P terminates on x iff Q does and in that case, they
output the same value.

Turing [103] and Church [25] respectively proved that no Turing machine and no λ-
term could determine whether a Turing machine and a λ-term terminates. This, along
with the Church-Turing thesis, means that there are no mechanical or humanly im-
plementable ways to determine whether any given program terminates. It is actually
possible to check when considering only programs of some poorly expressive language,
but only in a strictly more powerful language (a language cannot decide the termina-
tion of its own programs, by a diagonal argument). In the case of the Turing-complete
languages, this means that termination7 is impossible to check (in all generality) since
there are no effective and more powerful languages than them, by the Church-Turing
thesis.

6That is, encoding the formulas and proofs of first order arithmetic with natural numbers and its
inference rules with primitive recursive functions. He then used the fact that arithmetic statements
and their possible proofs could be represented by integers to express predicates on the set of arithmetic
formulas by means of arithmetic formulas (!), such as “This formula has a proof in first order arithmetic”.
This allowed him to enunciated, in an elaborated variation of the liar’s paradox (“I am lying”) an auto-
referential proposition G more or less saying “There is a proof of my negation”: thus, neither G nor its
negation can be provable. This is a priori not a contradiction: this is just that truth cannot be captured
by provability.

7Note that when a program is running, without supplementary information, one cannot know
whether it just needs some more time to produce its output or it is locked in a loop that will never end.
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Theory of Computation
• There is a universal and robust definition of computation, encompassing every-
thing that is effectively computable by a machine or a human being (CT thesis).
• There cannot exist a general method verifying whether any given program termi-
nates or not (i.e. there are programs whose non-termination cannot be determined).

1.2 Processing Computation in Functional Programming

The λ-Calculus as a Model of Functional Programming Language The λ-
calculus can be seen as the skeleton on which functional programming languages are
built and incidentally, the kernel of Caml was initially nothing more than an implemen-
tation of the pure (i.e. untyped) λ-calculus. From the mathematical point of view, the
λ-calculus is a language in which everything is a function. As we will see, from this
notion (of function), one can reconstruct many basic notions (e.g., integers, lists, etc).
One can draw a parallel between this approach and the Zermelo-Fraenkel set theory (ZF)
in which every object (numbers, lists, functions) is built from the notion of set. For in-
stance, the program/λ-term app3 representing the natural number 3, is the higher-order
function taking two arguments f and x (intuitively, f is a function and x is an argument
of f) and applying f three times to x i.e. app3(f, x) outputs f(f(f(x)).

Let us now informally explain a few aspects of computation in functional program-
ming languages, including the notion of reduction paths, reduction strategies and final
state/normal form. We will use a hybrid syntax (not exactly that of the λ-calculus) in
which functional programs are literal expressions that can be rewritten into other. The
arrow →β , called8 β-reduction in the λ-calculus, represents one execution-step e.g.,
2 + 3 + 5 →β 5 + 5 →β 10 or f(4) →β 4 × 4 →β 16 if f is the function that takes an
integer as input and outputs its square. We use the words “computation”, “expression”
and “program” as synonyms.

One immediate observation is that some (e.g., arithmetical) expressions correspond
to final states of a computation/program whereas others are not (we say that they are
reducible): for instance, 2 + 4 × 5 is not the final state of a computation nor 2 + 20
whereas 22 is. Intuitively, the final state of an integer is its decimal notation. In the
λ-calculus, a final state is called a normal form and termination is called normaliza-
tion. The β-reduction of the λ-calculus can be used to encode almost all the operations
of a given structure (e.g., addition, multiplication for integers, concatenation for lists
etc).

The λ-calculus
• An universal (but rudimentary) model of functional programming.
• Is Turing-complete.
• Every computation rule is subsumed by β-reduction.
• Allows studying both typed and untyped functions.

8Not to be confused with 7→, which represents functional mapping and→, that represents functional
types e.g., the square function f is defined by n 7→ n × n and is of type Nat → Nat here, meaning that
both its single input and its output are natural numbers.



22 CHAPTER 1. INTRODUCTION

Computing a Functional Expression A step of computation (β-reduction) may
consist in just reducing an operation (and destroying an operand) e.g., 2 + 3 × 5 →β
2 + 15→β 17, but actually, many computation steps make the current expression more
complex. For instance, let f be the function from Nat to Nat, that takes a natural
number n and outputs (2 + 3)× n× n× n. We write f(n)→β (2 + 3)× n× n× n. Now,
how do we evaluate f(2× 3 + 1) step-by-step? An efficient way is this one:

f(2× 3 + 1) →β f(6 + 1)→β f(7)→β (2 + 3)× 7× 7× 7
→β 5× 7× 7× 7→β 35× 7× 7→β 245× 7→β 1715

Thus, in 7 elementary computation steps, we obtain the final result. But we may be less
shrewd and proceed like this:

f(2× 3 + 1) →β (2 + 3)× (2× 3 + 1)× (2× 3 + 1)× (2× 3 + 1)
→β 2× (2× 3 + 1)× (2× 3 + 1)× (2× 3 + 1)

+ 3× (2× 3 + 1)× (2× 3 + 1)× (2× 3 + 1)
→β . . .

and we go on like this: instead of reducing the parenthesized expressions, we expand the
outer products. We also reach 1715 (the final state) at the end, but in several dozens of
steps instead of just 7 and by manipulating considerably bigger expressions.
This example epitomizes:

• The notion of reduction paths: since a computation may contain several re-
ducible sub-expressions, some computations can be processed in different ways.

• The possible duplication of the argument: f(n) unfolds to (2 + 3) × n × n × n

with 3 occurrences of n. Note that in the second reduction path, we duplicate 3
times the reducible expression 2×3 + 1 and this is one of the reasons why the first
computation is better. In general, an execution-step of a program can duplicate
several routines of this program. Since executing each copy of these routines
can also entail duplications of subroutines and so on, this sometimes entails an
explosion of computational complexity.

Some other phenomenons occur, that will be of great importance in this thesis:

• Erasure: One may think from the previous example that it is more efficient to
first compute the argument of a function in order to avoid duplication of sub-
computations. It is sometimes false e.g., when some argument does not impact
the result. For instance, if f is the function that takes an integer n as inputs and
outputs n× (3− 3)× n, then, the best way to compute f(2× (4− 1)− 2× 4 + 7)
is to reduce f(n) first i.e.

• given n, f(n)→β n× (3− 3)× n→β n× 0× n→β 0
• f(2× (4− 1)− 2× 4 + 7)→β 0

In this case, since the value of f(n) does not depend on n, it would be absolutely
useless to compute first the sub-expression (2× (4− 1)− 2× 4 + 7).
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• Created computations: Because of higher-order functions, an execution-step
may create (not only duplicate) new computable expression. For instance, let
app2 be the higher-order function taking its first argument and apply it twice to
its second one e.g., if the 1st argument is a function f : Nat → Nat and the 2nd
one is a natural number n, then app2 applies f twice to n. i.e. app2(f, n) outputs9

f(f(n)). Then f is not applied to anything in the expression app2(f, n), whereas,
in the outputted expression f(f(n)), f occurs twice with an argument (n and f(n)).

• An example of unsound computational behavior: created computations can
be a source of non-termination in the untyped case. For instance, one can define
the auto-application autoapp, which is a higher-order function that takes a func-
tion f and applies it to itself i.e. autoapp(f) outputs f(f) for any function f. If we
apply autoapp to itself, note that autoapp(autoapp) outputs (after one execution-
step) autoapp(autoapp), which outputs autoapp(autoapp), which... This compu-
tation will never stop but it is licit and meaningful in some untyped programming
language e.g., the pure (untyped) λ-calculus. In the latter case, auto-application
is just encoded by the term ∆ := λx.x x and autoapp(autoapp) by the term
Ω = ∆ ∆.

• Order of a program The order of a program is the number of its top-level inputs.
Let us notice that the top function of a program can change during its execution.
For instance, taking the example app2(f, n) on p. 23, the main function is app2, but
after one execution-step, it is f (in the reduced expression f(f(n))). This kind of
phenomenon can mixed up with complex branching instructions. For instance, let
branch2 be the higher-order function that uses the output of its 2nd parameter to
feed the input of its first parameter. In particular, the two parameters of branch2

must be functions. Let sum be the function that computes the sum of two integers
and mult3 the function that computes the product of three integers. Thus, sum
and mult3 can be respectively be written by x, y 7→ x+ y and x, y, z 7→ x× y × z.
Then branch2(mult3, sum) outputs the function with four parameters that can be
written x, y, z, t 7→ (x+y)×z× t (up to some unfoldings). Because of higher-order
computations, the order n of a program t is not easy to obtain when t is not in a
sufficiently reduced state (i.e. n is difficult to capture statically), and although, in
the typed case, types usually give some information on the order n of t, determin-
ing its value is undecidable in the untyped λ-calculus.

• Small-step calculi: A way to have a more fine-grained control on duplication is
given by small-step calculi and to avoid for instance the following situation. We
assume that:

– F is a higher-order function and F(x) reduces into an expression where the
variable x occurs 45 times.

– expr is also a complex higher-order expression.

Thus, F(expr) →β Expr, where the argument expr of F is duplicated 45 times in
Expr. But assume moreover that one of the occurrence of expr in Expr interacts

9In this example, app2 can be assigned the type ((Nat→ Nat)× Nat)→ Nat). But more generally,
app2 can be assigned any type of the form ((A→ A)×A)→ A, see p. 27.
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via higher-order computations with other parts of Expr and erases 40 copies of
expr. Then, it was useless to replace the corresponding 40 occurrences of the vari-
able x of F with expr since they are to be erased. Small-step computation provides
an alternative method by allowing the substitution of x by expr to be processed
occurrence by occurrence. So the computation occurs like this: F(expr) reduces
in an expression Expr′ where, for the moment, only one occurrence of x has been
replaced by expr: the one that allows us to erase 40 occurrences of x in Expr.
In some execution steps, we obtain a much simpler expression Expr′′ in which x

occurs only 45-40-1=4 times. We then replace these 4 remaining occurrences of x
by the expression expr. This example epitomizes the use of small-step operational
semantics.

Executions paths
• An execution-step (materialized by →β) can cause erasure duplication and cre-
ation of some computations.
• A same expression can be computed in different ways (; reduction paths) with
different efficiencies, to reach a final state.
• Some computations do not terminate (in the untyped case).
• The order of a functional expression is its number of top-level inputs.

Final states and how to reach them An important observation is that some com-
putations terminate when they are handled in some ways whereas they do not in other
cases. For instance, assume that expr is an arithmetic expression whose computation
does not terminate (think of an imperative-style program with a bad “while” loop or of
an expression using autoapp(autoapp) on p. 23). Let proj2 be the function taking two
integers as inputs and outputting the second one i.e. proj2(m, n) →β n. Thus, proj2

does use its first argument. We then consider proj2(expr, 2 + 3): if we try to execute
expr while it is not in final state, the computation will never stop, by hypothesis. But
if we start by unfolding f, we obtain a final state in two steps:

proj2(expr, 2 + 3)→β 2 + 3→β 5

This is one case where starting evaluating the arguments makes the computation non-
terminating!

initial
state

infinite
path

final state

Figure 1.1: Execution Paths (Weak Normalization Case)

In the λ-calculus, a β-normal form is a program such that every computation is in
its final state (the program does not contain reducible expressions). One then distin-
guishes between weakly normalizing and strongly normalizing λ-terms. A program t is
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weakly normalizing when there is at least one reduction path from t to a final state (a
β-normal form) whereas it is strongly normalizing when there are no infinite reduction
paths starting at t. For instance, the program proj2(expr, 2 + 1) above is weakly, but
not strongly, normalizing, whereas the expression f(2 × 3 + 1) from p. 22 corresponds
to a strongly normalizing program (it does not even contain “for” or a “while” loop). In
Fig. 1.1, we have represented different execution/reduction paths, starting at an initial
state/expression of a program. All the paths represented in the figure lead to a final
state, except for one. Thus, the program can be executed in some ways that will make
it terminate, but some other will not: this roughly corresponds to a case of weak (not
strong) normalization in the λ-calculus.

Operational completeness and reduction strategies To get into the subject of
reduction strategies, let us give a very high-level representation of a computable func-
tional expression expr as a set of computations with nestings. A simple example of
nestings is f(2 × 3 + 1) on p. 22: the application of f to 2 × 3 + 1 is the most shallow
process (with f : n 7→ (2 + 3)× n× n× n). The sums 2 + 3 and 2× 3 + 1 are nested in
f(2×3 + 1) in the expression of f and in its argument respectively. The product 2×3 is
nested in the sum 2×3+1. In Fig 1.2, the computations of a given expr are represented
by the nodes and the nestings by the edges. Intuitively, these computations are more or
less deeply nested in the expression. We consider the computations that do not contain
sub-computations10 as inputs of the computation (although it is somewhat11 of an over-
simplification) but there is exactly one computation that is the closest to the output.
Every sub-computation of expr has a main process and this main process is either in a
final state (we label it with “T”, standing for terminated) or it is not completed – i.e. it
can still be reduced – and we label it with “?”.

T T ?

?

? T ?

T T

?

T

? Most shallow process

Figure 1.2: Dependencies between Computations in a Function

A reduction strategy consists in reducing (executing) only sub-expressions of some
particular form or in some particular places e.g., in λ-calculus, the head reduction strategy
informally corresponds to keeping on reducing the most shallow process of the expression
(the one that is the closest to the output) while it is not in terminal state (the strategy
will go on forever if this is not possible).

Still in the λ-calculus, a head normal form is a program whose most shallow process is
in terminal state whereas a β-normal form (see above) is a program whose processes are
all in final state. One says that a program t is head normalizing if there exist a reduction
path (an execution path) from t to a head normal form. Obviously, if the head reduction

10Computations containing only one operand.
11In general, Fig. 1.2 is far too rudimentary to suitably represent computation dependencies in a

program. Compare with the figures of Chapter 2.
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strategy terminates on a program, then it is head normalizing. An equivalence actually
holds: a program is head normalizing iff the head reduction strategy terminates on it.
We then say that the head reduction strategy is complete for head normalization.

The converse implication of the above equivalence is difficult to prove: the head
reduction consists in reducing only the most shallow node i.e. the node of interest, but
as we saw on p. 22, each execution-step can displace, duplicate, erase or create new
computations. It is sometimes clearly more efficient to reduce first the argument of a
computation instead of executing this computation (recall f(2 × 3 + 1) on p. 22) and
the head reduction strategy is often quite sub-optimal to reach a head normal form, but
still, it ensures that a head normal form will be reached (if one is reachable from the
initial state of the program).

Usually, the developer or the user of a program must not be bothered and asked to
specify at each execution step which expression should be computed next, and languages
feature default deterministic reduction strategies. It is then very useful to identify reduc-
tion strategies for given definitions of termination, so that one ensures that computation
stops iff a final state is reached. It turns out that intersection type theory provides se-
mantic proofs of the operational completeness of a strategy, instead of syntactical ones,
and this is one of their main interests.

Reduction Strategies
• For a given program, some execution paths can be infinite whereas some others
reach a final state in a finite number of steps.
• A reduction strategy sets priorities of reduction/execution.
• Some reduction strategies are complete w.r.t. some notions of termination.

1.3 Intersection (or not) Types in the λ-Calculus

Type systems, typing derivations The typing of a program roughly consists in a
proof, called a typing derivation, following the structure of the instructions of the
program. These proofs contain statements called typing judgments and the typing
rules of the system describe the licit transitions from one judgment to another. As
hinted before, the most important constructor of type theory is the arrow/implication
“→”: the judgment f : A → B means that f is a typed function that takes an input of
type A and outputs an object of type B.

For instance, if twice is a function computing the double of a natural number (i.e.
the type of twice is Nat→ Nat) and len computes the length of a string (i.e. the type
of len is String → Nat), then the program f defined taking a string s as input and
outputting twice(len(s)) should of course be typed with String → int. From the
syntactical point of view, this typing is checked like this: under the assumption that
s is an object of type String, we prove that twice(len(s)) is a well-defined object of
type Nat (this is denoted by the judgment s : String ` twice(len(s)) : Nat: on the
left-hand side of `, one finds the typing assumptions). This implies that the function f,
defined by s 7→ twice(len(s)), is of type String→ Nat. Formally, this corresponds to
this typing derivation:
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` twice : Nat→ Nat

` len : String→ Nat s : String ` s : String

s : String ` len(s) : Nat

s : String ` twice(len(s)) : Nat

` s 7→ twice(len(s)) : String→ Nat

In a simple or a higher-order type system, a derivation typing a program featuring
83 functions-calls in its source code will be a proof featuring more or less 83 typing
rules/judgments and following the general structure of this source code.

When a type system ensures termination for typed programs, a lot of undecidable
problems become decidable e.g., one can usually determine the order of a given typed
program by executing it, or decide whether some typed expressions expr1 and expr2

represent states of a same program or not by reducing them.

Types and Termination Revisited As recalled on p. 16, Curry proved in the 50s
that typed λ-terms are terminating (they are strongly normalizing), using cut-elimination
techniques, and Howard observed that this was just a particular consequence of an iso-
morphism between the simply typed λ-calculus and intuitionistic natural deduction.
Shortly after, Landin [71,72] used the λ-calculus to construct the language Algol. Curry’s
type system does not have much expressive power12 andHigher-order types systems,
deriving from higher-order deduction systems via the Curry-Howard correspondence,
were introduced in the 60s to extend the computational power of the programming
languages while ensuring termination of the typed program (see [21], Sec. 8.3 for some
historical aspects of higher-order types).

In short, higher-order type systems13 allow manipulating types as first-class objects
(one may for instance quantify over types). This approach is embodied by Jean-Yves
Girard’ system F [45, 46], Per Martin-Löf type theory [78, 79] and the calculus of
constructions (CoC), developed by Thierry Coquand, Gérard Huet and Christine Paulin-
Mohring [29–31], and gave birth to a generation of powerful proof assistants like COQ
or Agda.

So, why do we need higher order typing? It stems from the observation that, intu-
itively, some program can be assigned several different types. For instance, the func-
tion app2 from p. 23, satisfying app2(f, x) →β f(f(x)), can be typed with ((Nat →
Nat) × Nat) → Nat), since it can take a function f : Nat → Nat as first argument, a
natural number n : Nat as second argument, and outputs f(f(n)) which is also of type
Nat. In contrast, app2 cannot be typed with (String → Nat × Nat) → Nat because
one may not apply a function f of type String → Nat (outputting a number from a
string) to a natural number n! But note that app2 can be fed, for any type A, with a
function f of type A → A as first input and an argument x of type A as second input,
so that app2(f, x) outputs f(f(x)), which is of type A. In other words, f can be typed
with ((A → A) × A) → A for all types A. In a higher-order type theory, one then
assigns to app2 the type ∀A.((A → A) × A) → A, meaning that the type of app2 may
be instantiated so that app2 can be used w.r.t. any “base type” A (e.g., A = Nat as in

12Schwichtenberg [97] proved in 1976 that a function from Nat to Nat can be encoded with a simply
typed λ-term iff it is an extended polynomial i.e. a polynomial using some conditional operator

13this is not to be confused with the fact that the λ-calculus is of higher-order, as a programming
language (i.e. allows passing functions as parameters of other functions)



28 CHAPTER 1. INTRODUCTION

app2(f, n) above, or A = String or A = Nat → Nat). One then says that the type of
app2 is polymorphic. Let us give an example of use of this polymorphism:

• Let G be the function that takes a function f : Nat→ Nat and outputs the function
Nat → Nat defined by n 7→ f(3 × n) + 1. Thus, G is a higher-order function of
type (Nat → Nat) → (Nat → Nat). For instance, if f is n 7→ n2, then G(f) is the
function n 7→ 9× n2 + 1.

• Then, if f is a function Nat → Nat, app2(G, f) outputs G(G(f)) i.e. (up to some
execution-steps), the function n 7→ f(9×n)+2 which is also of type Nat→ Nat. In
this case, app2 was instantiated with the type A = Nat→ Nat and not A = Nat.

Thus, app2(app2(G, f), n) outputs (up to some execution-steps) the natural number
f(9 × f(9 × n) + 18) + 2. In this expression, app2 occurs twice, but with different
types: the type ((Nat → Nat) × Nat) → Nat (case A = Nat) in app2(. . . , n) and
the type (((Nat → Nat) → (Nat → Nat)) × (Nat → Nat)) → (Nat → Nat) (case
A = Nat → Nat) in app2(G, f). Because of that, in the case of simple typing, the ex-
pression app2(app2(G, f), n) would not be typable (one should have chosen the particular
type of app2).

Subject Reduction and Invariance of Typing by Execution An important prop-
erty, usually verified by simple and higher-order type systems, as the one of the Calculus
of Constructions for instance, is subject reduction, which means that a type assign-
ment that is valid for the initial state of a program P remains valid for all the states of
P during its execution.

For instance, if f is the function n 7→ 3× n+ 1, the program g from Nat to Nat, that
takes a natural number n as input and outputs f(n+2), can be executed in this manner:

g(n)→β f(n + 2)→β 3× (n + 2) + 1→β . . .→β 3× n + 7

The program g passes from its initial state n 7→ f(n+ 2) to its final state n 7→ 3× n+ 7
after some execution-steps. Then subject reduction simply ensures that the final ex-
pression n 7→ 3 × n + 7 is also a function from Nat to Nat, as the initial one is. This
example is somewhat non-plussing because of its straightforwardness, but subject reduc-
tion is perhaps the only requirement demanded to every type system. Note that typing
is specified by a set of syntactical14 rules, that can be applied to a given expression of
a program. Usually, typing features an arrow constructor and f : A → B means that
f is a function of type A → B i.e. a function that takes an output of type A and out-
puts an object of type B. But beyond that, any constructor (e.g., product, coproduct,
intersection, union, higher-order, dependent types, equality types, etc) and any typing
rule can be specified without particular restriction, except that if subject reduction15 is
not satisfied, the type system will not be meaningful since typing is not invariant under
execution as it should be. When a type system satisfies subject reduction, it is said to
be (dynamically) sound.

14 In contrast to the realizability approach pioneered by Kleene [67], which is not syntactical but
more semantical.

15i.e. if an expression expr of a given function is typable but not another that is obtained from expr

after some execution-steps.
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Type systems
• Typing relies on syntactic rules.
• The arrow → represents functionality from one type to another.
• The typing of a program is statically checked for an initial state of this prog.
• Subject reduction holds when typing is invariant under execution.

Enriching Types with Intersection The λ-calculus is an amazingly rich playground
to define typed programming languages, since its untyped version is Turing-complete
whereas, when it is endowed with simple or higher-order type systems, it provides safe
languages featuring only strongly normalizing programs. One of the purpose of type
theory in the λ-calculus is to provide more and more descriptors to interpret pure λ-
terms as effective programs with a computational content. An alternative extension of
Curry’s original type system, differing from the higher-order approach, was proposed
by Coppo and Dezani [27, 28, 77], who introduced the so-called intersection type
systems.

Intersection types also allow polymorphism, but in a finite form i.e. there is no
universal quantification on type as app2 : ∀A.((A→ A)× A)→ A, but one can specify
a finite list of types to a same function e.g., , if NN shortens Nat→ Nat, in the example
on p. 23, one can specify the type of app2 in app2(app2(G, f), n) by (((Nat → Nat) →
Nat)) ∧ (((NN → NN) ∧ NN) → NN), which means that app2 can be both used w.r.t. type
Nat and type Nat → Nat (but no more, with this assignment). Since only a finite
number of types can be specified, one could think that intersection types have a limited
expressivity compared to that of higher-order types, but it is not true in some respects:
with intersection types, type assignment is completely unconstrained e.g., in higher-
order, app2 is always instantiated with types of the same form ((A→ A)×A)×A, but
with intersection types, one can assign to a same program types of this form and of the
form String or Nat → String (the syntax of the assigned types is not necessarily the
same). It turns out that intersection types usually type more pure λ-terms than the
original calculus of constructions does (see Fig. 1.3).

• From the semantical point of view, intersection type systems provide a characte-
rization of termination (and not only a guarantee of termination, as in the simple
and higher-order cases).

• They are more modular regarding what is meant by termination e.g., head, strong
or weak normalization (in the λ-calculus) can be captured.

• From the dynamical point of view, they are usually complete: they often (not
always) satisfy a subject expansion property, meaning that, if an expression
expr representing a state of a program gives expr′ after some execution-steps,
and a typing is valid for expr′, then this typing is also valid for the initial state
represented by expr. This is some sort of converse implication to that of subject
reduction and it really relies on the “unconstrained” nature of intersection types
alluded to above (this is addressed in detail in Sec. 3.3.2).

Subject expansion (along with subject reduction) implies that intersection type systems
can be used to build denotational models of the λ-calculus. Moreover, it is not satisfied
by simple and higher-order type systems. That is why these systems do not characterize
terminating programs (whatever the sense given to “termination” is) whereas, in an
intersection type system, we have equivalences of the form:
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The pure λ-calculus

mute terms (outside)

non-mute terms

head n. terms

weakly n. terms

strongly n. terms

polymorphic
typed calculi

Ex: CoC∗, sys. F∗

simply typed
λ-calculus

*: modulo some
issues of relative

consistency

Figure 1.3: The Expressive Power of Types (λ-Calculus)

A program t is typable iff t terminates (∃ at least one red. path from t to a final state)

The two predicates “t is typable” and “t terminates” are usually undecidable, but in
practice, this kind of equivalence is often proved by actually proving an equivalence
between 3 predicates:

A program t is typable iff t terminates (there is at least one red. path. . . )
iff some reduction strategy terminates on t

Thus, as a by-product of these characterizations, intersection types provide a proof that
some reduction strategy is complete for some given notion of termination i.e. intersection
types prove operational properties that are independent from the notion of type. This
aspect is very important in this thesis. We discuss it again in Sec. 3.3.1 and it is embodied
by Theorems 7.1 and 10.4, in which we both characterize a form of termination and prove
the completeness of a given reduction strategy for this form of termination.
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If a function f is typed with (A1 ∧ A2 ∧ A3) → B, then it can be applied to an
argument x that has been typed with A1, A2 and A3 at the same time. In simple or
higher-order type systems, the argument of a function is typed exactly once. In an
intersection type systems, it can be typed 3, 4, 5. . . or even 0 times. Thus, in this
setting, since a sub-expression of a typed program t can be typed as many times as
needed/desired (starting from 0), if t contains 83 instructions, the size of a derivation
typing t can vary from 1 to far more than 83 judgments.

Types as Semantical Descriptors Types provide a guarantee of termination, but
also many other semantical information, that are more than just “this function takes two
integers as inputs and outputs an array of strings”. For instance:

• Some higher-order type systems (for instance, the one of Coq) feature equality
types i.e. types that are able to assert that e.g., two integer expressions have the
same value. Equality types bring a lot to proof-checkers and can be used to give a
certificate that two programs have the same observational behavior (i.e. that they
meet the same specification).

• Moreover, typability brings more news than mere termination. For instance, a
function N→ N may be implemented/typed in system F iff it is provably total16

in PA2, the Second Order Peano Arithmetic [45] (see Chapter 15 of [49]).

On the other hand, when a language both features untyped and typed programs (as the
λ-calculus does), intersection type systems, besides their ability to characterize termi-
nation, can help to separate programs i.e. if given two expressions expr1 and expr2,
there is a type A than can be assigned to expr1 but not to expr2, then expr1 and expr2

cannot represent two different states of a same program. This works because typing is
invariant under execution (backward and forward) with intersection types, by subject
reduction and expansion.

For instance, usually, the types of a program give indications on the value of the order
of a typed program t because a function must be typed with an arrow type. However,
by lack of subject expansion in simple and higher-order type systems, those usually only
provide an upper bound17 to the order. On the other hand, intersection type systems
often satisfy subject expansion and provide the precise value of the order of any typed
term. One say that such systems are order-discriminating, since, if two programs do
not have the same order, then, there is a type that can be assigned to one but not to
the other, and the order of terms can be determined statically, without execution-step.

A last remark on higher-order and most intersection types is that they provide qual-
itative information about programs (termination) but no quantitative information (e.g.,
in how many execution-steps a final state can be reached from a given typed program).
The next section addresses quantitative issues.

Non-Idempotent Intersection Types Subject reduction is a guarantee that every
typing of a state of program represented by an expression expr is also valid for any state
of the same program expr′ after some execution-steps. For instance, if there is a typing
derivation Π concluding with Γ ` expr : B and expr →β . . . →β expr′, then there is

16We say that f is provably terminal in PA2 if f is terminal (i.e. for all n ∈ N, f(n) is defined) and
that there is a proof in PA2 that f is actually terminal

17Type system can give a precise account of the order of a typable program when it has been
sufficiently reduced. Typing can go backward (w.r.t. execution) only when subject expansion is satisfied.
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also a typing derivation Π′ concluding with Γ ` expr′ : B. The derivation Π′ is roughly
obtained from Π by undergoing the same processes (duplication, erasure, etc) as expr
undergoes to give expr′, since typing derivations follows the structure of the program
(we refer to Fig. 3.1 for a more formal example).

Thus, it is possible that a derivation typing the initial state of a program is simpler
than the corresponding derivations, obtained by subject reduction, in later stages of
the execution. This is the reason why proving that typing ensures termination18 in
simple and higher-order type systems and in most intersection type systems is technically
difficult (see Sec. 4.3).

Gardner [43] and de Carvalho [22] independently proposed an intersection type
system in which the termination of typed programs was straightforward to establish.
This was due to the disallowing the duplication inside a typing derivation when it is
executed. This approach takes it inspiration from Girard’s Linear Logic [47] in which
structural rules (weakening, contraction, co-contraction i.e. duplication) are handled by
means of explicit modalities. Intersection types à la Gardner/de Carvalho are said to be
non-idempotent because A and A ∧A are not the same, since duplication is not licit.

Let us illustrate the difference between the non-idempotent intersection approach on
one hand, and higher-order or idempotent intersection types on the other. Assume that:

• f : A → B and x : A (so that f(x) : B) i.e. the derivation typing f(x) concludes
with a rule of this form (we omit the possible typing assumptions):

f : A→ B Πx � x : A

f(x) : B

where Πx is the derivation certifying that x is typable with A.

• After one execution-step, f duplicates its argument x 28 times i.e. from f(x), we
obtain an expression expr in which x occurs 28 times.

In the higher-order or idempotent intersection types settings, during reduction, the cer-
tificate that x can be assigned the type A will be duplicated 28 times i.e. the derivation
typing expr features 28 copies of Πx. In the non-idempotent setting, duplication is dis-
allowed and in the same situation, since the argument x is copied 28 times, then the
initial derivation typing f(x) must at least feature 28 certificates that x is typable with
A and the type of f must specify that f uses its argument 28 times i.e. the derivation
typing f(x) must be of the form:

f : (A ∧ . . . ∧A)→ B Πx � x : A . . . . . .Πx � x : A

f(x) : B

Thus, when f(x) is reduced to expr, the 28 certificates are dispatched with the 28 copies
of x: the argument x is duplicated, but not the 28 typing certificates stating that x is
typable with A . Of course, this will work only if x cannot be duplicated anymore during
execution: if x is duplicated later in some execution path, then the initial typing of f(x)
must take that into account (we refer to Fig. 3.2).

Intuitively, one sees that it is far more difficult to produce a typing certificate in a
non-idempotent type system than in an idempotent one, because in the former case, the

18Not all programs terminate in the untyped case, because notably of created computation. So why
should typed programs be safe from non-termination?
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typing must reflect the exact use of sub-processes of the typed programs, whereas in the
latter, this aspect is simply handled by the duplication/erasure etc of typing certificates.
For this reason, the derivations in a non-idempotent intersection system can be huge,
even when the source code of the typed program is small.

So, if terms are so complicated to type with non-idempotent intersection types, what
do we gain with this approach? Straightforward proofs of termination: the absence
of duplication entails that the size of non-idempotent derivations (i.e. the number of
judgments that they contain) decreases along with execution. Thus, as expected, a
typed program is terminating, since there are no infinite decreasing sequence of natural
numbers. Moreover, it is not more difficult to type final states in the non-idempotent
case than in the idempotent one. Thus, the characterizations provided by intersection
type (see p. 30) are a lot easier to prove19 in the non-idempotent case, and in particular,
the fact that a reduction strategy is complete for a given definition of termination.

As a by-product, non-idempotent types give new semantic information about pro-
grams: the size of a non-idempotent derivation typing a program t gives an upper bound
to the number of steps needed by a reduction strategy to reach a final state from t. See
for instance Theorems 7.1, 7.2 and 8.1.

Intersection type systems
• Characterize various forms of termination, usually satisfy subject expansion.
• Elegantly prove the completeness of many strategies.
• Non-idempotent intersection:
– duplication disallowed, typing derivations decrease along with execution
– programs are difficult to type, but the type systems are easy to study.
– brings quantitative semantic information on execution strategies.

Classical Logic and Computation The isomorphism noticed by Curry and Howard
was between the λ-calculus on one side and intuitionistic natural deduction on the other.
Indeed, intuitionistic logic was designed by Brouwer and Heyting to be constructive,
which was confirmed by Gentzen cut-elimination technique: for instance, from a proof,
in intuitionistic logic of an existential proposition ∃x P(x), one can extract/compute an
object x0 (called an existential witness of P) satisfying P(x0) whereas it is impossible in
classical logic. The non-constructivism of classical logic comes from the law of excluded
middle (i.e. either a proposition or its negation is true).

On the other hand, some programming languages feature control operators i.e.
operators allowing the programmer to manipulate the control flow, also called the con-
tinuation, and to pass it as the argument of a function. Such a control operator is
call−cc (“call-with-current-continuation”) in the language Scheme, that allows back-
tracking e.g., going back to some previous point of the execution if an undesired value is
outputted and then running the program on another execution path. Griffin [53] typed
call−cc with Peirce’s law, that is well-known to extend intuitionistic logic into classical
logic as the law of excluded middle does (see the presentation of Part II, p. 133 and
Sec. 6.1.1 for more details). This gave way to defining more and more computational
interpretations of classical logic, which was hitherto thought impossible.

From a computation perspective, in an intuitionistic calculus (e.g., the typed λ-
calculus), a final state of a program typed Nat is an expression of the form 2, 5, 35, 101,
by opposition to 3-1, 3+2, 7 × 5 and 1 + 200 ÷ 2 (cf. p. 21). In a classical setting, one

19which is independent from the difficult of typing a particular term.
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will also have final states inhabiting the type Nat meaning e.g., “My value is 3 or 5” or
“My value is 2 or 10 or 42” (by a theorem known as Herbrand’s witnesses). Through
this extension of Curry-Howard correspondence to classical logic, one may identify the
possibility to manipulate continuations as first-class objects in programs with that of
taking proofs or counter-proofs as e.g., existential witnesses in logic.

Part II is dedicated to a computational interpretation of classical natural deduction,
called the λµ-calculus, which extends the λ-calculus, and also exists both in a typed and
in an untyped version. The notions of head, weak and strong normalization described
on p. 22 and 25 also generalize. We extend the tools of non-idempotent intersection
type theory to the λµ-calculus. This leads us to consider non-idempotent union types,
which are so to say the duals of the non-idempotent intersection types in classical logic.
This allows us to characterize head and strong normalization and to use types to provide
upper bounds to the length of some execution paths in the λµ-calculus.

We also define a small-step operational semantics for the λµ-calculus, that we call
the λµr-calculus. As we saw on p. 23, this allows to have a more precise control on re-
duction paths and resource-consumption. The small-step paradigm needs to be carefully
adapted in order to apply to the classical setting. We then endow the λµr-calculus with
a non-idempotent type system extending that we have defined for the λµ, and we finally
obtain a characterization of strong normalization for this small-step operation semantics.

Contribution 1 (Chapters 7 and 8)
• We endow the λµ-calculus, a computational interpretation of classical natural
deduction, with non-idempotent intersection and union types.
• This allows us to characterize head and strong normalization in the λµ-calculus,
and in one “small-step”version of the λµ.
• The typings bring quantitative information on the length of some exec. paths.

1.4 Infinitary Computation, Coinduction and Productivity

Böhm trees as an infinitary semantics for programs An important part of this
thesis is dedicated to infinitary computations and typing. Infinitary computation is not
necessarily meaningless (as the program with the “while” loop on p. 17 that will never
print a message): for instance, a program that prints all the prime numbers one after the
other never stops, but regularly produces something. Such a non-terminating program
is meaningful. Some contributions of this thesis consist in assigning infinitary types to
obtain semantical information from programs that do not terminate and, in some case,
to characterize infinitary behaviors that are productive.

First, there are a lot of ways to represent the (possibly) infinitary behaviors of pro-
grams. The most canonical is perhaps the Böhm trees: the Böhm tree of a program
t corresponds to all the sub-processes in terminal state that one can make out of t,
with the additional convention that any sub-program of t whose head process cannot be
stabilized (i.e. remains in the state ?) is replaced by the unique node ⊥, representing
meaningless/unproductive computation.

Böhm trees can be infinite because of duplication and creation i.e. a program can
(asymptotically) output infinitely many terminal processes. This is the case of the
program outputting all the prime numbers one after another: each prime number can
be seen as a terminated sub-process. One may then formalize the notion of “program
that does not terminate but is nevertheless productive” with the hereditary head
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normalizing (HHN) λ-terms i.e. the programs that may have an infinite Böhm tree
BT, but such that BT does not contain the symbol ⊥. Thus, hereditary head normalizing
λ-terms correspond to programs that may not terminate but that do not contain any20

meaningless/unproductive sub-process and they are suitable for representing streams
(see p. 15). Such programs run indefinitely, but they will keep on producing more and
more terminated sub-computations (from a HHN term t, one can obtain a tree that has
only “T” symbols under any fixed depth).

In this thesis, we answer to Klop’s problem, which is finding a type system that
characterizes hereditary head normalizing terms.

Infinitary proofs and semantic unsoundness Tatsuta [101] proved that Klop’s
problem does not have a solution with a finite type system, so our approach is to find
an infinite type system characterizing the hereditary head normalizing programs.

A first observation is that considering infinitary formulas or proof systems gives birth
to semantically unsound objects i.e. objects that cannot have a reasonable meaning.
Note first that A → A (where A is a given formula) is intuitively true (a proposition
implies itself). We can use this observation to prove A (for any formula A) if one allows
proofs of infinite size:

` A→ A

` A→ A

` A→ A

· · · · · · · · · · · ·
` A

` A
` A

` A

This infinite proof corresponds to the following infinite question and answer game: “—
Why A is true? — Because A→ A and A are true. — But why is this latter occurrence
of A true? — Because A → A and A are true. — But why is this latter occurrence of
A true? – Because A→ A and A are true. But. . . ”

Interestingly, the mere fact of allowing infinite formulas (while considering proofs
containing finitely many steps) also entails unsoundness. This may be illustrated as
follows: let A be any formula. We then define the infinite formula RA := (((. . .) →
A)→ A)→ A as the implication whose target is A and whose source is an implication,
whose target is A and whose source is an implication whose target is A and. . . Thus, RA
is an implication whose target is A and whose source is RA itself i.e. RA = RA → A.
Since a formula proves itself, the following proof using RA is syntactically correct:

RA ` RA i.e. RA → A RA ` RA
RA ` A

` RA → A i.e. RA

RA ` RA RA ` RA
RA ` A
` RA

` A

As announced, just with the infinite formula RA, we can prove any given formula A.
Interestingly enough, the above unsound derivation corresponds to a derivation typing
the λ-term Ω, which is the auto-application applied to itself (see autoapp(autoapp)
p. 23), that keeps on looping without producing anything.

20or at least, not any meaningless sub-process that cannot be erased in the sens of p. 22.
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Retrieving soundness The examples above show that, naively infinitary type sys-
tems cannot work and provide certificates of productivity. However, infinite type systems
seem more prone to describe precisely programs that have an infinitary behavior (here,
the HHN terms) than finite type systems. Thankfully, there is a way to check semantic
soundness: namely, by means of a criterion that we call approximability. This allows
us to define a class of sound and meaningful infinitary proofs.

Intuitively, an infinite proof/typing derivation is approximable when it is obtained
by superposing infinitely many finite proofs, growing over and over, as in Fig. 1.4: the
outer triangle represents an infinite proof/typing derivation Π and the inner polygons
represent finite proofs that “fit” in Π. The idea is that we know that finite proof systems
are semantically sound, so that an approximable derivation may be infinite, but it is
asymptotically obtained from finite/sound proofs.

Figure 1.4: An Approximable Derivation as an Infinite Superposition

Just to give a more precise idea of what is meant by superposition, the derivation
Π2 below can be superposed upon Π1 (we omit the typing assumption and ignore the
possible premises of the top judgments):

Π1 =
f : (A ∧B)→ A→ C x : A x : B

f(x) : A→ C

Π2 =
f : (A ∧B ∧ (B → C))→ (A ∧ C)→ D x : A x : B x : B → D

f(x) : (A ∧ C)→ C

Indeed, Π1 is obtained from Π2 by removing the symbols colored in red:

Π2 =
f : (A ∧B∧(B → C))→ (A ∧ C)→ D x : A x : B x : B → D

f(x) : (A ∧ C)→ C

Infinite superposition strongly hints at the presence of complete lattices and complete
partial orders, which is formalized in Chapter 10.

With this concept of approximation, we retrieve the main tools of finite intersection
type theory (in an infinitary setting): subject reduction, subject expansion, typing of
normal forms (terminal states). Actually, hereditary head normalization can be related
to an infinitary reduction strategy and we prove that it is complete for a form of infini-
tary weak normalization (see p. 25):
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Contribution 2 (Chapter 10)
• Answer toKlop’s problem: characterization of the hereditary head normalizing
λ-terms by means of an infinite intersection type system. For that:
– Definition of a validity criterion (approximability) to discard the semantically

unsound infinite proofs.
– Introduction of a new intersection type system, called sys. S (sequential inter.).

Unsound semantics We are also interested in the typing of a given program when one
consider infinite types without approximability. It is very easy to type every program by
using techniques inspired from the unsound proofs of Sec. 1.4, involving a certain infinite
type R satisfying R = R → R. But this type R does not bring any information. We
actually prove that we can type any program t with infinite terms in a non-trivial way
i.e. with types that bring information on t. In particular, we show that infinite types
enable to statically capture the order (p. 23) of any λ-term (whereas the known systems
only capture the order of some sub-classes of λ-terms).

An interesting aspect of intersection types is that the description of the set of typable
programs deeply relies on the typing of “sub-processes in terminal state” (p. 25). But
working with infinite types forces us to consider very unstable programs, the so-called
mute terms, that do not contain any process that can be stabilized. This is the most
challenging aspect of the techniques that we develop in this thesis.

Contribution 3 (Chapter 12)
• Proving that every λ-term is typable in a non-trivial way, by means of infinite
intersection types.
• The order of any λ-terms can be extracted from these non-trivial typings.
• Typing without productivity/stability.

The problem of tracking and sequential intersection Throughout this thesis, we
discuss a somewhat aesthetic feature of some type systems, namely syntax-direction,
that becomes involved with fundamental issues when infinitary typing is considered.
Roughly speaking, a type system is syntax-directed when the typing rules follow narrowly
the structure of the programs. This is of course desirable, should it be only to simplify
the characterization proofs of the type systems. Most of the first intersection type
systems were not syntax-directed for numerous reasons. One is that syntax-direction is
ensured by disallowing some very natural rules as “t is of type A∧B implies that t is of
type A”.

In the non-idempotent case, a practical consequence of syntax-direction is that it
strongly suggests defining intersection types as multisets (one write respectively [A,B],
[A,B,A] instead of A∧B and A∧B∧A, with [A,B] 6= [A,B,A] = [A,A,B]). Intersection
is then handled by means of the multiset sum e.g., one writes [A,B,A] = [A,B] + [A].
The use of multisets is also desirable, in that it identifies the types that can be assigned
to a term t to the interpretation of t in the relation model of Bucciarelli, Ehrhard and
Manzonetto [17]

However, we prove that approximability (contribution 2, p. 36) cannot be formulated
with multiset intersection. This leads us to introduce system S, in which an intersection
type is a family of types indexed by integers, which is called sequence type. Concretely,
we annotate types in intersections with pairwise distinct integers values called tracks
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e.g., (2 · A, 3 · B, 7 · A) is a sequence type that contains two occurrences of A and one
of B. Sequence types come along with a disjoint union operator ] e.g., (2 · A, 3 · B) ]
(7 · A) = (2 · A, 3 ·B, 7 · A) whereas (7 · A, 3 ·B) ] (7 · A) is not defined since the track
7 occurs twice. A crucial aspect of sequential intersection is that it allows tracking: in
(2 ·A, 3 ·B, 7 ·A) = (2 ·A, 3 ·B)] (7 ·A), we have the “pointers” 2 and 7 to distinguish the
two occurrences of A and we can assert that the occurrence of A annotated with 2 in the
left-hand side of the equality comes from the sequence type (2·A, 3·B) on the right-hand
side (and not from (7 ·A)). In contrast, with multisets [A,B] + [A] = [A,A,B], but, in
this equality, we have no way to relate one occurrence of A in [A,A,B] to [A,B] rather
than [A] and vice versa. For this reason, we say that sequential intersection is rigid
whereas multiset intersection is not.

Interestingly, without approximability, finding the non-trivial infinite typings of a
given term cannot be achieved while working with multisets but only with sequential in-
tersection. Sequential intersection is far more basic that multiset-intersection and system
S is not endowed with any permutation rule that would enable us to rewrite sequences in
different orders. Thus, one may wonder if multiset constructions are more rich and have
a wider scope than sequential constructions, especially in the infinite case. We prove
that it is actually not the case:

Contribution 4 (Chapter 13)
Despite the fact that sequential intersection is more constraining than multiset
intersection, it does not cause any loss of expressivity, both from a statical and a
dynamical perspective.

1.5 Main Contributions (Technical Summary)

To summarize, in this thesis, we distinguish four main groups of contributions:

1. In the λµ-calculus (a computational interpretation of classical natural deduc-
tion):

• Chapters 7, Theorems 7.1 and 7.2: two type-theoretical characterizations of
head normalization and strong normalization respectively, by introducing two
non-idempotent intersection and union type systems (systems Hλµ and Sλµ),
naturally providing upper bounds on the length of interesting normalizing
reduction sequences.

• Chapter 8, Theorem 8.1: a small-step operational semantics, denoted λµr,
extending that of the λµ-calculus, along with an extension Sλµr of system
Sλµ characterizing strong normalization in λµr.

2. Chapter 10, Theorem 10.4: a positive answer toKlop’s Problem, which is finding
whether the set of the so-called hereditary head normalizing terms can be
characterized in a type system. A term t is hereditary head normalizing when its
Böhm tree21 does not contain the symbol ⊥. Tatsuta [101] proved that this was
not possible with inductive (meaning finite) type systems.

21Böhm trees provide a semantics for the λ-calculus by means of possibly infinite trees and the symbol
⊥ represents a form of meaningless computation. Thus, a term is hereditary head normalizing when it
has a possibly infinitary semantics that does not contain any meaningless sub-process.
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• We answer positively to Klop’s Problem by introducing a coinductive (mean-
ing infinitary) type system, namely system S, that we endow with a validity
condition to discard some meaningless proofs.

• The main features of system S is that it is relevant22 and intersection has
a non-idempotent flavor and is represented by families of types indexed by
integers (instead of lists, sets or multisets of types as in the usual intersec-
tion type systems). Thus, intersection is said to be sequential in system
S. It is necessary to consider sequential intersection because the validity cri-
terion discarding unsound derivation cannot be defined when intersection is
represented by multisets.

• Along with this contribution, system S also provides a positive answer to
TLCA Problem #20 in the coinductive case, whereas Tatsuta [102] also
proved that the answer is negative in the inductive case. This consists in
characterizing the set of hereditary permutations23 with types. By lack
of time, this contribution could only be sketched in this document (see Ap-
pendix A.7 and Theorem A.1).

3. In Chapter 12, we prove that the main intersection type systems resorting to a
coinductive grammar are able to type every λ-term. This is very easy for irrelevant
type systems but very difficult for the relevant ones.

• Theorem 12.1: we prove that every term is typable in the main relevant coin-
ductive intersection type systems. Interestingly, the proof of this fact cannot
be formulated e.g., with multiset intersection. For this reason, we work with
system S.

• The derivable judgments of system R, featuring coinductive multiset inter-
section, are the points of a relational model M of the λ-calculus. As a
consequence of the typability of every term in R, no term has an empty
interpretation in M .

• Theorem 12.2: we prove that some semantical information on λ-terms can be
extracted from R: for every term t, there is non-trivial coinductive typing
capturing the order of t i.e., roughly speaking, the number of inputs of the
term t.

4. In Chapter 13, we prove that system S has full expressive power over system R:

• Theorem 13.1: we prove that every R-derivation (built by means of multiset
constructions) is the collapse of a S-derivation (built by means of sequential
construction). The collapse just consists in transforming sequences (in the
above sense) in multisets and we prove that this collapse is surjective.

• As a consequence, the points of the model M can be studied through system
S without loss of generality.

• Theorem 13.2: subject reduction is non-deterministic when intersection is
based on multisets, which gives rise to reduction choices. We prove that
every sequence of reduction choices in system R can be encoded in system S.

22A type system is relevant when every typing assumption in a given derivation must be effectively
used in this derivation i.e. derivations only introduce what they actually need (no weakening). Thus,
relevance captures a form of resource-awareness.

23which are a class of Böhm trees without ⊥
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Minor Contributions As a minor contribution, we explain how representing non-
idempotent intersection types with multisets in the finite case yields a type system that
is syntax directed but non-deterministic w.r.t. subject reduction (Sec. 4.1.2). This fact
was perhaps already known and it has both advantages and disadvantages in the finite
case, but we show that in the infinite case, the non-determinism of reduction makes it
impossible to formulate the validity criterion that is used to solve Klop’s Problem.

We also suggest a visual presentation for relevant derivations (Sec. 4.1.1) that is used
throughout this thesis and that makes the understanding of some technical arguments
easier.

Technical Contributions For each group of contributions, we isolate an emblematic
technical difficulty that needed to be solved, and we give pointers to the sections where
they are explained in more details.

• Normalization in the λµ-calculus: the λ-calculus is a computational interpretation
of intuitionistic natural deduction. In the case of the non-idempotent typing,
reduction, which corresponds to a cut-elimination step in intuitionistic natural
deduction, decreases the number of rules of the typing derivations. This provides
a simple argument for the termination of the reduction. In the λµ-calculus, a µ-
reduction step, which corresponds to some cut-elimination step in classical natural
deduction, does not necessarily decrease the number of rules of the derivation even
in the non-idempotent setting. We must then find a more elaborated measure for
derivations to ensure a decrease under reduction. The design of this measure and
of the associated non-idempotent typing systems is explained in Sec. 7.2.3.

• Klop’s Problem: the most technical point is to perform infinitary subject expan-
sion (infinitary subject reduction is relatively easy) along a reduction sequence of
infinite length i.e. we must prove that, if t reduces to t′ after an infinite number
of steps, then any typing of t′ is also valid for t. The method to achieve this is
described in Sec. 10.1.3.

• For the two last group of contributions: the considered type systems also type
terms that do not stabilize e.g., terms t such that do not output a “stable block”
which could be easily typable (in the finite case, the typing of the normalizing
terms usually relies on the typing of “stable blocks” e.g., head normal forms or
abstractions). These systems are not productive and we must find a method to
handle typing. We then develop a corpus of methods inspired by first order logic
and relying on the identification of some elements of a given derivation. Chapter 11
is dedicated to those methods and the associated notions, which are presented there
from a high-level perspective.

On the Preliminaries The core of the preliminaries is Chapter 3 in which we tried at
our best to dissect the designs of (some) intersection type systems, as well as their fea-
tures (idempotence, syntax direction, relevance. . . ). This exploration is complemented
by Chapters 4 and 5. Here is the list of the preliminaries in this thesis:

• Chapter 2: the λ-calculus.

• Chapter 3: presentation of intersection type systems and a type-theoretic charac-
terization of head normalization in the non-idempotent case.
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• Chapter 4: an overview of some intersection type systems, including an example
of non-confluence of subject reduction.

• Chapter 5: type-theoretic characterizations of weak and strong normalization.

• Chapter 6: classical logic, the λµ-calculus (simply typed and untyped version).

• Chapter 9: two infinitary λ-calculi.

1.6 How to read this thesis

We present now an overview of the structure of this thesis: we distinguish the chapters
that present the state of the art from those that present a contributions and we discuss
the relations between them. In short, we explain how this thesis can be read and we
indicate the dependencies of various strength that may exist between the chapters.

Preliminaries vs. Contributions

The body of this thesis contains 4 parts and 12 chapters:

• Five chapters presenting a contribution (Chapters 7, 8, 10, 12 and 13).

• Six preliminary chapters, presenting the state of the art on various domains or
questions, including:

– Four general preliminaries chapters (Part I, from Chapter 2 to Chapter 5).
– Two specific preliminary chapters: Chapter 6 and Chapter 9, respectively pre-

senting the λµ-calculus and the infinitary λ-calculus.

• An in-between chapter (Chapter 11) giving a semi-informal presentation of some
concepts and methods developed in the course of the thesis, that are extensively
used in Chapters 12 and 13.

• Each non-preliminary part (i.e. Parts II, III and IV) begins with a short general
presentation.

The content of the four parts is the following:

• Part I only contains background on the λ-calculus and intersection type systems,
in particular, on non-idempotent intersection operators and the characterization
of head, weak and strong normalization.

• Part II is dedicated to the λµ-calculus: one background chapter on the λµ-calculus
and its simply typed version, one contribution chapter presenting two non-idempotent
intersection and union type systems respectively characterizing head and strong
normalization, then one contribution chapter introducing a small-step operational
semantics for the λµ-calculus along with a type system characterizing strong nor-
malization.

• Part III is dedicated to a characterization of weak normalization in an infinitary
λ-calculus and it contains two chapters: one background chapter on the infini-
tary λ-calculus, and one contribution chapter, presenting the aforementioned type-
theoretical characterization. This positively answers to a question known as Klop’s
Problem.
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• Part IV is dedicated to two problems involving type systems that do not ensure any
kind of productivity and the development of a method allowing us to study typing
in this case. It contains a preliminary chapter (Chapter 11) giving an informal
account of the technique, followed by two contribution chapters.

Dependencies

We give a short account of the dependencies between the chapters of this thesis:

• The only inescapable dependency is that of Chapter 8 on Chapter 7: the type
system (system Sλµr) presented in the former is an extension of the system Sλµ ,
which is presented in the latter. In particular, some elements of the design of Sλµr
are not discussed since they are already featured in system Sλµ and the proofs of
Chapter 8 only address the new cases compared to Sλµ .

• Except for Chapter 8, each contribution chapter is (almost) self-contained.

• Moreover, in each contribution chapter, we give a summary of the background
techniques to be involved with pointers to the preliminaries. Thus, it is not ne-
cessary to read the preliminaries to understand the contribution chapters. More
specifically:

– Part II: Chapters 7 and 8 can be read with a basic knowledge of the (simply
typed or not) λµ-calculus and of non-idempotent intersection type systems.
It is also helpful to know of the type-theoretic characterization of strong
normalization in the λ-calculus.

– Part III: Chapters 10 can be read with a basic knowledge of non-idempotent
intersection type systems. It is also helpful to know of the type-theoretic
characterization of weak normalization in the λ-calculus or of the infinitary
λ-calculus.

– Part IV: Chapters 12 and 13 are independent of one another and can be read
with a basic knowledge of non-idempotent intersection type systems and a
good understanding of residuation in the case of the λ-calculus. Although
they are also self-contained, they are the most technical chapters in this thesis
and reading first Chapter 11, which informally presents a corpus of useful
concepts and methods, is strongly advised.

This thesis is globally self-contained, except for the properties of confluence of the cal-
culi that are addressed in this dissertation (including the λ-calculus): we state these
properties without proof.
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As no better man advances to take this matter in hand, I hereupon offer my
own poor endeavors. I promise nothing complete; because any human thing
supposed to be complete, must for that very reason infallibly be faulty.

Herman Melville, Moby Dick





Chapter 2

Lambda Calculus

The Lambda Calculus was introduced by Alonzo Church in 19281, in an attempt at
founding mathematics on the notion of function, rather than that of sets. Then, af-
ter having the short-lived hope that it could escape Gödel’s Incompleteness Theorems,
Church used λ-calculus to formalize the notion of computable function and to give the
first proof of Undecidability of the Entscheidungsproblem (Decision’s Problem).

In the same period, other propositions were made to formalize the concept of com-
putability, as the Herbrand-Gödel recursive functions (cf. [99], 17.2.4.) and Turing
Machines (cf. [99], 1.4.). It was soon proved that those systems had the exact same
expressive power as λ-calculus: every function that is implementable in one system may
also be implemented in the two others, modulo some suitable and matterless encod-
ings. This observation led to Church-Turing’s thesis: every programming language
or physical/mechanical computing device has at most the expressive power of recursive
functions/Turing Machines/the Lambda Calculus (see p. 19). In other words, there is no
actual way to compute a function that could not be already implemented and computed
in λ-calculus or with Turing Machines/recursive functions.

The proof of Undecidability of the Entscheidungsproblem resorting to Turing Ma-
chines was considered as more natural and simple than the original one. After that,
λ-calculus received only marginal attention until the suggestions, for instance of Peter
Landin [71, 72], to use λ-terms to study, understand and develop the newly introduced
functional languages. Lambda calculus (and its variants) has been henceforth regarded
as a paradigm for programming.

Outline In the first section, we present some basic aspects of λ-calculus. We stress
out the importance of the heuristics of λ-term as trees. For instance, Figure 2.6 is
a simple graphical representation of β-reduction, but it also illustrates the underlying
mechanisms behind subject reduction and subject expansion in type systems (see the
figures of Sec. 3.3, p. 3.3, Fig 10.5, p. 10.5 and 13.2, p. 297). The same figure allows us
to support the well-known notion of residual (Sec. 2.1.5 and Figure 2.8), that we will also
have to extend to typing derivations in the later parts of this thesis (e.g., Sec. 10.3.5,
12.4.1 for system S, 13.2.2 and 13.5.1 for system Sop). We present some important
λ-terms in Sec. 2.1.4.

1We are greatly indebted to Hindley and Cardone’s History of Lambda-calculus and Combi-
natory Logic [21] for the elements of historical context in this thesis. A downloadable free version
can easily be found on the internet

47



48 CHAPTER 2. LAMBDA CALCULUS

Section 2.2 is dedicated to normalization. We present the principal variants (head,
weak and strong normalization) and their relations with some particular reduction stra-
tegies.

In the last section, we discuss the ways in which the notion of normalization may
be modulated. We recall the definition of mute terms (Sec. 2.3.2) and explain why
those terms are considered as the most non-normalizing term. In Sec. 2.3.3, we give
a few hints at infinitary normalization and infinite terms, including Böhm trees, just
before describing the Böhm reduction strategies (Sec. 2.3.4). We end this chapter with
a “small-step” version of the λ-calculus (Sec. 2.4).

2.1 Pure Lambda Calculus

In the present section 2.1, we give a short presentation of the λ-calculus. We present the
formalism that we will use for labelled trees throughout this thesis (Sec. 2.1.1) and the
key notions of:

• Support of a λ-term, that allows us to point inside λ-terms (Sec. 2.1.2).

• β-reduction, that corresponds to an execution step when λ-terms are seen as
programs (Sec. 2.1.3).

• Residuation, that describe how positions in a λ-term are traced (i.e. affected or
moved) by β-reduction (Sec. 2.1.6, 2.1.5).

We also observe phenomenons as duplication (Sec. 2.1.3) or the existence of fixpoint
combinators (Sec. 2.1.4). All this will be illustrated with trees and figures.

2.1.1 Tracks and Labelled Trees

Many objects to be considered in this thesis may be regarded as labelled trees.
We present here the formalism that we will use for labelled trees and define some tools

and notations associated with this notion. At the end of this section, we will actually
distinguish two kinds of labelled trees: the rigid ones and the non-rigid ones. A rigid
tree is just a labelled tree is in the most common sense i.e. a tree whose nodes and
edges have both labels with the additional hypothesis that brother edges are decorated
with pairwise distinct labels e.g., λ-terms are rigid trees (Sec. 2.1.2 to come next). A
labelled tree is non-rigid when its nodes have labels, but its edges do not. As we will see
in later chapters (Sec. 4.1.2), the typing derivations of many intersection type systems
are intrinsically non-rigid trees.

Rigidity will play a central role to define and motivate the type system S in the
later chapters (Chapters 10, 12 and 13, see e.g., Sec. 10.3.4), but λ-terms constitute an
elementary example of rigid labelled trees (see the figures of the following section).

If A is a set, then A ∗ denotes the set of finite words on the alphabet A . In this
document, A will usually be chosen as a set of natural numbers. Mainly, A = N or
A = {0, 1, 2}∗ will hold.

The empty word is denoted by ε and if w1, w2 ∈ A ∗, then w1 ·w2 is the concatenation
of w1 and w2. e.g., with A = N, A ∗ = N∗ is the set of the words whose letters are
natural numbers e.g., w1 = 2 · 1 · 3 · 7, w2 = 2 · 10 · 3 · 7 and w3 = 2 · 1 are elements
of N∗. Sometimes, we may just write w1w2 instead of w1 · w2 (usually, there will be no
ambiguity as with 2 · 1 · 0, 2 · 10 and 210 e.g., 10 will always denote 1 · 0).
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The prefix order 6 is defined on A ∗ by w1 6 w2 if there exists w3 such that w2 =
w1 · w3. Note that, for all w ∈ A ∗, ε · w = w, w · ε = w and ε 6 w. For instance,
coming back to the previous w1, w2, w3, we have w3 6 w1 since w1 = w3 · 3 · 7, but not
w3 6 w2.

If w ∈ A ∗, then |w| is the length of w i.e. the number of letters that w contains
e.g., |w1| = 4, |w2| = 4 and |w3| = 2. If a ∈ A and n ∈ N, then an denotes the word
a · . . . · a︸ ︷︷ ︸
n occ. of a

e.g., 23 · 02 := 2 · 2 · 2 · 0 · 0.

•
3

•
5

•
3

•
1
•

A = {ε, 1, 3, 3 · 3, 3 · 5} (rigid)

• •

••

•
(•, [•, (•, [•, •])]) (non-rigid)

Figure 2.1: Unlabelled Trees (Rigid and non-Rigid)

A (rigid) tree A is a non-empty subset of N∗ that is closed under the prefix order
i.e. for all A ⊆ N∗, A is a tree iff A 6= ∅ and for all w1, w2 ∈ N∗ such that w1 6 w2, then
w2 ∈ A implies w1 ∈ A. A rigid tree can be thought as a set of (unlabelled) positions.
Thus, the nodes of a rigid tree A are not labelled, but its edges implicitly are i.e. if
w · k ∈ A with k ∈ N, then the number k is taken as the label of the edge between
positions w and w · k as in the left-hand side of Fig. 2.1. We then call any number that
labels an edge of a rigid tree a track. Tracks will be a fundamental feature of system S

in Parts III and IV.
Let A be a rigid tree and w ∈ A. Then the subtree of A rooted at w is A|w :=

{w′ ∈ N∗ | w · w′ ∈ A} (A′ is also a tree).

Rigid Labelled Trees Let Σ be a set. A (rigid) labelled tree on the signature Σ
is a function T : N∗ −→ Σ such that the domain dom(T ) of T is a rigid tree. The domain
of a labelled tree T is then called its support and denoted supp(T ). The size |T | of a
tree T is the cardinal of its support i.e. |T | := #supp(T ).

In that case, for all w ∈ dom(T ), T |w denotes the subtree of T rooted at position w i.e.
T |w is the labelled tree T ′ defined by dom(T ′) = dom(T )|w = {w′ ∈ N∗ | w ·w′ ∈ dom(T )}
and T ′(w′) = T (w · w′) for all w′ ∈ dom(T ′).

A word w ∈ dom(T ) is called a position of T and T (w) is the label of the node
of T located at position w. If T (w) = σ ∈ Σ, we also say that σ occurs or has an
occurrence at position w in T . Positions ensure that we can point to any precise node
or part of those trees.

Example 2.1. Let T be the rigid labelled tree on the signature Σ = {a, b, c} such that
supp(T ) = {ε, 1, 1 ·1, 1 ·2, 2, 2 ·2, 2 ·3, 2 ·5, 3, 3 ·1, 3 ·2} and T (ε) = T (1) = T (2) = T (3) =
T (2 · 2) = T (2 · 3) = a, T (2 · 5) = T (1 · 2) = T (3 · 2) = b and T (1 · 1) = T (3 · 1) = c.
Then the two drawings of Fig. 2.2 both represent T .

Non-Rigid Trees Sometimes, it is unnecessary, if not problematic, to distinguish
e.g., two immediate subtrees of a given tree when those subtrees are equal. For instance,
as it will be addressed later (Sec. 3.2.1, Remark 3.8 and 4.2), if two equal argument
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Figure 2.2: Rigid Labelled Trees
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This node corresponds to that one. . .
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a

Drawing 1

a b a

a

c b

a

c b

a

. . . or this one?
(no way to know)

a

Drawing 2

Figure 2.3: Non-Rigid Labelled Trees

subderivations of a typing derivation of Gardner/de Carvalho’s system R0 could be
distinguished, the possibility of reduction choices would be lost.

For now, we may just give a few intuitions on how rigidity can be “disabled”, thus
giving rise to the notion of non-rigid tree. The idea is to remove the edge annotations
that exist e.g., in Fig. 2.2. For that, we must consider trees that are not anymore subsets
of N∗ and functions from N∗ to some signature Σ: the set of non-rigid (unlabelled) trees
can be defined by the inductive grammar

T := • | (•, [T1, T2, . . . , Tn]) (n > 1)

The notation (•, [T1, T2, . . . , Tn]) denotes2 the tree whose immediate subtrees are T1, . . . , Tn
and • is the “root tree”. In Fig. 2.1, the right-hand side drawing represents a non-rigid
unlabelled tree.

The set of the non-rigid labelled trees on a signature Σ is defined by the inductive
grammar:

T := σ ∈ Σ | (σ, [T1, T2, . . . , Tn]) (n > 1)

For instance, the non-rigid unlabelled tree (a, [(a, [a, a, b]), (a, [b, c]), (a, [b, c)]]) corre-
sponds to the specification “The root of T is labelled with a. The root has 3 children,
all labelled with a. One of the children has three children (which are leaves of T ) such
that two are labelled with b and one with a. The other two children of the root have
both two children (which are leaves of T ), one that is labelled with a and the other with
b”. The two drawings of Fig 2.3 represent T .

Among the three children of the root, the node that has three children can be dis-
tinguished from the two others (on the left in Drawing 1, in the middle in Drawing 2),
that only have two children. But those two cannot be distinguished one from another:
indeed, they root identical subtrees. Of course, on a particular drawing, e.g., the left

2[T1, T2, . . . , Tn] denotes a multiset (Sec. 3.2.2)
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one, we may say “this one on the middle” or “that one on the right”, but it depends on
the drawing and not on the (too vague) specification of T . This is also illustrated by
the fact that we cannot unambiguously identify every node of one drawing to a node of
the other (see the commentary inside the figure). Concretely, a non-rigid tree does not
have support and a node in a non-rigid tree does not have a position.

In constrast with Fig. 2.1 representing a rigid decoration of T , we can associate each
node of the drawing on the right-hand side to a node of the drawing on the left-hand
side by just comparing their position. On this figure, we identify the nodes (labelled
with a) that have the common position 1.

Remark 2.1. Note that non-rigid trees can be seen as collapses of rigid trees i.e. a
rigid tree can be thought as an equivalence class of rigid trees that are equal when the
tracks (edges labels) are forgotten e.g., the non-rigid tree represented twice in Fig. 2.3
is the collapse of the rigid tree represented twice in Fig 2.2. This will be made formal
and thoroughly studied in the last chapter of this thesis (Chapter 13).

2.1.2 Lambda Terms and Alpha Equivalence

Let V be a countable set of term variables (metavariables x, y, z). To each x ∈ V ,
we associate another the string λx. The set Λ of λ-terms is defined by the following
inductive3 grammar:

t, u ::= x ∈ V | (λx.t) | (t u)

Notation 2.1.

• The term (t u), called the application of t to u, is often written t u and we consider
the application operator as left-associative i.e. t1 t2 . . . tq stands for (. . . ((t1 t2) t3) . . . tq).

• A term of the form is (λx.t) an abstraction. We often write just λx.t instead of
(λx.t). More generally, if a term contains several successive abstractions, we omit
the λ except on the first one e.g., we write λxyz.t instead of (λx.(λy.(λz.t))).

Lambda terms can be seen as rigid labelled trees following this pattern:

Variable x

x

Abstraction λx.u

u

0
λx

Application u v

2

v

1

u

@

Figure 2.4: Lambda Terms as Labelled Trees

Nodes are labelled by x, λx (x ranging over V , a countable set of term variables) or
@. As described in the previous section, the natural numbers that label edges are called
tracks: more precisely, track 0 is dedicated to abstractions, track 1 to application left-
hand sides, track 2 to application their right-hand sides, also called the argument of

3The mechanisms of induction and coinduction are briefly explained in Sec. 9.2.3
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y

1

x

2
@
0

λx

Figure 2.5: Parsing Tree of λx.y x

the application. A position of a term t is some b ∈ {0, 1, 2}∗ i.e. a word in the alphabet
{0, 1, 2}∗. The set of positions of a term t, known as its support, is written supp(t).

For instance, the parsing tree of t := λx.y x is given by Fig. 2.5: Thus, we have
supp(t) = {ε, 0, 0 · 1, 0 · 2}, t(ε) = λx, t(0 · 1) = y, t(0 · 2) = x, t(0) = @ and t|0 = y x.

Abstraction λx binds the variable x in λx.t. We say then that variable x is bound
in λx.t. An occurrence of a variable that is not bound is said to be free. More precisely,
a bound occurrence of a variable x ∈ V in a given term t is a position b ∈ supp(t) such
that t(b) = x and there exists b∗ < b with t(b∗) = λx. If b is a bound occurrence of the
variable x in t, the binding position of this occurrence is the maximal prefix b∗ 6 b such
that t(b∗) = λx. We then say that b is bound by position b∗ in t and we write b∗ = λt(b).
For instance, let t = λxx.x, so that supp(t) = {ε, 0, 02}, t(ε) = λx, t(0) = λx and
t(02) = x. Then λt(02) = 0 i.e. the occurrence of x is bound at position 0 and not at
the root of t.

For all term t, the set of free variables of t is denoted fv(t) i.e. for all x ∈ V , x ∈ fv(t)
iff x has at least one free occurrence in t. For instance, fv(x y) = {x, y}, fv(λx.x) = ∅,
fv(λx.yx) = {y} and fv(x(λxz.y x z)) = {x, y}. A term t is closed when no variable
occurs free in t i.e. when fv(t) = ∅.

We sometimes denote the number of free occurrences of a variable x in a term t by
|t|x e.g., |(λx.x)xx|x = 2.

As it will turn out with β-reduction (next section), bound variables are used to
denote the entry of λ-terms-seen-as-functions (whereas the free variables of a term may
be seen as constants). Usually, the variable denoting the entry of a function does not
matter e.g., in mathematics, if f is the square function, then we may indifferently write
f : x 7→ x2 or f : z 7→ z2. Likewise, the choice of symbols (e.g., x vs. z) for bound
variables does not really matter for λ-terms, provided some common sense precautions
are taken.

This yields the notion of α-equivalence (that will be more formally defined for the
infinitary λ-calculus in Sec. 9.3.1): two terms t and t′ are α-equivalent iff (1) the terms
t and t′ have the same support i.e. supp(t) = supp(t′) (2) free variables occur at the
same positions in t and t′ (3) for all b ∈ {0, 1, 2}∗ such that b is a bound occurrence of
a variable x (resp. a variable x′) in t (resp. in t′), then b is bound by the same position
in t and in t′ (i.e. λt(b) = λt

′
(b)).

When two terms t and t′ are α-equivalent, we say that one can be obtained by α-
renaming the other. A term satisfies the Barendregt convention if (1) its set of free
variables and its set of bound variables are disjoint (2) for all x ∈ V , λx occurs at most
once in t.

When two terms t and t′ are α-equivalent, we actually consider them as equal and we
just write t = t′. This can be shown to be consistent with the definition of β-reduction
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to come below. Modulo α-renaming, every term may satisfy Barendregt convention e.g.,
λxx.x may be rewritten into λxy.y.

For instance, λz.z = λx.x 6= λz.x 6= λx.z and λx.xx = λy.yy 6= λx.xy, λz.yz. We
have λxx.x = λyx.x = λxy.y 6= λxy.x and also λx.xz = λy.yz but λz.xz 6= λz.yz. The
terms λx.xy, λy.xy, λy.yx are pairwise distinct.

We write t[u/x] for the capture-free substitution of x by u inside t, meaning that
t[u/x] is the term obtained from t by replacing (in t) every free occurrence of x by u
and by α-renaming the bound variables of t so that no abstraction of t binds a variable
occurring free in u.

For instance, (λy.x y x)[λx.x/x] = λy.(λx.x)y(λx.x), (λx.x)[zy/x] = λx.x. Notice
that (λz.x z x)[xz/x] is equal to λy.x z y(x z) but not to λz.x z z(x z) (z does not occur
free in the latter term).

Definition 2.1. Let t be a term. The size |t| of the λ-term t is defined by |t| =
#supp(t).

Thus, the size of t is the size (number of nodes) of its parsing tree. Equivalently, we
can define |t| by induction: |x| = 1, |λx.t| = |t|+ 1 and |t u| = |t|+ |u|+ 1.

2.1.3 Beta Reduction, Redexes and Normal Forms

We first treat the case of root reduction. A reducible expression (for short, a redex) is a
term of the form (λx.t)u. The (root-)reduct of (λx.t)u is defined as t[u/x]. For instance,
(λx.x y x)(z y) →β z y y(z y) (where →β denotes the reduction, whose full definition is
below).

The representation of λ-terms by trees is of great help to understand reduction.
We consider the reduction from the redex (λx.r)s to the reduct r[s/x]. Then the free
occurrences of x in the subterm r correspond to some leaves labelled with x. Then,
to obtain the tree of the reduct r[s/x], we destroy those leaves and replace each of
them (inside r) by the tree of s. We also destroy the application and the abstraction
of the redex. In Figure 2.6, we consider the situation in which r holds exactly 3 (free)
occurrences of x.

Redex: (λx.r)s

λx

@

r

x

x

x

s

Reduct: r[s/x]

r

s

s

s

Figure 2.6: Reduction from the Tree Perspective
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Figure 2.6 is very important in many aspects: in type theory, it turns out that the
subject reduction and subject expansion properties may be seen as the adaptation of this
figure to typing derivations (instead of terms). It provides a very good intuition about
why those properties hold (see Figures 3.1, 3.2, 3.3, 10.5 and 13.2). Moreover, it gives a
graphical illustration of the possible duplication of the argument during reduction: in
the figure, argument s is duplicated 3 times.

A redex may be reduced inside a term at some given position. For that, we define
pointed β-reduction t

b→β u by induction on b ∈ {0, 1, 2}∗ as follows:

(λx.t)u
ε→β t[u/x]

t
b→β t′

λx.t
0·b→β λx.t′

t
b→β t′

t u
1·b→β t′ u

u
b→β u′

t u
2·b→β t u′

We notice that, for each b ∈ {0, 1, 2}∗, relation b→β is functional. The full β-

reduction →β is defined by t →β t′ iff there exists b ∈ supp(t) such that t b→β t′

i.e. →β is the union of the pointed reductions:

→β=
⋃

b∈{0,1,2}∗

b→β

The full β-reduction is not determinisc e.g., with t = (λz.z((λx.x x)z))u, we have
t→β u((λx.x x)u) (at ε) and t→β (λz.z (z z))u (at 1 · 0 · 2).

Let t be a term. If there exists a term u such that t →β u, then we say that t is
reducible: t is reducible iff t contains a redex as a subterm (see Figure 2.7). In that
case, u is called a reduct of t. Thus, a redex is a term that is reducible at its root. More
generally, a reduct of a term t is a term u that may be obtained from t by several
reduction steps e.g., if I := λx.x and ∆ = λx.x x, then ∆ I → I I → I, so that I is
a (rank 2) reduct of ∆ I. We write →∗β for the reflexive transitive closure of →β and
t→n t′ to mean that t′ is obtained from t in n reduction steps.

Conversely, if t →∗ t′, we say that t is an expansion of t′. Notice that for a given
term t′ and b ∈ {0, 1, 2}∗, there may be several terms t such that t b→ t′ e.g., with
t′ = xx, t1 = (λx.x)xx, t2 = (λy.x y)x, we both have t1

ε→ t′ and t2
ε→ t′.

We denote ≡β the reflexive symetric transitive closure of →. Thus, ≡β is an equiva-
lence relation on Λ. When t ≡β t′, e say that t and t′ are β-equivalent.

If t is not reducible i.e. t does not contain any redex, we say that t is a Normal
Form (NF) e.g., I = λx.x, ∆ = λx.x x and x I ∆ are normal forms.

From now on, we will usually write → instead of →β e.g., we write (λx.x)y → y
instead of (λx.x)y →β y, with the important exception of Part IV.

2.1.4 Notable Lambda Terms

The following terms will be used thorough this thesis as examples or objects of study.
They will be redefined when they are needed, but we briefly explain here why they
may be of future interest and look at some aspects of their dynamic behaviours. By
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t

@

λx

r

s

t|b = (λx.r)s for some b

Figure 2.7: Tree of a Reducible Term

dynamics, we mean whatever concerns the effects of β-reduction on λ-terms.

I = λx.x Ky = λx.y K = λyx.y
∆ = λx.x x Ω = ∆∆ ∆f = λx.f(xx)
Yf = ∆f∆f Y = λf.Yf Yλ = (λxy.x x)(λxy.x x)
ω3 = λx.x xx Ω3 = ω3ω3

The term I is the identity : indeed, for all t ∈ Λ, I t→ t. The term Ky represents the
constant function equal to y: for all t ∈ Λ, Ky t → y. We then say that the argument
is erased during this reduction. More generally, for all t, u ∈ Λ, K tu → (λx.t)u → t
(since x /∈ fv(t)): thus, K t represents the constant function equal to t.

The term ∆ is the auto-application: for all t ∈ Λ, ∆ t → t t (t applied to itself). In
particular, Ω = ∆ ∆ satisfies Ω → ∆ ∆ = Ω: reduction loops for Ω. This term is to be
called later (see Sec. 2.3.2) a mute term.

The term Y is called Curry fixpoint combinator for the following reason: for all
t ∈ Λ, Y t→ (λx.t(xx))(λx.t(xx))→ t (λx.t(xx))(λx.t(xx)). Thus, we have Y t ≡β t(Y t)
i.e. Y t is a fixpoint for t w.r.t. β-equivalence. We notice that Y I → Ω i.e. Ω is an
instance of Curry fixpoint combinator.

We have Y f → Yf . Moreover, Yf
ε→ f(Yf )

2→ f(f(Yf ))
22→ f(f(f(Yf )))

23→ . . .
2n−1

→
fn(Yf ) for all n ∈ N, where fn(Yf ) stands for f(f(. . . (f(f︸ ︷︷ ︸

n occ. of f

(Yf ))) . . .)).

We have YK → Yλ. Moreover, Yλ
ε→ λx.Yλ

0→ λx.λx.Yλ
02→ λx.λx.λx.Yλ

03→ . . .
0n−1

→
λxn.Yλ, where λxn.Yλ = λx.λx . . . λx.λx︸ ︷︷ ︸

n occ. of λx

.Yf . Thus, for all finite sequence u1, . . . , un of

terms, Yλ u1 . . . un →∗ Yλ.
We have Ω3

ε→ Ω3 ω3
1→ Ω3 ω3ω3

12→ . . .
1n−1

→ Ω3 ω3 . . . ω3︸ ︷︷ ︸
n occ. of ω3

.

2.1.5 Residuals and Quasi-Residuals

As suggested by Figure 2.6, if t′ is a (one step) reduct of t, the tree of t′ (i.e. the support
and the labels of the nodes) is simply obtained from that of t: intuitively, each position
of t′ may be seen as a residual of a position of t.

So, assume that t|b = (λx.r)s and t b→ t′ (so that t′|b = r[s/x]). Thus, t(b) = @ and
t(b ·1) = λx. The subterm r occurs at position b ·1 ·0 (that we abusively write b ·10) and
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the subterm s at position b · 2. We write otβ(b) for the occurrences of the variable x to
be substituted during reduction: those occurrences are the positions that are bound by
λx at position b · 1 i.e. otβ(b) = {b0 ∈ supp(t) |λt(b0) = b · 1} (see Sec. 2.1.2 for notation
λt).

Before giving a complete definition, let us start by considering a few examples that
will be supported by Figure 2.8 (extending Figures 2.6 and 2.7). We still assume that
there are 3 occurrences of x to be substituted during reduction. Those occurrences are in
r (position b ·10) so that their positions may be written b ·10 ·bi (i = 1, 2, 3) respectively.

Redex at position b in t

0
λx

1
@
〈b〉

r

〈b·10〉

♥

〈b·10·b♥〉
x

〈b·10·b1〉 x

〈b·10·b2〉

x

〈b·10·b3〉

s

2
〈b·2〉

♣
〈b·2·b♣〉

Reduct at position b in t′

r

〈b〉

♥

〈b·b♥〉s♣

〈b·b1·b♣〉

〈b·b1〉
s♣

〈b·b2·b♣〉

s♣
〈b·b3·b♣〉

Figure 2.8: Residuals of Positions

We indicate positions of a node with angle brackets e.g., in t, the leftmost node
labelled with x is at position b · 10 · b1. We define now, for all b∗ ∈ supp(t) the set
Resb(b∗) ⊆ supp(t′) of residuals of b∗ after reduction at position b. The fact that we
define Resb(b∗) as a subset (and not an element) of supp(t′) can be related to the possible
duplication of the argument s during reduction.

• During reduction, the application and abstraction (of respective positions b and
b · 1) are “destroyed”, so that we set Resb(b) = Resb(b · 1) = ∅. Likewise, the
nodes labelled with x that are replaced by the tree of s are destroyed, so we set
Resb(b · 10 · bi) = ∅ (i = 1, 2, 3).

• The symbol ♥ represents a position nested in r (that is not in otβ(b)), so that its
position is of the form b · 10 · b♥. Since the application and the abstraction of
the redex are destroyed, its position after reduction will be b · b♥. We set then
Resb(b · 10 · b♥) = {b · b♥}.

• The argument s, at position b · 2 is duplicated 3 times during reduction. The
duplications will take the former positions of x i.e. b·b1, b·b2 and b·b3 (since the infix
01 is destroyed during reduction). Thus, we set Resb(b · 2) = {b · bi | i ∈ {1, 2, 3}}.
More generally, the symbol ♣ represents a position nested in the argument s, so
that its position is of the form b · 2 · b♣. It will be duplicated 3 times and its
residuals will be at positions b · b1 · b♣, b · b2 · b♣, b · b3 · b♣. We set Resb(b · 2 · b♣) =
Resb(b · 2) · b♣ = {b · bi · b♣ | i ∈ {1, 2, 3}}

• If b∗ � b, then b∗ is a position outside the redex to be fired and is not affected by
reduction, so that we set Resb(b∗) = {b∗}.
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In order to state the complete definition, for t ∈ Λ and b ∈ supp(t) such that t|b
is a redex (λx.r)s, we set pftβ(b) = {b∗ ∈ {0, 1, 2}∗ | b · 10 · b∗ ∈ otβ(b)}: it is the set of
postfixes of the b0 ∈ otβ(t) w.r.t. position b ·10 (root of r) and we have pftβ(b) ⊂ supp(r).

Definition 2.2. Let t be a term and b ∈ supp(t) such that t|b is a redex. For all
b∗ ∈ supp(t), we define Restb(b∗) the set of residuals of b in t below:

• If b∗ � b, then Restb(b∗) = {b∗}.

• Restb(b) = Restb(b · 1) = ∅

• If b∗ ∈ otβ(b), Restb(b∗) = ∅.

• If b∗ = b · 10 · b♥ for some b♥ ∈ {0, 1, 2}∗ and b∗ /∈ otβ(b), then Restb(b∗) = {b · b♥}
(paradigm ♥).

• If b∗ = b · 2 · b♣ for some b♣ ∈ {0, 1, 2}∗, then Restb(b∗) = b · pftβ(b) · b♣ (paradigm
♣).

Residuation preserves labelling and two distinct positions cannot have a common residual
(“pseudo-injectivity” of residuation):

Lemma 2.1. Let t, t′ be two terms and b ∈ supp(t) such that t b→ t′. Then:

• For all b∗ ∈ supp(t), for all b′∗ ∈ Restb(b∗), we have t′(b′∗) = t(b∗).

• If b1 6= b2, then Restb(b1) ∩ Restb(b2) = ∅.

The notion of residual can be extended, yielding that of quasi-residual. Assume again
that t|b = (λx.r)s and t b→ t′. The nodes labelled with x are destroyed in t′, but they are
replaced by copies of s. In that respect, they are still present in the term t′. Likewise,
the subterm (λx.r)s at position b is destroyed, but it is replaced by its computation
r[s/x], still at position b. We set then:

• For all b∗ ∈ supp(t) such that Restb(b∗) 6= ∅, QRestb(b∗) = Resb(b∗).

• For all b∗ ∈ pftβ(b), QRestb(b · 10 · b∗) = {b · b∗} (paradigm ♥).

• QRestb(b) = {b}.

We still have QRestb(b · 1) = ∅. The above lemma is false for quasi-residuals e.g., if
t = (λx.x)y

ε→ y = t′, then ε ∈ QRestε(ε), but t(ε) = @ 6= y = t′(ε).

For instance, if t = y((λx.y x x)z z)
2→ y(y (z z)z z) = t′, we check that:

• Out of the redex: Rest2(1) = {1} (label y)

• In the left-hand side of the redex (paradigm ♥): Resb(2 · 1 · 0) = {2} (label @),
Res2(2 · 1 · 0 · 12) = {2 · 12} (label y).

• In the argument of the redex (paradigm ♣) Restb(2
2) = {22, 2 · 1 · 2} (label @),

Restb(2
2 · 1) = {22 · 12, 2 · 1 · 2 · 1} (label z)
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2.1.6 Reduction Sequences and Residuation

Let us generalize the notion of residuals along a reduction sequence: for that, we briefly
the following notation: for all term t and b ∈ supp(t) such that t|b is a redex, we write
Redb(t) for the unique term t′ such that t b→ t′.

Formally, a reduction sequence w.r.t. a term t is a sequence rs = (bi)i<n such
that n ∈ N or n = ∞ and, for all i < n, ti|bi is a redex, where (ti)i<n is the sequence
of terms defined by t0 = t and ti+1 = Redbi(ti) for all i < n − 1. In that case, n is the
length of the reduction sequence rs and the sequence t = t0

b0→ t1
b1→ t2

b2→ . . . is called a
reduction path. When n is finite, we write Redrs(t) for the aforementioned term tn.

With the same notations, when the length n is finite, we can inductively define the
set of residuals of a position b in a term t after the reduction sequence rs:

• If n = 0, then we set Restrs(b0) = {b0} for all b0 ∈ supp(t).

• For all b0 ∈ supp(t) and b redex position of tn, we set Restrs·b(b0) = ∪b∗∈Restrs(b0)Res
tn
b (b∗).

We can proceed likewise to extend quasi-residuation to finite reduction sequences.

2.1.7 Contexts

Let 2 be a new constant symbol, intuitively representing a box inside which a λ-term can
be placed. The set of contexts (metavariable C) is inductively defined by the following
grammar:

C = 2 | (λx.C) | (Cu) | (t C)

Thus, a context is like a λ-term along with the additional variable 2 except that 2 can-
not be bound and must occur exactly once in a context. We use the same simplifications
in notations as for λ-terms (see 2.1.2).

Let C be a context and t a term: we define the term C[t] (t in the context C) by induc-
tion: (1) C[t] = t if C = 2 (2) (λx.C)[t] = λx.C[t] (3) (Cu)[t] = (C[t]u) (4) (u C)[t] = u C[t].
Intuitively, C[t] is C in which the box 2 was replaced by t. The double brackets [ · ] in-
dicate that capture is possible.

We may define α-equivalence for contexts as we did for λ-calculus in Sec. 2.1.2. No-
tice that no α-conversion may be performed in C when we compute C[t], since we may
want to allow capture in this term.

However, the capture free substitution C[[t]] is defined like C[t] except we must
α-convert C so that, for all variable x ∈ V occurring free in t, λx must not occur in C.

For instance, if C = λx.2x, then C[x] = λx.x x but C[[x]] = λy.x y.

We now present an in-between notation. Let S ⊆ Λ be a set of terms. We write CS

for a term context C which does not capture the free variables of terms in S i.e. there
are no abstraction symbols in the context that bind the symbols of a term in S (if λx is
in C, then x /∈ fv(t) for all t ∈ S). For instance C = λy.2 can be specified as TTx while
C = λx.2 cannot. We may omit S when it is clear from the context.
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Remark 2.2 (Notation choices and capture). As many authors in λ-calculus, we chose
the notation [u/x] to denote a capture-free substitution (e.g., t[u/x] is the capture-free
substitution of x by u in t). But, using notations coming from the rewriting community,
when C is a context, the notation C[u] (also using simple brackets) allows capture whereas
C[[u]] does not. This is a bit unfortunate, but note that the capture-free substitution
t[u/x] and the “capture-allowing” substitution C[u] may be told appart not only thanks
to the metavariables (t vs. C) but because of the ’/x’ in the former notation.

2.2 Normalizations and Reduction Strategies

For λ-terms, a β-reduction step may be seen as an execution step. From that perspective,
a term is said to be normalizing if it terminates. Normalization is a dynamic property
(in the sense of Sec. 2.1.4): in order to know whether a term is normalizing or not, we
have to reduce it over and over, till we reach – or not – a final state.

Thus, finding out whether a term normalizes is an instance of the Halting Problem.
Since pure λ-calculus is Turing-complete, this is semi-decidable for pure λ-terms.

Internally to the λ-calculus, the notion of normalization immediately raises three
questions.

1. What is the final state of a λ-term? The most natural idea coming to mind is that
the notion of final state corresponds to that of normal form (Sec. 2.1.3) i.e. a term
that do not hold any redexes and thus cannot be executed anymore.

However, the choice of the set of normal forms as the set of final states can be
relaxed, yielding different sets of normal forms e.g., the set of Head Normal Forms
(HNF) (that will be properly defined in Sec. 2.2.1). When there is an ambiguity,
we call the terms that do not hold any redex the β-Normal Forms.

A set of normal forms is usually defined a set of λ-terms that do not hold some
kind of redex (e.g., head redexes for HNF), and that is closed under β-reduction.
This will be made more precise in Sec. 2.3.1.

2. How may we execute terms i.e. reduce them? Indeed, β-reduction is not deter-
ministic i.e. for a given term t, there may be several t′ such that t → t′. Thus,
as soon as a term or one of its reducts contains more than one redex, it may be
executed in different ways.

Usually, for a given set N of normal forms, a term t is defined as N -normalizing
if there is at least one4 reduction path from t to an element of N e.g., a term is
Head Normalizing (HN) if it can be reduced to a Head Normal Form (HNF).

For most choices of N , there is actually a (deterministic) reduction strategy
that yields a N -NF from any N -normalizing (e.g., a term t is HN iff the so called
head reduction strategy terminates for t).

As we will see in Chapter 3, type theory can simplify the exhibition of a reduction
strategy in relation with N -normalization for many choices of N .

3. The last question is: can a λ-term reach distinct final states (depending on reduc-
tion paths)? For instance, some HN terms may be reduced to several HNF. But if

4This is not true for strong normalization, see Sec. 2.2.3.
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t reduces to t1 and t2, two distinct HNF, there always is a third HNF t3 such that
t1 and t2 may both be reduced to t3, intuitively meaning that the HNF reachable
by reduction from a given term t may be pairwise equated modulo additional series
of reductions: reduction cannot separate two reducts of a same term.

More generally, for all term t, if t reduces to t1 and t2, then t1 and t2 have a
common reduct t3. This property of β-reduction is known as the confluence
or the Church-Rosser property of λ-calculus and it is usually proved using5

parallel reduction. Thus, since we assume that a set N of normal forms must be
closed under β-reduction, the notion of N -NF of a given N -normalizing term
is (practically) unambiguous (modulo extra reduction steps). Moreover, still by
confluence6, the set of N -normalizing terms is stable under reduction.

2.2.1 Head Redexes, Head Normal Forms, Head Reduction

We define here head normal forms, the associated notion of normalization i.e. head nor-
malization, and a deterministic reduction strategy i.e. head reduction, that turns out to
be complete for head normalization.

Let t be a term. Intuitively, to identify the head of t, we start at the root, visit
as many abstractions as possible, then as many application left-hand sides as possible.
This means that we stop at a node labelled with x or with λx. In the first case, t is a
head normal form and in the second one, we have reached the abstraction of a redex to
be called the head redex of t.

Formally, let p > 0 be the maximal integer such that 0p ∈ supp(t) (thus, t is of the
form λx1 . . . λxp.t0 for some t0 ∈ Λ that is not an abstraction). Then, let q′ > 0 be the
maximal integer such that 0p · 1q′ ∈ supp(t). We have two possible cases (Figure 2.9):

• t(0p · 1q
′
) = x for some x ∈ V . Then, we set q = q′ and t is of the form

λx1 . . . λxp.x t1 . . . tq for some terms t1, . . . tq (and with possibly x = xi for some
i ∈ {0, . . . , p}).
In that case, we say that t is a Head Normal Form (HNF), x is the head
variable of t and t1, . . . , tq are the head arguments of this HNF.

• t(0p · 1q′) = λx (for some x ∈ V ). Then, by maximality of p, we have q′ > 1 and
we set q = q′ − 1 so that t(0p · 1q) = @. Thus, t|0p·1q is a redex (λx.r)s and t is
then of the form λx1 . . . xp.(λx.r)s t1 . . . tq.

In that case, we say that t is a head reducible term and that (λx.r)s is the
head redex of t.

We call a HNF that is not an abstraction (i.e. a term of the form x t1 . . . tq) a Zero
Head Normal Form (ZHNF) (why “zero”? See Definition 2.8) e.g., x (λx.x) Ω is
a ZHNF whereas λx.x y y is not. HNF and ZHNF can be defined by the alternative
inductive definition:

x is a ZHNF
t is a ZHNF
t u is a ZHNF

t is a ZHNF
t is a HNF

t is a HNF
λx.t is a HNF

5This method is apparently due to Tait cf. [21], 7.2.
6Another very important consequence of confluence is that λ-calculus is consistent: the β-

equivalence does not equate all the term e.g., by confluence, two distinct normal forms cannot be
β-equivalent.
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Figure 2.9: Head Forms

Definition 2.3. Let t ∈ Λ. Then t is Head Normalizing (HN) if there is a reduction
sequence from t to a head normal form.

The Head Reduction is the restriction of β-reduction to the reduction of head
redexes only. We write t →h t

′ to mean that t head-reduces to t′. Since a term has
at most one head redex, head reduction is deterministic. Given a term t, the Head
Reduction Strategy consists in starting with t and performing head-reduction steps
as long as it is possible. The head reduction strategy may be non-terminating and
produce a reduction sequence of infinite length e.g., Ω→h Ω→h Ω→h . . ..

Equivalently, if a term that is not an abstraction is called neutral, head reduction
can be inductively defined by:

(λx.r)s→h r[s/x]

t→h t
′ and t is neutral
t u→h t

′ u

t→h t
′

λx.t→h λx.t
′

An important property of head reduction is its completeness for head normalization:

Proposition 2.1. For all term t, t is head normalizing iff the head reduction strategy
terminates for t.

Proof. This proposition is a direct corollary of the Standardization Theorem (Sec. 11.4 of
[8]), which was first proved by using syntactic methods involving residuals, developments
and algorithmic transformations of reduction sequences.

Remarkably, a far simpler proof of the present proposition is given by Gardner and
de Carvalho’s type system R0, although the statement of the present proposition does
not concern type theory. We sketch this proof in Sec. 3.4.

2.2.2 Weak Normalization and Leftmost Reduction

Let t be a term and b ∈ supp(t). Informally, when b is closed to the root (i.e. |b| is
small), b is regarded as an outer position of t, and when b is distant to the root (i.e. |b|
is high), b is regarded as an inner position. Thus, the more a position is nested in the
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term, the more it is inner.

The following lemma states that normal forms are inductive assemblages of head
normal forms: inductively, a term t is normal if it is a HNF and all its head arguments
are themselves NF.

Lemma 2.2. The set of normal forms can be defined by the following inductive gram-
mar:

t, u = λx1 . . . λxp.x t1 . . . tq (p, q > 0)

Proof. This lemma is proved by double inclusion, each inclusion being proved inductively.

Remark 2.3. We could give a more elementary inductive grammar for normal forms.
Let us call a Zero Normal Form (ZNF) a normal form that is not an abstraction.
Then, the sets of NF and ZNF are defined by induction as follows:

x is a ZNF
t is a ZNF u is a NF

t u is a ZNF
t is a ZNF
t is a NF

t is a NF
λx.t is a NF

Definition 2.4. Let t ∈ Λ. Then t is Weakly Normalizing (WN) if there is a
reduction sequence from t to a normal form.

For instance, the term (λx.y)Ω, that reduces to y, is WN. Likewise, the term In =
I . . . I︸ ︷︷ ︸

n occ. of I

is WN since In →n−1 I, which is a normal form.

The terms Ω, Y, Yf , Yλ and Ω3 from Sec. 2.1.4 are not WN, whereas the term λx.yΩ
is an example of a head normal form which is not WN, since the redex Ω cannot be elim-
inated by reduction.

The Leftmost (Outermost) Reduction Strategy, starting from a given term
t, consists in keeping reducing the leftmost-outermost redex, as long as it is possible.
This redex, when it exists, is defined as the one whose position is minimal for the
lexicographical order. From the tree perspective, this redex is the leftmost and outermost
one.

If a term is head reducible, then its head redex is its leftmost one. Thus, the leftmost
reduction strategy extends the head reduction strategy. It is deterministic as well and
we write t→` t

′ to mean that t′ is the (one step) left reduct of t.
Equivalently, leftmost outermost reduction can be inductively defined by:

(λx.r)s→` r[s/x]

t→` t
′

t u→` t
′ u

t is a ZNF u→` u
′

t u→` t u
′

t→` t
′

λx.t→` λx.t
′

From this definition, we see that, when a λ-terms is considered as a string of characters,
the leftmost-outermost redex is indeed the leftmost one i.e. the redex whose abstraction
is leftmost.

Leftmost reduction is complete for weak normalization:

Proposition 2.2. For all term t, t is weakly normalizing iff the leftmost reduction
strategy terminates for t.

Proof. This proposition also is a direct corollary of the Standardization Theorem (11.4
in [8]).
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Remark 2.4. As for Proposition 2.1, a simple proof of this proposition can be given
using type theory (Sec. 3.4.4).

The notion of NF can be inductively defined (Lemma 2.2), but the above proposition
allows us to reformulate the definition of weak normalization inductively via the leftmost
reduction strategy:

Corollary 2.1. A term t is weakly normalizing iff t is head normalizing and all the head
arguments of its HNF are themselves WN.

When induction is replaced by coinduction, weak normalization becomes hereditary
head normalization, that is studied in Chapter 10 of Part III.

2.2.3 Strong Normalization

Definition 2.5. Let t ∈ Λ. Then t is Strongly Normalizing (SN) if there is no
infinite reduction path starting from t.

Thus, a term t is SN if all the reduction paths starting from t terminate. In particular,
if t is SN, then t is WN. But the converse implication is not true e.g., t := (λx.y)Ω is
weakly but not strongly normalizing, since t ε→ y but the reduction path t 2→ t

2→ t
2→ . . .

is infinite. In the last example, the fact that the (non-terminating) argument Ω of the
redex is erased (see Sec. 2.1.4) plays a pivotal role, that will have to be addressed in
order to understand how type theory may characterize strong normalization (Sec. 5.2).

Actually, those two terms t and y also show that the set of the strongly normalizing
terms is not stable under expansion, meaning that there are some terms t and t′ such
that t→ t′, t′ is SN but t is not. In contrast to that, by Definitions 2.3 and 2.4, the sets
of head and weakly normalizing terms are stable under expansion. The set of SN terms
does not correspond to the general definition of N -normalization given in Sec. 2.2, that
yields sets of normalizing terms which are stable under expansion.

Remark 2.5. A reduction strategy S satisfying “For all term t, the strategy S terminates
on t iff t is SN, and it that case, outputs the normal form of t” (i.e. a reduction strategy
that is complete for strong normalization) is said to be perpetual. Equivalently, S is
perpetual if (1) t→S t′ implies that t′ is not SN when t is not SN and (2) if t is SN and
reducible, there exists t′ such that t →S t′. Even though strong normalization is quite
different from head or weak normalization, one may prove that such strategies exists (in
many variants) e.g., [112].

König’s Lemma states that every finitely branching (every node has a finite number of
children) and well-founded (there is not infinite branches) tree is finite. This entails that,
given a strongly normalizing term t, the reduction sequences starting at t are bounded
in length, so that we may set:

Notation 2.2. Let t be a strongly normalizing term. Then, the maximal length of a
reduction sequence starting at t is denoted η(t).

2.3 Tinkering with Normalization

In this section, we explore different aspects of normalization and of reduction strategy.
To do that, we first exhibit the notion of stable positions of a term (Sec. 2.3.1) i.e.
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positions that cannot be affected by reduction in a sense to be defined. In Sec. 2.3.2, we
define the mute terms, that are the terms in which no position may be “stabilized”. For
this reason, those terms are seen as very undefined. In 2.3.3, the notion of stable positions
leads us to notice that some λ-terms do not weakly normalize, but produce asympotically
an “infinite normal form”. This is a first glimpse at infinitary normalization. Some parts
of a term may be already in normal form, which yields the notion of partial normal form
in Sec. 2.3.4. This allows us to outline some defects of the leftmost outermost strategy,
leading to define the Böhm reduction strategies and have a first look at Böhm trees.

2.3.1 Stable Positions and Sets of Normal Forms

In this section, we consider again the terms defined in Sec. 2.1.4.
As discussed at the beginning of Sec. 2.2, normal forms are regarded as final states

of λ-terms (indicating the end of an execution) but there are many candidates for the
set N of normal forms.

Some candidates are even bigger than the set of head normal forms, such as the set
of Weak Head Normal Forms (WHNF): a term is a WHNF if it is an abstraction
or a HNF. For instance, t = λx.Ω is a WHNF whereas it is not HN, and the zero head
normal forms (e.g., xΩ) are the WHNF that are not abstractions.

Notice that the set of WHNF is indeed stable under reduction: if t = λx.t0 for some
t0, then any of the reducts of t will be of the form t′ = λx.t′0 where t′0 is a reduct of t0.

So, can we give some more intuitions about what may be regarded as a final state?
Heuristically, a term may be regarded as final if some of its parts are stabilized. Let us
give a formal definition of stability:

Definition 2.6.

• Let t be a term and b ∈ supp(t). The position b is stable in t if for all residuals
b′ of b in a reduct t′ of t, b′ is not nested in a redex of t′.

• Let t be a term. Then t is root-stable if ε is stable in t.

• The set of stable positions in t is denoted stab(t).

Thus, a position in a term is stable when it cannot be affected by reduction. More
formally, b0 is stable in t iff, for all reduction sequence rs starting from t and b′0 ∈
Resrrs(b0), there is no b′ 6 b′0 such that t′|b′ is a redex, where t′ = Redtrs(t) (notation of
Sec. 2.1.6).

For instance, if t = λx1 . . . xp.x t1 . . . tq is a HNF , then the positions ε, 0, 02, . . . , 0p, 0p·
1, . . . 0p · 12, . . . , 0p · 1q, labelled with λx1, . . . , λxp,@ and x, are stable (see Figure 2.9).

If t is an abstraction i.e. t = λx.t0, then ε is stable i.e. the root of t is stable.
Notice that, although Ω (that reduces to itself) is “graphically” invariant under re-

duction, no position of Ω is stable since Ω is a redex.
The term t = (λx.x) (λx.x) y is a term that is not root-stable and not a redex: we

have t 1→ (λx.x)y
ε→ y, so that ε is not stable in t.

Remark 2.6. If b is stable in t, then, for all reduction sequence rs starting from t, we
have Restrs(b) = {b}, but this is not a sufficient condition. Indeed, let t = (λx.yx)z

ε→
y z. We have Restb(2) = {2} (label z) and this is the only (non-empty) reduction path
starting from t, but 2 is not stable in t since t is a redex.
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The following observation, obtained by induction on the length of a reduction se-
quence, is useful:

Lemma 2.3.

• If b is stable in t, then any prefix of b also is.

• If t is not root-stable, no position b ∈ supp(t) is stable in t.

• A term t is root-stable iff t may not be reduced to a redex.

In conclusion, a set of normal forms can usually be defined as a set of terms in which
some positions are stable. Formally, for any B ⊆ {0, 1, 2}∗, let NB be the set of terms
such that, for all b ∈ B ∩ supp(t), b is stable in t. Then, NB is stable under reduction
(by Definition 2.6) and for B = {0, 1}∗, NB is the set of HNF, for B = {0, 1, 2}∗, NB is
the set of β-NF and for B = {1}∗, NB is the set of WHNF (see below).

Choice of B The normal forms are. . .
{0, 1, 2}∗ . . . the β-normal forms
{0, 1}∗ . . . the head normal forms
{1}∗ . . . the weak head normal forms

2.3.2 Mute Terms and Order of a Lambda Term

The mute terms, introduced by Berarducci [11], correspond to the terms that cannot
be defined as normal forms, for any reasonable choice of N . They have been referred
as the “most undefined lambda terms” [15]. Let us understand why.

Definition 2.7. Let t ∈ Λ. Then t is mute if every reduct of t may be reduced to a
redex.

Formally, t is mute iff, for all t′ ∈ Λ such that t→∗ t′, there exists (λx.r)s such that
t′ →∗ (λx.r)s. Thus, mute terms can be regarded as persisting redexes.

For instance, Ω is a mute term since its unique reduct – Ω itself – is a redex. Buc-
ciarrelli, Carraro, Favro, Salibra [15] defined the class of n-regular mute terms, gen-
eralizing the construction of Ω (the reducts of those terms are redexes each n head
reductions steps e.g., Ω and (λx.(λy.y x))∆ are 1-regular mute terms and AAA (with
A = λxy.x(λzt.t z x)y) is a 2-regular mute term whereas BB (with B = λx.x(λy.x y))
is a mute term that is not regular (those examples were found in [15]).

In contrast, the term Yλ from Sec. 2.1.4, satisfying Yλ
ε→ λx.Yλ is not mute since

λx.Yλ is an abstraction and cannot be reduced to a redex (all its reducts are of the form
λxn.Yλ with n > 1). The reducts of Ω3 are of the form Ω3 ω

n
3 with n > 1. No one is a

redex, so Ω3 is not mute.
By Lemma 2.3, a term is mute when no one of its reduct is root-stable and muteness

can be reformulated as follows:

Lemma 2.4. A term is mute iff no reduct of t has a stable position.

Let us say that a position b ∈ {0, 1, 2}∗ is stabilizable or may be stabilized in
t is there is t →∗ t′ such that b ∈ supp(t′) and b is stable in t′. Then, by the above
Lemma, a term is mute iff no position can be stabilized in t. If we follow the discussion
ending the previous section, this justifies why mute terms are improper to be regarded
as normal forms.
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Order of a Lambda-Term and Stabilization An interesting semantical aspect of
λ-terms is their orders: the notion of order of a λ-term will be studied in later parts of
this document (see Chapter 12 and Theorem 12.2). It is also related to stable positions.

Let t be a term. If t is an abstraction i.e. t = λx.t0 for some t0, then any of the
reduct of t will be of the form t′ = λx.t′0 where t′0 is a reduct of t0 i.e. the root of an
abstraction7 is a stable position. This suggests the notion of order of a λ-term t, defined
as the supremal number of abstractions that prefix a reduct of t:

Definition 2.8.

• Let t be a λ-term. The order of t is

sup{n ∈ N | ∃x1, . . . , xn, u s.t. t→∗β λx1 . . . λxn.u}

• A term of order 0 is called a zero term

By confluence, if the order of t is n, then the order of any reduct of t is also n.
For instance, a term that reduces to a zero head normal form (Sec. 3.7) is indeed a

zero term. The order of a head normalizing term is the order of its head normal form.
Let us have a look at the orders of some terms of Sec. 2.1.4:

• The mute term Ω = ∆ ∆, is a zero term (its unique reduct is Ω which is not an
abstraction). More generally, if a term t is of order n > 1, then the position 0n

can be stabilized in a reduct of t, so that a mute term is of order 0.

• The term λx.Ω is of order 1 (its unique reduct is λx.Ω). Since Yf head normalize
to f(Yf ) (zero head normal form), then Yf is a zero term, so that Y = λf.Yf (the
Curry Fixpoint Combinator) is of order 1.

• The reduct of term Ω3 (which is not HN) are of the form Ω3 ω
k
3 . No one is an

abstraction, so that Ω3 is a zero term, that is neither a mute nor a head normalizing
term.

• Since Yλ → λx.Yλ and Yλ →n λxn.Yλ, the order of Yλ is infinite.

2.3.3 Toward Infinitary Normalization

The study of some terms of Sec. 2.1.4 suggests other variants of normalization.

We recall that Yf , Yλ and Ω3 satisfy respectively Yf
ε→ f(Yf ), Yλ

ε→ λx.Yλ and
Ω3

ε→ Ω3 ω3. Let ∆′f and Y′f be defined by ∆′f = λx.x x f and Y′f = ∆′f∆′f , so that
Y (λx.x f)→3 Y′f and Y′f

ε→ Y′f f .
Neither Yf nor Yλ, Ω3 and Y′f are weakly normalizing. Indeed, Yf →n

` f
n(Yf ), Yλ →n

λxn.Yλ, Ω3 →n
` Ω3 ω

n
3 and Y′f →n

` Y′f f
n.

Let us first consider Yf . Although the left reduction starting from Yf does not
terminate, we notice that, along the left reduction path, more and more positions are
stabilized. In Figure 2.10, all the apparent nodes (i.e. the nodes ouside u1, u2 and u3)
are stabilized.

7Thus, abstractions are good candidates to be considered as finale states i.e. a normal forms. For
instance, in the so-called call-by-value evaluation strategy, they are precisely completed computations
i.e. normal forms.
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Figure 2.10: Reducing Yf

Actually, any position of the form 2i or 2i · 1 with i 6 n is stable in fn+1(Yf ) (in
particular, we have (fk(Yf ))(2n) = @ and (fk(Yf )(2n · 1) = f for all k > n+ 1).

Thus, any position is stabilized in fn(Yf ), the rank n reduct of Yf , above a certain
reduction rank. So Yf is not normalizing, but intuitively, after an infinite number of
reduction steps, the redex Yf disappears and fn(Yf ) “converges” toward an infinite term,
that we call fω, whose tree could be the obtained by repeating infinitely many times the
pattern of the tree on the right-hand side of Figure 2.10. The term fω can be written
f(f(. . .)) and we notice that fω = f(fω) (whereas Yf ≡β f(Yf )). Intuitively, fω does
not contain any redex (compare with Figure 2.7) and may be thus considered as the
infinite normal form of the term Yf .

More generally, when we keep reducing Yλ, Ω3 and Y′f , we notice that the lower
parts of their trees also stabilize. Asymptotically, every position is stabilized and
we obtain the infinite terms NF∞(Yλ) = λx.λx.λx . . ., NF∞(Ω3) := ((. . .)ω3)ω3 and
NF∞(Y′f ) = ((. . .)f)f as their respective normal forms. Their trees can also been seen as
infinite repetitions of a same pattern (Figure 2.11) and they satisfy the following fixpoint
equalities NF∞(Yλ) = λx.NF∞(Yλ), NF∞(Ω3) = NF∞(Ω3)ω3 and NF∞(Y′f ) = NF∞(Y′f )f ,
whereas Yλ ≡β λx.Yλ, Ω3 ≡β Ω3 ω3 and Y′f ≡β Y′f f .
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Figure 2.11: Infinite Normal Forms
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All this suggests that there is a notion of normalization for which Y := λf.Yf , Yλ, Ω3

and Y′f are normalizing terms w.r.t. some infinite term calculus. Historically, Böhm trees
(Chapter 10 of [8]) were the first infinitary normal forms to be introduced, followed by
Lévy-Longo [1, 74, 75] and Berarducci [11] trees. Then Kennaway, Klop, Sleep and
de Vries [57] built a general framework, featuring infinitary reduction sequence and
subsuming these three cited kind of trees. This framework contains seven variant of
infinitary λ-calculus and two of these calculi are presented in Chapter 9.

2.3.4 Partial Normal Forms

In this section, we develop the notion of partial normal forms i.e. terms whose outer
parts are already in normal form (the tree of such a term begins with a nesting of head
normal forms) but whose inner parts are not. Thus, a partial normal form is a term in-
between a head normal form and a β-normal form (a term without redex), that may be
met in the course of a normalizing reduction sequence (or at least, a reduction sequence
trying to normalize a term).

Normal forms are inductive assemblages of head normal forms (Sec. 2.2.2). When t
is a normal form, then for all x ∈ V and b ∈ supp(t) such that t(b) = x, we call x the
local head variable of t at position b. If t(b) = x, there is a maximal q > 0 such that
b = b0 · 1q for some b0 ∈ supp(t). In that case, t|b0 = x t1 . . . tq for some t1, . . . , tq, that
we call the arguments of x. Thus, each variable of a normal form t corresponds to an
inductive “call” of Lemma 2.2.

We recall that a zero head normal form (Sec. 2.2.1) is a term of the form x t1 . . . tq.
Let t be a term. We define the set stabB(t) of Böhm stable positions of t as the
subpart of t (i.e. stabB(t) ⊆ supp(t)) that is “already” in normal form, upwards from
the root of the term i.e. inductively, we set:

• If t is not an HNF, stabB(t) = ∅.

• If t = x, then stabB(t) = {ε}.

• If t is a ZHNF, then stabB(t u) = {ε} ∪ 1 · stabB(t) ∪ 2 · stabB(u).

• If t = λx.t0, then stabB(t) = {ε} ∪ 0 · stabB(t).

The set stabB(t) is closed under the prefix order, if b is a leaf of stabB(t), then b is a
leaf of supp(t) (i.e. t(b) = x for some x ∈ V ) and if t is a normal form, then stabB(t) =
supp(t). Moreover, for all b ∈ stabB(t), t|b is a head normal form. Equivalently, a
position b of t is Böhm -stable iff b, as well as all its prefixes, are the positions of head
normal subterms of t. Thus, the Böhm stable positions of t corresponds to the positions
of the head normal forms in t that are hereditarily nested in head normal forms.

Lemma 2.5. Let t be a λ-term and b ∈ supp(t). Then b is Böhm -stable in t iff, for all
b0 6 b, t|b0 is a head normal form.
For that reason, we say, for all Böhm stable position b points to a Hereditarily Nested
Head Normal Form (HNHNF).

Let u1, u2, u3 be 3 terms that are not head normal forms. We set:

t = λx1x2.y (x (xu1)) (λx.x)u2 (λx.x2 y u3)
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Figure 2.12: Minimal Redexes

Then stabB(t) corresponds to the set of the apparent nodes of Figure 2.12 (the nodes
outside u1, u2 and u3).

Remark 2.7. The notion of Böhm stable position is more restrictive than that of stable
position (Definition 2.6). For instance, ε is stable in λx.Ω (see Sec. 2.3.1), but it is not
Böhm stable, since λx.Ω is not a head normal form, so that stabB(λx.Ω) = ∅.

Intuitively, the minimal redexes of a term t would correspond to the leftmost outermost
redexes of the subterms obtained if we removed the Böhm stable parts of t:

Definition 2.9. Let t ∈ Λ and b ∈ supp(t)

• There is a maximal head reducible subterm of t at position b if t|b is head
reducible (i.e. t|b is not HNF) and for all b0 < b, t|b0 is a head normal form.

• There is a minimal redex at position b in t if b is the position of head redex of
a maximal head reducible subterm of t.

Equivalently, b is the position of a maximal head reducible subterm of t if t|b is head
reducible and for all b0 < b, b0 ∈ stabB(t). When t is not a head normal form, its only
maximal head reducible subterm is t itself.

Let us define the order 6B on {0, 1, 2}∗ (where B stands for Böhm) by b 6B b′ if

• b 6 b′ or . . .

• . . . ad(b) < ad(b′) and there is a b0 6 b and q ∈ N such that b = b0 · 1q and b0 6 b′.

Let us remember that 1 points to the left hand-side of an application and assume that
b, b′ ∈ supp(t) correspond to two redexes of t and that b 6B b′.

• If b 6B b′ matches the first case of the definition of 6B, then t|b′ is nested in the
redex t|b.
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• If b 6B b′ matches the second case, then t|b0 = t|b u1 . . . uq and b′ is nested in one
of the uk. Thus, t|b is the head redex of t|b0 whereas t|b′ is an inner redex of t|b0 .

Thus, we observe that, in a reducible term t, a redex at position b is minimal in the
sense of Definition 2.9 iff b is minimal among the positions of the redexes of t, which
justifies the vocable.

A minimal redex is not nested in any other redex: thus, a minimal redex is an
outermost redex, but the converse is not true e.g., in t := (λx.r)s (λy.u)v, (λy.u)v is
an outermost redex, but is not a minimal redex since (λy.u)v is not a maximal head
reducible subterm of t (that is head reducible).

We call the Minimal Reduction the restriction of β-reduction to the reduction of
outermost redexes only and we write t →m t

′ when t′ is obtained by firing a minimal
redex of t′. Minimal reduction is not deterministic since a term can contain several
minimal redexes e.g., in Fig. 2.12, if u1, u2 and u3 are redexes, then t has 3 minimal
redexes: u1, u2 and u3 themselves. The Minimal Reduction Strategy consists in
starting with t and performing minimal reduction steps as long as it is possible

Since the leftmost outermost redex – when it exists – is the redex whose position is
minimal for the lexicographical order (Sec. 2.2.2), there is a minimal redex at position b
in t if (1) t|b is a redex (2) for all b0, b∗ /∈ stabB(t) such that b0 6 b, b∗ and t|b∗ is also a
redex, then b 6` b∗ (lexicographical order).

If t is not a normal form, then the leftmost outermost redex of t is a minimal one.
With the example of Figure 2.12, the leftmost outermost redex of t is the head redex of
u1, but t has exactly two more minimal redexes: the respective head redexes of u2 and
u3.

2.3.5 Böhm Reduction Strategies

In this section, we notice a defect of the leftmost outermost reduction strategy, thanks
to the notions of maximal head reducible subterm (Sec. 2.3.4) and applicative depth (see
below). This leads us to consider the Böhm reduction strategies, that try to normalize
terms from the bottom to the top more “equitably” than the leftmost outermost one
does. This will give a glimpse of finite or infinite Böhm trees.

The applicative depth ad(b) of a subterm u at position b in a term t (with b ∈
supp(t)) is the number of nestings of u inside application arguments. Formally, we set
ad(b) = #{0 < i 6 ` | bi = 2} where ` = |b| and b = b1 · b1 · . . . · b` with bi ∈ {0, 1, 2}.
Inductively, ad(ε) = 0, ad(b · 0) = ad(b · 1) = ad(b) and ad(b · 2) = ad(b) + 1. For
instance, ad(0 · 1) = 0, ad(2 · 1 · 0 · 2) = 2. Thus, ad(b) is the number of nestings of b
inside application arguments.

Notice that, if b is the position of the head (variable or redex) of t, then ad(b) = 0
(see Sec. 2.2.1). If t = λx1 . . . xp.x t1 . . . tq, then the head arguments t1, . . . , tq are at
applicative depth 1 (see Figure 2.9). In Figure 2.12, subterm u1 occurs at applicative
depth 3, so the leftmost-outermost redex of t also occurs at applicative depth 3. The
maximal head reducible subterms u2 and u3 occur respectively at applicative depth 1
and 2.

Now, assume that u2 and u3 are both weakly normalizing and that u1 is not. Since
the head redex of u1 is the leftmost outermost redex of t, then the leftmost outermost
reduction strategy will keep on reducing the leftmost innermost redex of u1 (and its head
reducts) and will never perform reduction inside u2 and u3, which is a pity, since these
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two terms are normalizing. This motivates to define the Böhm reduction strategy, that
we present under two variants.

Böhm Reduction Strategy Let t be a term.

• First variant: we keep on reducing a redex of minimal applicative depth (which
one does not matter).

• Second variant: as long as the current term is not a normal form

1. We list the current maximal head reducible subterms (whose redexes are at
position b1, . . . , bn).

2. We fire those redexes (the order in which these reductions are performed does
not matter)

3. We got back to step 1.

As the leftmost reduction strategy is, these two strategies are restriction of the minimal
reduction strategy (Sec. 2.3.5). These two variants are usually not deterministic and if t
is not weakly normalizing, they will not terminate. We shall prove (Sec. 5.1.4) that they
are both complete for weak normalization, as the leftmost outermost reduction strategy
is, but only they have a nice infinitary behaviour (see Part III, Remark 9.3 in particular).

With the first variant, we keep on head reducing t as long as we do not get a head
normal form λx1 . . . xp.x t1 . . . tq. Then we keep on head-reducing the head arguments
t1, . . . tq as long as they are not all in head normal form (applicative depth 1). Then, we
keep on head-reducing their head arguments (applicative depth 2) as long as they are
not all in head normal form. And so on. The strategy stops if we meet a normal form
at some point.

For instance, if we consider the term t of Figure 2.12 and assume that t is weakly
normalizing, then this strategy will not start by reducing inside u1 (as would the left-
most outermost one) but by keeping on head-reducing u2 (whose applicative depth is
minimal) till we get a head normal form u′2. Then, we keep on reducing u3 and the head
arguments of u′2 till they are put in head normal forms. Then, there are no more redexes
at applicative depth 2 and we may start head-reducing u3 and other remaining redexes
of applicative depth 3.

Assume this time that u1 and u3 are weakly normalizing, but that u2 is not head
normalizing. The same criticism that we made above towards leftmost reduction holds
for the first variant of Böhm reduction strategy: here, since we must start with u2

and that it is not head normalizing, we will never reduce u1 and u3, whereas they are
normalizing and may reach a final state.

The second strategy avoids all those drawbacks: since we never perform more than
one reduction step in a maximal head reducible subterm before skipping to another, we
are never captive of a non-weakly normalizing subterm of t and all the parts of t that can
be normalized shall be. Thus, this does not matter whether u1, u2 or u3 are normalizing
or not, the second variant will normalize the ones that are.

Remark 2.8. Assume that a (non erasable) subterm of t is not weakly normalizing.
Then the 2nd variant of the Böhm reduction strategy (BRS2) will not terminate, but all
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the positions that may be Böhm stabilized will be i.e. if t→∗ t′ and b ∈ stabB(t
′), then

b ∈ stabB(tn) for all n > N for N great enough, where t = t0, t1, t2, . . . is an instance of
BRS2. In other words, even if this strategy does not terminate on t, it will progressively
output all the Hereditarily Nested Head Normal Forms (HNHNF) in t (Lemma 2.5).
There are actually two subcases:

• After a certain rank, the set of Böhm stable positions of (the reduct of) t does
not change anymore. Thus, only a finite number of HNHNF can be ouputted and
there is an integer n such that the applicative depth of the Böhm stable positions
is bound by n. This will correspond to a finite Böhm tree (Sec. 9.1).

• The set of Böhm stable positions keep on growing (this is the case with t = Yf ).
Then, their applicative depth is not bound. Asymptotically, we obtain an infinite
number of HNHNF and this will correspond to an infinite Böhm tree. For instance,
when t = Yf , we have Yf →n fn(Yf ) with stabB(f

n(Yf )) = {2i, 2i · 1 |, i 6 n}.
Asymptotically, when n tends towards infinity, the set of Böhm stable positions
is {2i, 2i · 1 | i ∈ N}. This is the support of the infinitary term fω (see Sec. 2.3.3),
which is the Böhm tree of Yf .

2.4 A Lambda-Calculus with Explicit Substitutions

We shortly present in this section a λ-calculus with explicit substitution Λex due
to Accattoli and Kesner [3]. Λex corresponds to a “small-step” version of Λ: in the
latter, when a redex (λx.r)s is reduced in one step into the term r[s/x] and to do that,
we replace all the (free) occurrences of x in r by a copy of s e.g., if there are n free
occurrences of x in r, then those n free occurrences of x are all replaced simultaneously
by s during reduction (“big-step”). In Λex, a reduction step will be allowed to replace
only one occurrence of x by the argument s: the reduction →βx of Λex is then said to
be linear. One of the contribution of this thesis is to extend Λex to a small-step version
of the λµ-calculus (Chapter 8).

An Example of Explicit Substitution Reduction Sequence For instance, x has
two free occurrences in r := x y x and (λx.r)s = (λx.x y x)s reduces into r[s/x] = s y s.
In Λex, this reduction will be emulated by

(λx.x y x)→βx (x y x)〈x\s〉 →βx (s y x)〈x\s〉 →βx s y s

or by
(λx.x y x)→βx (x y x)〈x\s〉 →βx (x y s)〈x\s〉 →βx s y s

The notation 〈x\s〉 is a new construction of the calculus Λex and denotes an explicit
substitution.

The operational semantics of Λex may be understood as this: firing a redex (λx.r)s
triggers an explicit substitution and we have (λx.r)s→βx r〈x\s〉. A term r〈x\s〉 may be
reduced in r′〈x\s〉 where r′ is obtained from r by replacing exactly one free occurrence
of x by s (this free occurrence is non-deterministically chosen) except when:

• The term r contains exactly one free occurrence of x: in that case, the explicit
substitution is completed by the reduction step and we have r〈x\s〉 →βx r

′, where
r′ is obtained from r by replacing the unique free occurrence of x by s. This occurs
in (x y s)〈x\s〉 →βx s y s
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• The term r does not have a free occurrence of x: in that case, the explicit substi-
tution is eliminated by the reduction step and we have r〈x\s〉 →βx r. This occurs
in (λz.y z)〈x\s〉 →βx λz.y z.

Naturally, the construction 〈x\s〉 binds x.

Operational Semantics of Λex Now, let us give a formal definition of Λex and state
the main properties that it enjoys.

The terms t, u of Λex are defined inductively by:

t, u = x ∈ V | (λx.t) | (t u) | t〈x\u〉

Notice that 〈x\u〉 is a new operator of the language (it is in the grammar of Λex) and
not a meta-operator as [u/x] is for the λ-calculus. In Λex, [u/x] is also a meta-operator
with the expected definition and behaviour.

The contexts C of Λex are defined as expected with the additional constructor 〈x\u〉.
Among them, we distinguish the list contexts L, which are defined inductively by:

L ::= 2 | L〈x\u〉

The reduction rules of the λex-calculus aim to give a resource aware semantics to the
λ-calculus, based on the substitution at a distance paradigm [2,3]. Indeed, the reduction
relation λex of the calculus is given by the context closure of the following rewriting
rules.

L[λx.t]u →BL[t〈x\u〉]
Cx[[x]]〈x\u〉→cC[[u]]〈x\u〉 if |C[[x]]|x > 1
Cx[[x]]〈x\u〉→dC[u] if |C[[x]]|x = 1
t〈x\u〉 →w t if x /∈ fv(t)

where we remember Cx means that the context C does not capture x (Sec. 2.1.7) and
that |t|x denotes the number of free occurrences of x in t (Sec. 2.1.2).

Notice that, as expected from the above example, the occurrences of x are (arbitrar-
ily) substituted one after another i.e. substitution is linearly processed. When there is
just one occurrence of x left, the small reduction step d performs the last substitution
and removes the explicit substitution 〈x\u〉, thus completing the operation.

More generally, not only the syntax of the λex-calculus can be seen as a refinement
of the λ-calculus, but also its operational semantics. Formally:

Lemma 2.6. If t ∈ Λ, then t→β t′ implies t→+
βx t
′.

This lemma was illustrated by the above example. Conversely, we can project λex-
reduction sequences into λ-reduction sequences. Indeed, consider the projection function
P(_) computing all the explicit substitution defined inductively by P(x) = x, P(λx.t) =
λx.P(x), P(t u) = P(t) P(u) and P(t〈x\u〉) = P(t)[P(u)/x]. Then:

Lemma 2.7. If t ∈ Λex, then t→βx t
′ implies P(t)→∗β P(t′)
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Figure 2.13: t〈x\u〉 as a Labelled Tree

Positions and Head Normal Forms We may also consider λex-terms as labelled
trees by extending the signature Σ = V ∪{λx |x ∈ V }∪{@} to Σex = Σ∪{exx |x ∈ V },
where exx is a binary node representing an explicit substitution of x.

We may then define a notion of positions (words on {0, 1, 2}) and support for λex-
terms accordingly. The Head Normal Forms of Λex are those of Λ. More precisely, a term
t ∈ Λex may be of three different forms: t = λx1 . . . xp.x t1 . . . tq, t = (λx.r)s t1 . . . tq or
t = r〈x\s〉t1 . . . tq (p, q > 0). Indeed, let p be maximal such that 0p ∈ supp(t), then let
q be maximal such that 0p · 1q ∈ supp(t) and t(0p · 1q) 6= @. Then t(0p · 1q) will be x,
λx or exx for some x ∈ V .

Head reduction and the head reduction strategy are naturally extended to Λex, as
well as leftmost outermost reduction. We may also define the notions of head, weak or
strong normalization for Λex in the obvious way.



Chapter 3

Intersection Type Systems

Well-typed programs cannot “go wrong”.
Milner, 1978 [83]

We present in this chapter a few aspects of Intersection Type Theory. We start first
with a discussion about Simple Type Theory in Lambda Calculus and the Curry-Howard
Isomorphism. We then explain some limitations of simple types and how intersection
types came into play to overcome those limitations. Indeed, we identify here three uses
of Intersection Type Systems (ITS).

• Providing a static (see Sec. 3.1.1 and e.g., Proposition 3.7) characterization of
different (variants of) normalization i.e. termination.

• Proving that a reduction strategy is complete for a given notion of normalization
(e.g., Propositions 3.8 and 5.2). This kind of result is external to Type Theory
but ITS provide alternative proofs that can arguably be seen as the simplest ones
in the non-idempotent case.

• Providing denotations to λ-terms i.e. for us, invariants of execution. This
aspect is discussed in Chapter 12.

As it turns out, the main expected properties of a well-behaved intersection type system
are known as Subject Reduction and Subject Expansion, stating the stability of
typing under (anti)reduction. We discuss them throughout Sec. 3.3.

Outline

In Sec. 3.1, we present the simply typed λ-calculus and quickly recall the Curry-Howard
Isomorphism and some of its applications. Some limitations of simple types suggest
considering intersection type systems, which are the subject of Sec. 3.2. We discuss
the possible idempotency of the intersection operator and two intersection type systems
are presented: system D0 (idempotent) and system R0 (non-idempotent). We explain
how two very important dynamic properties of intersection type systems, namely subject
reduction and subject expansion are used to provide type-theoretic characterization of
normalization, as well as proofs of completeness of some reduction strategies. In Sec. 3.3,
we explain the mechanisms of subject reduction and subject expansion and we show in
which case they can fail. Finally, in Sec. 3.4, we illustrate the general principles presented
in the first sections of this chapter by proving that head normalization is characterized by
typability in system R0. This characterization comes along with the following semantical

75



76 CHAPTER 3. INTERSECTION TYPE SYSTEMS

result (that is external to type theory): a λ-term is head normalizing (there is a reduction
path from t to a head normal form) iff the head reduction strategy terminates on t.

3.1 From the λ-Calculus to Intersection Types Theory

In Sec. 3.1, after presenting some basic ideas of the Curry-Howard Correspondence
(Sec. 3.1.1), we give a short overview of the motivations and uses of the intersection
type discipline (Sec. 3.1.2). We then present Curry’s simple type system (Sec. 3.1.3) and
we discuss in more detail the relation between typability and normalization (Sec. 3.1.4).
From the impossibility of simple types to characterize normalization originates the birth
of intersection types.

3.1.1 The Curry-Howard Correspondence

The notion of type was introduced by Whitehead and Russell in [115], among other
attempts (e.g., Zermelo’s Separation Axiom in Set Theory) at avoiding Russell’s Paradox
and providing a non-contradictory foundation to mathematics. Types were then adapted
in Combinatory Logic by Curry ([21], 4.2.) who first noticed, in this framework, the
nowadays well-known correspondence of “Propositions-as-Types”.

Church himself introduced types in λ-calculus in [26]. Those types furthered the
intuition of λ-terms as functions. For instance, a term t typed with A→ B represents a
function from A to B. When fed with a term u of type A, t yields a term of type B i.e.
the term t u will be of type B when u is of type A. Typing is static (by opposition to
dynamic, Sec. 2.1.4): no reduction is needed either to find a typing derivation of a term
or, given a typing tree, to check whether it is correct derivation or not.

In 1969 ([21], 8.1.4 and [55]), Howard noticed that the correspondence observed by
Curry could be extended to Lambda Calculus. This yielded the famous Curry-Howard
Correspondence: there is an equivalence between some notions in Simply Typed λ-
Calculus and some others in Natural Deduction.

Natural Deduction Simply Typed Lambda Calculus
Formula Type
Proof Simply Typed Term

Cut-Elimination Step Reduction-Step

A practical consequence of this correspondence (that can be extended to many other
notions) is that logical methods and concepts can be exported to (functional) program-
ming languages and vice versa. The first published application of this correspondence
was due to Curry himself [33], who used cut-elimination techniques from logic to prove
that if a term was typable, then it was weakly normalizing (Definition 2.4).

3.1.2 Lambda-Calculus and Type Theory

As recalled in Chapter 2, an important dynamical property of λ-terms is normaliza-
tion: for instance, a term is Head Normalizing (HN) if it can be reduced to a Head
Normal Form (HNF) (i.e. a term of the form λx1 . . . xp.x t1 . . . tq) and a term is Weakly
Normalizing (WN) when it can be reduced to a β-Normal Form (NF) (i.e. a term with-
out redex). A term t is Strongly Normalizing (SN) if there is no infinite reduction path
starting at t.
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We saw in Sec. 3.1.1 that a simple type system for the λ-calculus was introduced by
Church not long after its creation and notions of type assignment systems for λ-calculus.
One of the developments of the historical simple type systems were the polymorphic (or
higher-order) type systems.

However, despite their expressive power, polymorphic types have some limitations.
For example, it is not possible to assign a type to a term of the form λx.x x (see
Sec. 3.1.4), which can be understood as a meaningful program specified by a termi-
nating term (λx.x x represents the auto-application, see Sec. 2.1.4). First, t u is not
typable when t and u have the same type (the equality A = A → B is impossible in
Curry0). Thus, the normal forms xx or ∆ = λx.x x cannot1 be typed .

Intersection types, pioneered by Coppo and Dezani [27, 28], introduce a new con-
structor ∧ for types, allowing to assign a type of the form ((σ → σ) ∩ σ) → σ to the
term λx.x x because the left occurrence of x and the right one can be assigned different
types.

The main feature of an Intersection Type System (ITS) is the following: each
time that an occurrence of a variable x is met, it may be assigned a new type. For
instance, xx becomes easily typable (if x is assigned the types A and A → B, then we
can type xx with B). Then ∆ can be assigned a type of the form ((A→ B)∧A)→ B.
Thus, in a sense, intersection type systems also are polymorphic, but they feature a sort
of “unconstrained” polymorphism with no higher-order rules.

The intuition behind a term t of type A1 ∧ B2 is that t has both types A1 and
A2. The symbol ∧ is to be understood as a mathematical intersection, so in principle,
intersection type theory was developed to ensure idempotent (A∧A = A), commutative
(A ∧B = B ∧A), and associative ((A ∧B) ∧ C = A ∧ (B ∧ C)) laws.

Intersection types have been used as a behavioural tool to reason about several oper-
ational and semantical properties of programming languages: whereas in a higher-order
type system, typability ensures strong normalization (if the term t is typable, then it is
SN), an intersection type system will usually provide a characterization of normalization,
with equivalences of the form “t is normalizing iff it is typable”.

For example, a λ-term/program t is strongly normalizing/terminating if and only if t
can be assigned a type in an appropriate intersection type assignment system. Similarly,
intersection types are able to describe and analyze models of λ-calculus [9], character-
ize solvability [77], head normalization [77], linear-head normalization [60], and weak-
normalization [68, 77] among other properties.

These frameworks turn out to be a powerful tool to reason about qualitative prop-
erties of programs, but not for quantitative ones. Indeed, for example, there is a type
system that assigns a type to a term t if and only if t is head normalizing (qualitative
information), but the type system gives no information about the number of reduction
steps that are needed to obtain a HNF from t (quantitative information).

Here is where non-idempotent types come into play, by making a clear distinction
between σ ∧ σ and σ: with non-idempotency, using the resource σ twice or once is not
the same. This change of point of view can be related to the essential spirit of Girard’s
Linear Logic [47], which removes the contraction and weakening structural rules in order
to provide an explicit control of the use of logical resources, i.e. to give a full account of
the number of times that a given proposition is used to derive a conclusion.

1The details of this argument can be found in Sec. 3.1.3 in the case of Curry’s system, but it also
works for any simple type system of higher order.
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The use of non-idempotent types was pioneered by Gardner [43] and Kfoury [63].
Relational models of λ-calculi based on non-idempotent types have been investigated
in [22, 41] (a version of Gardner/de Carvalho type system is given in Sec. 3.2.4). D.
de Carvalho [22] established in his PhD thesis a relation between the size of a typing
derivation in a non-idempotent intersection type system for the lambda-calculus and
the head/weak-normalization execution time of head/weak-normalizing lambda-terms,
respectively (this is recalled in Remarks 3.15 and 5.6). Non-idempotency has been used,
in particular by Bernadet and Lengrand, to reason about the longest reduction sequence
of strongly normalizing terms in both the lambda-calculus [13, 14, 36] and in different
lambda-calculi with explicit substitutions [14,60]. Non-idempotent types also appear in
linearization of the lambda-calculus [63] and type inference [64, 85]. Bucciarelli, Kesner
and Ronchi della Rocca proved that inhabitation2 is decidable with non-idempotent in-
tersection types [18] whereas it is not in the idempotent case (Urzyczyn [105]), and Du-
denhefner and Rehof characterized the complexity of inhabitation at bounded dimension,
both in the idempotent and the non-idempotent case [39, 40]. Finally, non-idempotent
types provided different characterizations of solvability [88] and have been in used veri-
fication of higher-order programs [52,86].

3.1.3 A Simple Type System

In this section, we define a simple type system3 Curry0, which corresponds to the type
system originally introduced for λ-calculus by Church and then studied by Turing and
Curry.

Let O be a countable set of base types or type variables (metavariable o). We consider
the set of simple types that is the set of words generated by the following inductive
grammar:

A,B ::= o ∈ O | A→ B

A context (metavariables Γ,∆) is a partial function from the set of variables V to the
set of simple types. If for all x ∈ dom(Γ)∩ dom(∆), Γ(x) = ∆(x), we write Γ :: ∆ for the
context of domain dom(Γ)∪dom(∆) extending Γ and ∆. If dom(Γ)∩dom(∆) = ∅, we may
write Γ; ∆ instead of Γ :: ∆. The context x : A is the context Γ such that dom(Γ) = {x}
and Γ(x) = A.

The set of typing derivations in system Curry0 is defined inductively by the following
rules:

Γ;x : A ` x : A
ax

Γ;x : A ` t : B

Γ ` λx.t : A→ B
abs

Γ ` t : A→ B ∆ ` u : A

Γ :: ∆ ` t u : B
app

Notice that the app-rule can only be applied when Γ :: ∆ is defined i.e. when Γ and ∆
agree on the common parts of their domain.

2 Given a type A, is there a term having type A? From the Curry-Howard perspective, this problem
corresponds to deciding the provability of a proposition A.

3The subscript 0 indicates finite type systems in this document, by opposition to their (coinductive)
infinite extensions, that will be considered in the later parts of this thesis.
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Example 3.1. We give Curry0-derivations typing the terms I = λx.x, Kx = λy.x and
x I:

x : A; y : B ` x : A
ax

y : B ` λx.x : A→ A
abs

x : A; y : B ` x : A
ax

x : A ` λy.x : B → A
abs

x : (A→ A)→ B ` x : (A→ A)→ B
ax

x : A; y : B ` x : A
ax

y : B ` λx.x : A→ A
abs

x : (A→ A)→ B; y : B ` x (λx.x) : B
app

Remark 3.1. The rules can also be given additively:

Γ;x : A ` x : A
ax

Γ;x : A ` t : B

Γ ` λx.t : A→ B
abs

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
app

This yields another type system Curry′0. Every Curry′0-derivation is a Curry0-derivation,
and it is very easy to see that any Curry0-derivation can be rewritten as a Curry′0-
derivation, provided we enrich the contexts given in the axiom rules so that they are all
equal (and we take care to avoid the capture of free variables).

This type system enjoys subject reduction i.e. typing is stable under reduction:

Proposition 3.1. System Curry0 enjoys subject reduction. Namely, assume t→ t′. If
Γ ` t : B is derivable in system Curry0, then Γ ` t′ : B also is.

As we will see, subject reduction is often crucial to prove properties of termina-
tion/normalization, as Theorem 3.1.

3.1.4 Types and Termination

Lost in the notes of Alan Turing ( [21], 5.1.) was found the first proof, dating back to the
early 40s, of normalization of the Typed Terms. Another proof of this result was later
found by Curry [33] using cut-elimination. Indeed, for the first type systems introduced
in λ-calculus:

Theorem 3.1. If a term is typable in system Curry0, then it is strongly normalizing.

Let us remind that normalization is a dynamic property (beginning of Sec. 2.2). One
of the interesting aspects of this result is that typing is static (in the sense of Sec. 3.1.1).

Unfortunately, system Curry0 does not allow typing some meaningful terms like
∆ = λx.x x (which represents auto-application, Sec. 2.1.4). More generally, the converse
implication of the above theorem is not true in a regular simple type system: normaliza-
tion does not imply typability. For instance, we cannot even type the normal form xx
because x should be both typed with A→ B (left occurrence) and A (right occurrence)
for some types A and B. However, in a simple type system, a variable may be only
assigned one type and in Curry0, the equality A → B = A is impossible (the type
A→ B contains strictly more symbols than A does).

As it turns out in the next section, Intersection Type Systems (ITS) were designed
to overcome this limitation.
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3.2 Principles and Examples of Intersection Types

From Sec. 3.1.4, we know that with a simple type system, typability implies normaliza-
tion: if a term is typable, then it is normalizing. We saw that the converse implication
does not hold anymore, notably because in such a type system, a variable can only be
assigned one type. Intersection Type Systems (ITS) were introduced by Coppo and
Dezani in 78 [28] to relax this condition and obtain a type-theoretic characterization
of normalization: in ITS, typability is equivalent to normalization (for all term t, t is
typable iff t is normalizing) and not only a guarantee of normalization as it is in STS.

Remark 3.2.

• The price to pay to characterize normalization is the loss of decidability, since
λ-calculus is Turing-complete for head reduction (Chapter 2 of [68]): in an ITS,
typability is a semi-decidable predicate whereas in the simple type system Curry0,
it is decidable (i.e. there is a terminating algorithm that decides whether a term t
is simply typable or not).

• Generally speaking, Higher Order simple type systems are not decidable e.g., sys-
tem F is not decidable since a function N→ N may be implemented in system F
iff it is provably total in PA2 (recall p. 31). But the predicate “f is provably total
in PA2” is not decidable by Gödel Incompleteness Theorem. It is semi-decidable
though, since the set of proofs of PA2 is obviously recursively enumerable.

Concretely, in an ITS, a variable may be assigned a new type (or several new ones)
each time that it is the subject of an axiom rule. Thus, the argument used in the previous
section does not hold and a term like xx is easily typable. This is not enough though
to explain why ITS are able to characterize normalization.

The two ITS that are going be to presented first are relevant, meaning that weakening
(see Sec. 3.3.5) is forbidden, whereas the first ITS to be introduced were rather irrelevant.
However, it is easier to understand subject reduction and subject expansion in relevant
ITS and, especially, why they hold or do not (Figures 3.1 and 3.2). We will introduce
irrelevant ITS later, in Sec. 3.3.5. See [107] for an extensive survey of idempotent ITS.

3.2.1 Towards Strictness and Relevance

Let us give Krivine’s presentation of the intersection type system DΩ, corresponding to
one of the original system of Coppo and Dezani (chapter 3 of [68]).

The set of types of system DΩ is defined inductively by:

A, B := ⊥ | o ∈ O | A→ B | A ∧B

We write A1 ∧ A2 ∧ . . . ∧ An for (. . . (A1 ∧ A2) ∧ . . .) ∧ An. The derivations of system
DΩ are defined inductively by:

Γ;x : A ` x : A
ax

Γ;x : A ` t : B

Γ ` λx.t : A→ B
abs

Γ ` t : A→ B Γ ` x : A

Γ ` t u : A
app

Γ ` t : ⊥
⊥

Γ ` t : A Γ ` t : B

Γ ` t : A ∧B
∧

Γ ` t : A ∧B
Γ ` t : A

projL
Γ ` t : A ∧B

Γ ` t : B
projR
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Intuitively, ⊥ is an empty intersection type which explains why it types any term.
It is necessary to ensure subject expansion (stability of typing under expansion) in the
case on an erasing step (λx.r)s→ r (with x /∈ fv(r)).

From those rules, we may easily derive the following admissible structural rules:

Γ;x : A ∧A ` t : B

Γ : x : A ` t : B
contr

Γ;x : A ` t : B

Γ : x : A ∧A ` t : B
duplic

Γ;x : A ` t : B

Γ;x : A ∧ C ` t : B
weak

Γ ` t : (A ∧B) ∧ C
Γ ` t : A ∧ (B ∧ C)

asso
Γ ` t : A ∧B
Γ ` t : B ∧A

comm

Γ;x : A1 ∧ . . . ∧An ` t : B π is a permutation of {1, . . . , n}
Γ;x : Aπ(1) ∧ . . . ∧Aπ(n) ` t : B

perm

In particular, the typing rules of DΩ imply that, as an operator, ∧ enjoys some well-
known features up to equivalence: it is associative (asso), commutative (comm) and also
idempotent (A ∧ A and A are equivalent by rules ∧ and projL). Moreover, ⊥ behaves
like the neutral element of ∧, since Γ ` t : A and Γ ` t : A ∧ ⊥ are interderivable (by
rules ⊥ and ∧).

Let us observe an important difference between the typing rules of DΩ:

• The premises and the conclusions of the rules ∧ and projL/R have the same subject.
We say that they are not subject directed.

• The premises and the conclusions of the rules ax, abs and app have a different
subject: actually, each of these rules introduces a constructor of λ-calculus (x, λx
or @) to the subjects of their premises. We say that they are subject directed.

Strictness and Relevance Historically, another intersection type system [77], to be
called here D0, was introduced just after [28]. System D0 is a restriction of DΩ. We
give now a high-level presentation4 of the features of system D0 before hinting at their
consequences on its dynamical behavior compared to that of DΩ:

• System D0 only allows strict intersection types i.e. types in which intersection is
only allowed in the source (the left-hand sides) of arrows. Thus, strict intersection
types are defined by the inductive grammar:

Ak, B := o ∈ O | (A1 ∧A2 ∧ . . . ∧An)→ B (n > 0)

The empty intersection type ⊥ is implicitly present in this grammar: when n = 0,
the arrow type above denotes ⊥ → B.

• In particular, the rules ∧ and projL/R are put aside. Rules ax and abs are also
restricted compared to system DΩ.

4A formal presentation system D0 will be given in Sec. 3.2.3 after the discussion of Sec. 3.2.2 that
suggests to represent the intersection types of D0 by sets of types.
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• System D0 is relevant [35, 106]. For now, let us just say that relevance only
validates implication/arrow types of the form (A1 ∧A2 ∧ . . .∧An)→ B for which
the premises A1 . . . An are actually needed to prove B. Thus, relevance ensures
some resource-awareness. For instance, (A∧B)→ A is an irrelevant implication
since we only need the premise A (and not B) to prove the target B. In particular,
the rule weak above is not admissible in system D0.

• More generally, relevance demands that if the variable x has been assigned some
strict types A in the context, then the subterm x occurs in the derivation with the
type A i.e. every assigned type must be used in the derivations of system D0. In
particular, if a derivation Π of system D0 concludes with Γ ` t : B and x /∈ fv(t),
then x /∈ dom(Γ). But normal forms like λx.y should still be typable: the abs-rule
is then modified so that the empty type appears when a non-occurring/untyped
variable is abstracted:

Γ ` t : B x /∈ dom(Γ)

Γ ` λx.t : ⊥ → A
⊥

Intuitively, ⊥ → A means that A is universally valid i.e. A is provable in an empty
context/does not need any hypothesis to hold.

• Contexts assign intersection types to variables. Since the subterms of a typed term
can have different variables and thus, by relevance, be typed in different contexts,
a point-wise extension of ∧ on contexts is used to collect typing information i.e.
the app-rule becomes:

Γ ` t : (A1 ∧ . . . ∧An)→ B ∆1 ` u : A1 . . . . . . ∆n ` u : An

Γ ∧∆1 ∧ . . . ∧∆n ` t u : B

Strictness and relevance actually greatly simplify (the proof) of subject reduction in D0

(compared to DΩ), but this will be made clear only with Fig. 3.1, p. 90.

Towards Syntax Direction It is easy to see that in system DΩ, the associativity
and the commutativity of ∧, as well as the perm-rule, are proved from the typing rules
by using the rules ∧ and projR/L, that are discarded in D0. But the equivalence between
(A∧B)∧C and A∧ (B∧C) (“associativity” of ∧) and that between A∧B and B∧A are
still desirable5 features. To ensure them in relevant typing, several choices are possible:

• Gardner [43] takes the perm-rule above as a typing rule.

• Coppo et al. [77] use subtyping relations to identify “equivalent” types.

Those two choices have the same drawback: they burden derivations with rules that
do not follow the syntax of λ-calculus (in the sense suggested above) i.e. rules whose
premises and conclusions have the same subject. In the next section, we explain how
using sets or multisets to represent intersection types makes it possible to avoid these
problems and obtain type systems whose rules only follow the construction of λ-calculus
(what we informally call subject direction) and are thus more readable.

5Idempotency is a different matter, that will be discussed throughout Sec. 3.3: actually, idempotency
makes subject expansion fail (Sec. 3.3.4).
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Remark 3.3 (Strictness and Subject Direction). Let us understand why subject di-
rection demands to consider strict types. Informally, judgments y : A → B → C, x :
A∧B ` y x x and z : D → (A→ B), z′ : D ` z z : A→ B are easily derivable, the latter
one featuring the non-strict type D → (A ∧ B). Thus, (λx.r)s is typable with C, with
r = y x x and s = z z′. In order to have subject reduction (i.e. a typing of r[s/x] with
C), the first occurrence of x in r should be replaced with s : A and the second one with
s : B. But this demands the use of the non-subject directed rules projL/R to obtain
s : A and s : B from s : A ∧B.

Remark 3.4 (Syntax Direction). Informally, a type system is syntax directed when not
only it is subject directed, but also the subject and the type enable to infer the last
rule of a derivation i.e. if the only thing we know of a derivation Π is its conclusion
Γ ` t : B, we may infer the name of the last rule of Π from t and B. This is more
than mere subject direction e.g., a glimpse at the rules of system S (Sec. 5.2.1) shows
that is subject direct but that it is not syntax directed since it features two rules typing
the application, although we later present a formalism that allows those two rules to be
subsumed in one and recover syntax direction (Sec. 7.1).

3.2.2 Intersection Operator, Sets and Multisets

We explain in this section how some structural rules identifying equivalent types (e.g.,
(A ∧ B) → C and (B ∧ A) → C) can be implicitly implemented by representing inter-
section types with sets or multisets.

As discussed in the previous section, we mostly consider in this thesis relevant inter-
section type systems (every type that has been assigned must be effectively used) that
feature strict intersection types (intersection is allowed in the source of arrows only).
Strictness and relevance allow designing subject directed type systems, meaning that
here that each typing rule introduce a constructor (x, λx or @) of the λ-calculus. A
last step to achieve subject direction is to fully identify types that are equal modulo
structural rules that should otherwise be treated implicitly.

Still according to Sec. 3.2.1, intersection can be seen as an operator ∧ that “collects”
the types assigned to a same variable. This operator will always be assumed to be
associative and commutative. We will consider both the cases where it is idempotent
and where it is not.

Sets, Multisets and Free Operators Intuitively, a multiset (a set with multiplic-
ity) is like a set, except that the number of occurrences of each element matters. Thus,
if the notation [ai]i∈I denotes the multiset whose elements are the ai, we shall have
[a, a, b] = [a, b, a] = [b, a, a] but [a, a, b], [a, b], [b, b, a], [a, b, a, b] are pairwise distinct
(assuming a 6= b). With regular sets, we also have {a, a, b} = {a, b, a} = {b, a, a} but in
contrast, {a, a, b} = {a, b} = {b, b, a} = {a, b, a, b} holds. We write [a]n to denote the
multiset containing a with multiplicity n.

The cardinal of a multiset [ai]i∈I , denoted #[ai]i∈I , is the cardinal of I e.g., #[a, b, a] =
3. A multiset is finite if its cardinal is finite. The cardinal of a set {ai}i∈I is also denoted
#{ai}i∈I . Notice however that we only have #{ai}i∈I 6 #I e.g., #{a, b, a} is equal to
2 (if a 6= b) because {a, b, a} = {a, b}. It is equal to 1 if a = b.

We use the meta-annotation 6= in {ai}6=i∈I to denote the set {ai}i∈I when the ai are
pairwise distinct. Thus, #{ai}6=i∈I = #I when this notation is licit.
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The multiset sum (also called multiset union, denoted by +, is defined by: [ai]i∈I +
[bj ]j∈J = [ck]k∈K , where K = ({1} × I) ∪ ({2} × J), c1,i = ai for all i ∈ I and c2,j = bj
for all j ∈ J . We may check that this definition is sound and that + is an associative
and commutative operator on multisets, that has a neutral element, which is the empty
multiset (denoted [ ]).

Remark 3.5. Let X be a set.

• A subset Y of X can be identified to a function f from X to Bool (for all x ∈ X,
x ∈ Y iff f(x) = True) and conversely. Likewise, when X is finite, a finite multiset
M of X can be identified to a function m (standing for “multiplicity”) from X to N
(and conversely): for all x ∈ X, the natural number m(x) is multiplicity (number
of occurrences) of x inM e.g., if M = [a, a, b] (with a 6= b) and m representsM,
then m(a) = 2 and m(b) = 1. If X is infinite, we must assume that, for all x ∈ X
except a finite number, m(x) = 0.

• With this formalism, given two multisetsM1 andM2 represented by m1 and m2,
the multiset sumM1 +M2 may be just defined as the multiset associated to the
function m1 +m2. Associativity and commutativity are then straightforward.

Multiset order: let [ai]i∈I and [a′i]i∈I′ be two multisets. We write [ai]i∈I 6 [a′i]i∈I′

if there is a multiset [bj ]j∈J such that [a′i]i∈I′ = [ai]i∈I + [bj ]j∈J . We may also say that
6 is a relation of multiset inclusion.

Representation of Operators Notice that:

• If an operator ∧ is associative, commutative and idempotent (for all a, a∧ a = a),
then {ai}i∈I = {a′i}i∈I′ implies that ∧i∈Iai = ∧i∈I′a′i.

• If an operator ∧ is associative, commutative (but not necessarily idempotent), then
[ai]i∈I = [a′i]i∈I′ implies ∧i∈Iai = ∧i∈I′a′i, which is weaker.

Moreover, if we consider free operators, the converse implication hold:

• If ∧ is the free associative, commutative and idempotent operator on a set A , then
∧i∈Iai = ∧i∈I′a′i iff {ai}i∈I = {a′i}i∈I′ .

• If ∧ is the free associative and commutative operator on A , then ∧i∈Iai = ∧i∈I′a′i
iff [ai]i∈I = [a′i]i∈I′ .

Intersection Types as Sets or Multisets? A last remark before concluding this
chapter regards the choice of considering intersection types as sets or multisets. We
define in Sec. 3.2.3 and 3.2.3 two type systems:

• System D0, in which intersection is assumed to be a free associative and idempotent
commutative operator. In D0, an intersection of types will be thus naturally
represented by a set of types in D0 i.e. instead of writing ∧i∈IAi, we just write
{Ai}i∈I

• System R0, in which intersection is assumed to be a free associative and commu-
tative operator i.e. instead of writing ∧i∈IAi, we just write {Ai}i∈I .
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3.2.3 System D0 (Idempotent Intersection)

System D0 is relevant and idempotent. Thus, as seen at the end of Sec. 3.2.2, it is natural
to define the set TypD0

of types of system D0 by the following inductive grammar:

A,B ::= o | {Ai}i∈I → B

We call X = {Ai}i∈I a set type. The set types represent intersection in system
D0 and the intersection operator ∧ is the set-theoretic union: ∧i∈IXi = ∪i∈IXi (i.e.
∧i∈I{Aij}j∈J(i) := ∪j∈J{Aij}j∈J(i)). The empty set type6 is denoted { }.

A D0-context (metavariables Γ,∆) is a total function from V to the set of set types.
The domain of Γ is given by {x ∈ V |Γ(x) 6= { }}. The intersection of contexts ∪i∈IΓi
is defined point-wise, as well as the inclusion Γ ⊆ Γ′. We may write Γ; ∆ instead of
Γ∪∆ when dom(Γ)∩dom(∆) = ∅. Given a set type {Ai}i∈I , we write x : {Ai}i∈I for the
context Γ s.t. Γ(x) = {Ai}i∈I and Γ(y) = { } for all y 6= x. In particular, x : {B} and
x : {B}; y : { } denote the same context. A D0-judgment is a triple Γ ` t : A where Γ
is a D0-context, t a term and A a type.

The set of typing derivations of system D0, named DerivD0 , is defined inductively
by the following rules:

x : {A} ` x : A
ax

Γ;x : {Ai}i∈I ` t : B

Γ ` λx.t : {Ai}i∈I → B
abs

Γ ` t : {Ai} 6=i∈I → B (∆i ` u : Ai)i∈I

Γ ∪ (∪i∈I∆i) ` t u : B
app6=

Remark 3.6. In the app 6=-rule, the condition {Ai}
6=
i∈I means that i 6= i′ implies Ai 6= Ai′

(for all i, i′ ∈ I). Thus, the argument u is not typed redundantly i.e. for all type A, there
is at most one premise typing u with A. We explain why this is necessary in Sec. 3.3.4.
This condition will be relaxed in system D0,w (Sec. 3.3.5).

Example 3.2. Notice that, in the abs-rule, if x is not in the domain of the context,
then λx.t is typed with { } → B, as in the example on the right (we recall that λx.x is
denoted by I and λy.x by Kx):

x : {B} ` x : B
ax

` λx.x : {B} → B
abs

x : {B} ` x : B
ax

x : {B} ` λy.x : { } → B
abs

Contrary to system Curry0, ∆ = λx.x x is typable in system D0:

x : {{A} → A} ` x : {A} → A
ax

x : {A} ` x : A
ax

x : {{A} → A,A} ` xx : A
app6=

` λx.x x : {{A} → A,A} → A

Remark 3.7 (Untyped Argument). In the app6=-rule, when I is empty i.e. t is typed
with { } → B, then there is no judgment typing u in the premise and t u may be typed
with B for any term u. See also Sec. 3.4.1.

6Of course, { } = ∅, but { } will only be used for the empty set as a set type.



86 CHAPTER 3. INTERSECTION TYPE SYSTEMS

We write Π �D0 Γ ` t : B to mean that derivation Π concludes with the judgment
Γ ` t : B in system D0 and �D0Γ ` t : B to mean that Γ ` t : B is derivable. When
there is no ambiguity with any other type systems (i.e. most of the time), we write �
instead of �D0 .

3.2.4 System R0 (Non-Idempotent Intersection)

System R0 was introduced by Philippa Gardner [43] and rediscovered by Daniel de Car-
valho in his PhD Thesis [22]. It is relevant and features a non-idempotent intersection
free operator, so the end of Sec. 3.2.2 suggests to define the set TypR0

of types of system
R0 inductively by:

σ, τ ::= o ∈ O | [σi]i∈I → τ

We call I := [σi]i∈I a multiset type. The multiset types represent intersection in
system R0 and the intersection operator ∧ is the multiset-theoretic sum: ∧i∈IIi = +i∈IIi
(i.e. ∧i∈I [σij ]j∈J(i) := +i∈I [σ

i
j ]j∈J(i)).

A R0-context (metavariables Γ,∆) is a total function from V to the set of multiset
types. The domain of Γ is given by {x |Γ(x) 6= [ ]}. The intersection of contexts
+i∈IΓi is defined point-wise, as well as inclusion Γ 6 Γ′ (see Sec. 3.2.2). We may write
Γ; ∆ instead of Γ + ∆ when dom(Γ) ∩ dom(∆) = ∅. Given a multiset type [σi]i∈I , we
write x : [σi]i∈I for the context Γ s.t. Γ(x) = [σi]i∈I and Γ(y) = [ ] for all y 6= x. A
R0-judgment is a triple Γ ` t : σ where Γ is a context, t a term and σ a type.

The set of typing derivations of system R0, named DerivR0 , is defined inductively
by the following rules:

x : [τ ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

Γ +i∈I ∆i ` t u : τ
app

One of the fundamental intuitions behind non-idempotent intersection is that, in this
setting, a type is a resource that cannot be duplicated or merged/contracted and is
possibly consumed under reduction. This is embodied by the linear nature of subject
reduction in system R0 (see Sec. 3.3.2), which induce a decrease of measure (Propo-
sition 3.6). Termination/normalization of typed terms often becomes straightforward
(e.g., Proposition 3.9).

Remark 3.8.

• A derivation tree in system R0 may be seen as non-rigid in the sense of Sec. 2.1.1:
in an app-rule, there is no way to distinguish two equal argument7 subderivations
(i.e. two subderivations typing the argument) and if we wanted to do it, this would
change the dynamics of the system (Remark 4.2, p. 107).

• As alluded to in Sec. 3.2.1, Gardner’s original presentation of system R0 does
not resort to multiset intersection, but to an explicit permutation rule. Thus,
Gardner’s presentation gives rigid derivations trees, but it is not syntax directed.
System S (Sec. 10.2) will be both rigid and syntax directed (in particular, there is
not permutation rule in system S).

7Note however that the subderivation typing t, the left-hand side of the application, can always be
distinguished from the arguments subderivations typing u
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• Another argument in the favor of the representation of non-idempotent intersection
with multisets (instead of using the rule perm) is that the R0-judgments that can
be assigned to a term t precisely corresponds to the points of the interpretation of
t in the relational model [17]. In other words, the presentation G using the rule
perm perm makes some distinctions between judgments/derivations that are not
relevant from the semantical point of view.

Example 3.3. As in Example 3.2, we type I = λx.x and Kx. Implicitly, in the abs-rule,
if x is not in the domain context, then λx.t is typed with [ ]→ τ , as in the example on
the right:

x : [τ ] ` x : τ
ax

` λx.x : [τ ]→ τ
abs

x : [τ ] ` x : τ
ax

x : [τ ] ` λy.x : [ ]→ τ
abs

Moreover, ∆ is also typable in system R0:

x : [[σ]→ σ] ` x : [σ]→ σ
ax

x : [σ] ` x : σ
ax

x : [[σ]→ σ, σ] ` xx : σ
app

` λx.x x : [[σ]→ σ, σ]→ σ

Remark 3.9 (Untyped Argument). In the app-rule, when I is empty i.e. t is typed with
[ ]→ τ , then there is no judgment typing u in the premise and t u may be typed with τ
for any term u. See also Sec. 3.4.1.

We write Π �R0 Γ ` t : τ to mean that derivation Π concludes with the judgment
Γ ` t : τ and �R0Γ ` t : τ to mean that Γ ` t : τ is derivable.

3.3 Discussing Subject Reduction and Subject Expansion

In this section, we present the dynamical behavior to be expected from an intersection
type system (namely, subject reduction and subject expansion) and explain how this
dynamical behavior (1) can be ensured (2) helps to prove semantical properties of typing
(i.e. characterization of normalization).

In Sec. 3.3.1, we explain why subject reduction and subject expansion are crucial for
an ITS to characterize normalization because subject reduction ensures termination (i.e.
a term that is typable is normalizing) most of the times and with subject expansion, it
is enough to type the normal forms to ensure that every normalizing term is typable.

We then see how subject reduction and subject expansion rely on a delicate equilib-
rium:

• In Sec. 3.3.2, we try to understand how subject reduction is processed in systems
D0 and R0: there may be some duplications (of argument derivations) in D0 but
not in R0. The comparison between Fig. 3.1, 3.1 on one hand and Fig. 2.6 is
discussed and shows how β-reduction gives guidelines to design or understand the
behavior of the intersection type systems. We then explain why subject expansion
should fail in simple type systems (there, with Curry0).

• In Sec. 3.3.3, we explain why having an equivalence of the form ‘When t → t′, t
is typable iff t′ typable” is not enough to be expected from an ITS, but that we
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should also demand some kind of context and type preservation (meaning that
t and t′ should be typable with the same types and in the same contexts).

• In Sec. 3.3.4, we show that subject expansion does not hold in system D0 by lack
of context preservation.

• Subject expansion can be retrieved by modifying system D0 into system D0,w that
allows a weakening rule (this is done in Sec. 3.3.5).

Thus, the lesson that we can learn from this Section 3.3 is that idempotency brings a
lot of complications and that non-idempotent ITS are more natural to engineer than
idempotent ones (despite being more recent). This is one of the reason why this thesis
is dedicated to non-idempotent intersection types.

3.3.1 Uses and Behaviors of Intersection Type Systems

Usually, an intersection type system I provides both a characterization of (some no-
tion of) normalization and a proof that a given reduction strategy is complete for this
normalization notion. For instance, if we are considering head normalization, we will
simultaneously prove that typability characterizes head normalization (i.e. t is head nor-
malizing iff t is typable in system I ) and that the head reduction strategy is complete
for head normalization (i.e. t is head normalizing iff the head reduction strategy termi-
nates for t).

Let us outline why, by making the following assumptions on I :

1. Subject Reduction: assume t→ t′. If �I Γ ` t : B, then �I Γ ` t′ : B.

2. Subject Expansion: assume t→ t′. If �I Γ ` t′ : B, then �I Γ ` t : B.

3. Typing of head normal forms: if t is a HNF then t is typable in I .

The structure of the proof of the claims above by using these 3 assumptions is the
following:

• The typing of head normal forms and subject expansion entail that every head
normalizing term is typable in system I

• Subject reduction and an extra argument depending on the type system (see Re-
mark 3.10 below) usually8 help us prove a termination property:

Proposition (Termination). If t is typable is system I , then the head reduction
strategy terminates for t.

This proves the circular implications «head normalizing ⇒ I -typable ⇒ the head re-
duction strategy terminates ⇒ head normalizing» (the last one being obvious), which is
enough to conclude.

8Subject reduction by itself is not enough to ensure a Termination Property: by declaring fixpoint
equation as o = [o]2 → o for some type variable o, it is easy to type Ω or other mute terms, while
preserving subject reduction. We will observe in Sec. 10.1.3 that usually, in type systems featuring a co-
inductive type grammar (they usually enjoy subject reduction), typability does not entail normalization
(some mute terms are typable).
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Thus, an intersection type system must be designed so that subject reduction and
subject expansion hold. In the sections to come, we discuss these properties in systems
Curry0, D0 and R0 (the three of them satisfy subject reduction, but only R0 satisfies
subject expansion).

Remark 3.10. The technicity of the proof of the Termination Property above varies a
lot from a type system to another:

• For idempotent intersection type systems (or higher-order simple type systems),
one resorts to Tait’s Realizability Argument [100] (presented in Sec. 4.3).

• For non-idempotent intersection type systems, there is usually a straightforward
arithmetical argument (see Sec. 3.4.3). This is one of their most interesting fea-
tures, that we extensively use in this Thesis.

• For the simple type system Curry0, there is also a Gentzen/Prawitz style proof,
similar to the one use for Cut Elimination in Sequent Calculus (see for instance
Chapter 4 in [49]).

• Moreover, some type systems satisfy subject reduction, but typability does not
ensure normalization (see e.g., the typing of Ω in Appendix A.1) i.e. subject re-
duction is not enough to ensure a Termination Property.

3.3.2 Subject Reduction and Subject Expansion

Systems D0 and R0 both enjoy subject reduction, as in system Curry0 (see Proposition
3.1) and R0 also enjoys subject expansion. We explain why in this section and then why
simple type systems do not enjoy subject expansion (system D0 does not enjoy subject
expansion either, but this is addressed in Sec. 3.3.4).

Proposition 3.2 (Subject Reduction for D0). Assume t → t′. If Γ ` t : B is derivable
in system D0, then Γ ` t′ : B also is.

Proposition 3.3 (Subject Reduction and Subject Expansion for R0). Assume t→ t′:

• Subject Reduction: If Γ ` t : τ is derivable in system R0, then Γ ` t′ : τ also is.

• Subject Expansion: If Γ ` t′ : τ is derivable in system R0, then Γ ` t : τ also is.

Proof sketch.

• In both systems, the root case t ε→ t′ relies on a substitution lemma (Lemmas 3.1,
3.2 to come). Then, an induction (performed in the proof of Proposition 3.4) yields
the general case.

• Subject expansion (in system R0) relies on a reverse substitution lemma for the
root case and an induction on the position of the reduction.

• For now, we focus on graphical intuitions explaining why these propositions hold
and how they work, from a global perspective.
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ax
x :{A1} ` x :A1

ax
x :{A2} ` x :A2

ax
x :{A1} ` x :A1

Γ; x :{A1, A2} ` r : B
abs

Γ ` λx.r : {A1, A2}→B
app

Γ ∪∆1 ∪∆2 ` (λx.r)s : B

Π1

∆1`s :A1

Π2

∆2`s :A2

Derivation typing the redex

Π1

∆1`s :A1
Π2

∆2`s :A2

Π1

∆1`s :A1

Γ ∪∆1 ∪∆2 ` r[s/x] : B

Derivation typing the Reduct

Figure 3.1: Subject Reduction in System D0

Subject reduction usually holds in simple type systems (e.g., Curry0) but subject
expansion does not. Subject expansion does not hold in system D0, but it can be
naturally retrieved. This is addressed in Sec. 3.3.4.

As an example, we assume that there is a derivation Π typing t = (λx.r)s with type
B in system D0 and type τ in system R0. From that, we produce a derivation Π′ typing
t′ = r[s/x] with B (resp. τ). Figures 3.2 and 3.1 are the type-theoretic versions of
Figure 2.6 representing β-reduction.

Instead of replacing occurrences of the variable x by copies of the argument s, we
replace axiom rules typing x with argument derivations typing s. From the typing
perspective, the maneuver is licit, because each typed occurrence of x in the deriva-
tion is replaced by an occurrence of s that has the exact same type (and the fact that
we operate a capture-free substitution ensures that the contexts do not interact wrongly).

In system D0, the argument derivations typing s may be duplicated, but they may
not in system R0, for reasons to be discussed below. We assume moreover that there
are 3 axiom rules typing x in the subderivation typing r and moreover, that 2 of these
axiom leaves involve the same type (A1 for D0, σ1 for R0), whereas the third one is
distinct (resp. A2 and σ2).

• In D0, there is only one argument derivation Π1 concluding with s : A1: this
argument derivation is duplicated during derivation and there is two copies of Π1

in the derivation typing the reduct.

• In R0, by typing constraints, there are two derivations Πa
1 and Πb

1 concluding with
s : σ1. Each one replaces an axiom rule concluding with x : σ1. No duplication is
performed. System R0 is linear.

A similar figure could be done for Curry0: in a Curry0-derivation Π, every occurrence
of x (that is free in r) will be typed with the same type A. Each one will be replaced
by a copy of the argument derivation typing s with A.

Subject expansion is the inverse process: from a derivation Π′ typing t′ with τ in
system R0 (see remark below), we produce a derivation Π typing t with τ . We replace
each subderivation typing an occurrence of s with σi (i.e. an occurrence of s that has
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ax
x : [σ1] ` x :σ1

ax
x : [σ2] ` x :σ2

ax
x : [σ1] ` x :σ1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Πa
1

∆a
1 `s :σ1

Π2

∆2`s :σ2

Πb
1

∆b
1`s :σ1

Derivation typing the redex

Πa
1

∆a
1 `s :σ1

Π2

∆2`s :σ2

Πb
1

∆b
1`s :σ1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

Derivation typing the Reduct

Figure 3.2: Subject Reduction and Expansion in System R0

replaced an occurrence of x during β-reduction) by an axiom rule concluding with x : σi.
Those subderivations typing s are moved as argument derivations of the redex.

It is more subtle to explain why subject expansion fails in system D0 (see Sec. 3.3.4)
but it can already be done for the simple type system Curry0.

Failure of Subject Expansion in Curry0: Let us informally explain why subject
expansion does not hold in Curry0.

Assume that the copies of s (obtained by β-reduction) occur as different subterms
of r[s/x]. Those subterm may be typed with two distinct types A1 and A2 as in the
figures. So, in order to perform subject expansion and produce a derivation Π typing
the redex (λx.r)s, we should create two axiom rules concluding respectively with x : A1

and x : A2. This is impossible with simple type systems since a variable is assigned a
unique type.

For instance, if ∆ = λx.x x and I = λx.x, then ∆ I → I I → I. The term I is easily
typable in Curry0 with A → A (see Sec. 3.1.3). We can perform one step of subject
expansion and type I I with A→ A, where the right occurrence of I is necessarily typed
with A → A and the left one with (A → A) → (A → A). Thus, in I I, the subterm
I is typed with two distinct types. But we cannot perform the second step of subject
expansion because the variable x (in the subderivation typing the subterm ∆) should
be both typed with the distinct types A→ A and (A→ A)→ (A→ A).

3.3.3 Context Preservation

In this section, we explain why, from an operational point of view, it is crucial that
subject reduction (resp. subject expansion) not only demands the stability of typability
under reduction (resp. under expansion) i.e. an implication of the form “if t→ t′ and t
is typable, then so is t′” (resp. “if t → t′ and t′ is typable, then so is t”, but also that
the reduct (resp. the expanded term) should be typed with the same type in the same
context.

Lemma 3.1 (Substitution (System D0)). If Πr�Γ;x : {Ai}i∈I ` r : B and for all i ∈ I,
Πi�∆i ` s : σi, then, there is a derivation Π′ concluding with Γ∪ (∪i∈I∆i) ` r[s/x] : B.
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Lemma 3.2 (Substitution (System R0)). If Πr � Γ;x : [σi]i∈I ` r : τ and for all i ∈ I,
Πi�∆i ` s : σi, then, there is a derivation Π′ concluding with Γ+(+i∈I∆i) ` r[s/x] : τ .

Proof. The two lemmas are proved by induction on Πr. See e.g., p. 154 for an example
of a complete proof of a Substitution Lemma (Lemma 7.4).

Lemmas 3.1 and 3.2 immediately entail:

Lemma 3.3.

• System D0: If Π � Γ ` (λx.r)s : B, then there is a derivation Π′ concluding with
Γ ` r[s/x] : B.

• System R0: If Π � Γ ` (λx.r)s : τ , then there is a derivation Π′ concluding with
Γ ` r[s/x] : τ .

The above lemma is subject reduction (for D0 and R0) in the root case. We notice
that, in both systems, there is context preservation in the root case: if t is typable
with type B (resp. τ) in the context Γ, then t′ is also typable with type B (resp. τ) in
the same context Γ.

The proof of subject reduction by induction from the root case enlightens the im-
portance of context preservation (Remark 3.11 below):

Proposition 3.4 (Subject Reduction). Assume t→ t′.

• System D0: If Γ ` t : B is derivable in system D0, so is Γ ` t′ : B.

• System R0: If Γ ` t : τ is derivable in system R0, so is Γ ` t′ : τ .

Proof. We prove the proposition for system D0. The proof is similar for system R0. Let
us proceed by induction on the position b of the reduction t b→ t′.

• If b = ε (root case), this is Lemma 3.3.

• If b = 1 · b1. Then t = t1 t2 and t′ = t′1t2 for some t1, t′1, t2 ∈ Λ such that t1
b1→ t′1.

Then Π is of the form:

Π =
Π1 � Γ1 ` t1 : {Ai}6=i∈I → B (Π2,i � Γ2,i ` t2 : Ai)i∈I

Γ ` t : τ
app 6=

for some Π1,Γ1, (Ai)i∈I , (Πi)i∈I , (Γ2,i)i∈I .

By Induction Hypothesis, there is a Π′1 concluding with Γ1 ` t1 : {Ai}i∈I . We
then set:

Π′ =
Π′1 � Γ1 ` t′1 : {Ai} 6=i∈I → B (Π2,i � Γ2,i ` t2 : Ai)i∈I

Γ ` t : τ
app6=

• If b = 2 · b2, we proceed likewise.

• If b = 0 · b0. Then t = λx.t0 and t′ = λx.t′0 for some t0, t′0 ∈ Λ such that t0
b0→ t′0.

Then Π is of the form:

Π =
Π0 � Γ0 ` t0 : B0

Γ ` t : B
abs
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for some Π0, Γ0 and B0 such that B = Γ0(x)→ B0 and Γ = Γ0 \ x.
By Induction Hypothesis, there is a Π′0 concluding with Γ0 ` t′0 : B0. We then set:

Π =
Π′0 � Γ0 ` t′0 : B0

Γ ` t′ : B
abs

Remark 3.11.

• The proof relies on the fact that not only t′ is typable, but also that the type is
preserved under reduction (if not, we could not handle the app-case: it is crucial
that t′1 is typed with the same arrow type {Ai}i∈I → B as t1 if we want to feed it
with t2! A similar argument holds when we reduce inside t2).

• Since the type of an abstraction is computed from the context in the premise (recall
that B = Γ0(x)→ B0 in the last case), it is also crucial that the contexts are also
preserved under reduction for the induction to be correct.

• In other words, in a given type system, if subject reduction/expansion in the root
case does not ensure type and context preservation, the general proof scheme of
Sec. 3.3.1 will not work. However, some type systems in which subject reduc-
tion/expansion (with context preservation) only holds for non-erasing reduction
steps are still handleable, but they rely on a more complex proof scheme. Such a
system (system S), characterizing strong normalization, is presented in Sec. 5.2.

3.3.4 Failure of Subject Expansion with Relevant Idempotent
Intersection

In Sec. 3.3.2, we explained why subject expansion was not a natural feature of simple type
systems (taking Curry0 as an example). As we show here, the failure of subject expansion
in system D0 is not so irrecoverable and can be explained w.r.t. context preservation.
Before that, we explain why context preservation constrained us to prevent redundant
typing of the argument in the app-rule.

Subject Reduction in D0: First, let us explain why, in D0, the rule app forbids the
argument to be typed redundantly (see Remark 3.6). This is actually to ensure subject
reduction in D0.

Let D∗0 be the variant of D0 in which an argument may be typed several times with
the same type i.e. we remove the condition (Ai 6= Aj)i,j∈I,i 6=j , indicated by {Ai}6=i∈I from
the app 6=-rule. Consider the left part of Figure 3.3 in which the typing of the argument
is redundant (there are two distinct derivation Πa and Πb typing s with the same type
A). Thus, this is a derivation of system D∗0 but not of D0. We set Γ+ = Γ ∪∆a ∪∆b,
so that we have Π � Γ+ ` (λx.r)s : B. For instance, let o and o′ be two distinct type
variables: we have �z : {{o} → o, o} ` z z : o and �z : {{o′} → o, o′} ` z z : o,
so that, if we type twice the argument z z, we find a D∗0 -derivation Π concluding with
z : {{o} → o, o, {o′} → o, o′} ` (λx.x)(z z) : o (here, r = x, s = z z).

In the subderivation typing r, there is only one axiom rule typing x. If we want to
produce a derivation typing r[s/x], there is only one place for Πa or Πb to replace the
axiom rule typing x with A: we have to choose one subderivation and discard the other.
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ax
x :{A} ` x :A

Γ; x :{A} ` r : B
abs

Γ ` λx.r : {A}→B

Γ ∪∆a ∪∆b ` (λx.r)s : B

Πa

∆a`s :A

Πb

∆b`s :A

How do we reduce this?

Πa

∆a`s :A

Πb

∆b`s :A

Γ ∪∆a ∪∆b ` r[s/x] : B

How do we expand this?

Figure 3.3: Problematic Subject Reduction and Subject Expansion

Then, we obtain a derivation Π′ concluding with Γ− ` r[s/x] : B, where Γ− = Γ ∪ ∆a

or Γ− = Γ ∪∆b. Since we can have Γ ∪∆a 6= Γ ∪∆a ∪∆b 6= Γ ∪∆b, it is possible that
Γ+ 6= Γ− and we lose context preservation (see Remark 3.11) in system D∗0 . With the
same example, we notice that z : {{o} → o, o, {o′} → o, o′} ` z z : o is not derivable in
D∗0 .

Failure of Subject Expansion in D0: Subject expansion does not “always” hold in
D0 because of rule app is too restrictive in this system. Indeed, consider the derivation
typing r[s/x] in Figure 3.3. We set Γ+ = Γ ∪∆a ∪∆b so that Π′ concludes with Γ+ `
r[s/x] : B. For instance, let o and o′ two distinct type variables: we have �z : {o →
o, o} ` z z : o and �z : {o′ → o, o′} ` z z : o, so that there is a D0-derivation Π′

concluding with y : {{o} → {o} → o}, z : {{o} → o, o, {o′} → o, o′} ` r[s/x] : o with
r = y x x, s = z z and r[s/x] = y (z z) (z z).

Due to rule app6=, we may type the argument s with A1 only once in the derivation
typing (λx.r)s. This means that we have to choose Πa or Πb as the unique argument
derivation of the redex and discard the other one. Then, we obtain a derivation Π
concluding with Γ− ` (λx.r)s : B, where Γ− = Γ ∪ ∆a or Γ− = Γ ∪ ∆b. Since Γ+ 6=
Γ− is possible, this compromise the correctness of the typing rules outside the redex
(see Remark 3.11). With the same example, a case analysis shows that z : {{o} →
o, o, {o′} → o, o′} ` z z : o is not derivable in R0, so that neither is y : {{o} → {o} →
o}, z : {{o} → o, o, {o′} → o, o′} ` (λx.r)s : o, where (λx.r)s = (λx.y x x)(z z).

Thus, D0 is too restrictive. This problem can be bypassed by suitably allowing
weakening : this yields system D0,w, that both enjoys subject reduction and subject
expansion (Sec. 3.3.5).

3.3.5 Weakening and Irrelevant Intersection Types Systems

Weakening In Propositional Logic, the notation A1, . . . An ` B has the intuitive
meaning that, from the hypotheses A1, A2, . . . , An−1 and An, we can prove the formula
B i.e. B is a syntactic consequence of A1, A2, . . . , An−1 and An. Of course, if we can
prove formula B when we assume A1, A2, . . . , An, then a fortiori we can prove B when
we assume A1, A2, . . . , An, A, where A can be any formula. This is known as weakening
since, a priori, the more assumptions we make, the easier it is to prove a given formula
B. Formally, the left weakening rule can be specified in Propositional Logic with the
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following rule:
Γ ` B

Γ, A ` B
where Γ is a sequence of formula A1, . . . , An. Usually, weakening can be limited to axiom
rules only, which yields axioms of the form:

Γ, A ` A

This is enough to ensure that if �Γ ` B is derivable, then �Γ, AB is derivable for any
formula A.

A type system is said to be relevant when it forbids weakening. For instance, D0 and
R0 are relevant. Let us present a type system D0,w featuring an idempotent intersection
operator. System D0,w amends the main defect of system D0 i.e. the failure of subject
expansion (Sec. 3.3.4).

Irrelevant and Idempotent Intersection The types, contexts and judgments of
D0,w are those of system D0. The set DerivD0,w is defined by the following inductive
rules:

i0 ∈ I
Γ;x : {Ai}i∈I ` x : Ai0

axw
Γ;x : {Ai}i∈I ` t : B

Γ ` λx.t : {Ai}i∈I → B
abs

Γ ` t : {Ai}i∈I → B (∆i ` u : Ai)i∈I

Γ ∪ (∪i∈I′∆i) ` t u : B
app

Remark 3.12. Thus, contrary to system D0,w, the argument of an application may be
typed redundantly: several argument derivation may be concluded with u : A for some
A.

Example 3.4. From Sec. 3.2.3, it can be noticed that, in system D0, I := λx.x (resp.
Kx := λy.x) can only be typed with a type of the form {A} → A (resp. { } → A). This
is due to the relevant rules of system D0. System D0,w is less restrictive:

x : {A,B,C} ` x : B
axw

` λx.x : {A,B,C} → B
abs

x : {B}; y : {B} ` x : B
axw

x : {B} ` λy.x : {B} → B
abs

Additive Presentation Alternatively, we may consider the type system D+
0,w, that is

defined inductively by the rules axw, abs and the rule app+ below:

Γ ` t : {Ai}i∈I → B (Γ ` u : Ai)i∈I

Γ ` t u : B
app+

Notice that every D+
0,w-derivation is a D0,w-derivation. Conversely, from a D0,w-

derivation Π concluding with Γ ` t : B, we may build (by induction on Π) a D+
0,w-

derivation, that we write Π+, also concluding with Γ ` t : B. From that, systems D0,w

and D+
0,w are equivalent.

We recall from Sec. 3.2.3 that Γ ⊆ Γ′ if, for all x ∈ V , Γ(x) ⊆ Γ′(x)). The following
Lemma is useful:
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Lemma 3.4. If Γ− ` t : B is derivable in system D0,w (resp. D+
0,w), then, for all context

Γ+ ⊇ Γ−, the judgment Γ+ ` t : B is derivable in system D0,w (resp. D+
0,w).

Proof. Assume that Π− � Γ− ` t : B. We replace, in Π− one axiom rule concluding
with say Γ;x : {Ai}i∈I ` x : Ai0 by that concluding with (Γ;x : {Ai}i∈I)∪ Γ+ ` x : Ai0 .
Some α-renaming may be performed beforehand to prevent the capture of free variables
of Γ+.

Dynamic Study of D+
0,w Systems D0,w and D+

0,w enjoys both subject reduction and
subject expansion.

Proposition 3.5 (Subject Reduction and Subject Expansion for D0,w). Assume that
t→ t′:

• Subject Reduction: If Γ ` t : B is derivable in system D0,w or in system D+
0,w, then

Γ ` t′ : B also is.

• Subject Expansion: If Γ ` t′ : B is derivable in system D0,w or in system D+
0,w, then

Γ ` t : B also is.

Proof sketch. Let us have another look at the left derivation of Fig 3.3. This is a
derivation that uses the rules ax and appw (since the argument is typed redundantly).
If we read the discussion that follows, we notice that, from a derivation Π concluding
with Γ+ ` (λx.r)s : B we are able to produce a derivation Π′ concluding with Γ− `
r[s/x] : B where Γ− ⊆ Γ+. Since there is not context preservation (Sec. 3.3.3), we
cannot ensure subject reduction in general case when using the rules ax, abs and appw
(see Remark 3.11).

Now, if we look at the right derivation of Fig 3.3 and the associated discussion, we
notice that, in system D0, from a derivation Π′ concluding with Γ+ ` r[s/x] : B, we are
able to produce a derivation Π concluding with Γ− ` (λx.r)s : B where Γ− ⊆ Γ+. Once
again, since there is no context preservation, subject reduction cannot be guaranteed in
the general case.

By contrast, in systems D0,w and D+
0,w, those problems can be mended by using

Lemma 3.4 in order to ensure context preservation in the root case, so that subject
reduction holds. Subject expansion holds in D0 and D0,w because the argument of an
application may be typed redundantly, contrary to system D0 (see Sec. 3.3.4).

An Irrelevant Non-Idempotent Intersection Type System Derivations of sys-
tem R0,w are defined inductively by the following rules:

i0 ∈ I
Γ;x : [σi]i∈I ` x : σi0

axw
Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

Γ + (+i∈I∆i) ` t u : τ
app

Thus, we get system R0,w from system R0 by replacing the relevant rule ax by the rule
axw, that allows weakening.
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3.4 Study of Head Normalization in System R0

In this section, we present a few applications of system R0, mainly, the characterization
of head normalizing terms (Sec. 3.4.4) and the fact that the head reduction strategy
is complete for head normalization. We follow the general scheme that was outlined
in Sec. 3.3.1. For that, the use of subject expansion and subject reduction is funda-
mental (Proposition 3.3). But this also demands (1) that we type head normal forms
(Sec. 3.4.2), and (2) that we prove a Termination Property (as suggested in Sec. 3.3.1).
Termination is actually very easy to prove because subject reduction is weighted in sys-
tem R0 (Sec. 3.4.3): head reduction decreases the size of the derivations Before that,
we discuss the possible (and sometimes necessary) existence of untyped subterms of a
typed term (Sec. 3.4.1). We also prepare for the characterizations of WN and SN by
inductively typing every normal form.

The structure of the proof of characterization and completeness is the following:

• The typing of head normal forms and subject expansion entail that every head
normalizing term is typable in system R0.

• Weighted subject reduction and an additional observation (Remark 3.13) entail
that, for every R0-typable term, the head reduction strategy terminates (Termi-
nation Property).

This proves the circular implications «head normalizing ⇒ R0-typable ⇒ the head
reduction strategy terminates ⇒ head normalizing» (the last one being obvious), which
is enough to conclude.

3.4.1 Typed and Untyped Parts of a Term

As noticed in Remark 3.9 (and in Remark 3.7 for D0), the argument of an application
may be untyped e.g., for all term u, we may derive:

Example 3.5.

x : [τ ] ` x : τ
ax

x : [τ ] ` λy.x : [ ]→ τ
abs

x : [τ ] ` (λy.x)u : τ
app

Thus, the subterm u of t = (λy.x)u is indeed untyped. But t reduces to x and
u does not occur anymore in the normal form of t (the subterm u has been erased or
equivalently, the position 2 of t does not have a residual under root reduction).

On the contrary, in the derivation concluding with ` ∆ : [[σ] → σ, σ] → σ given
in Sec. 3.2.4, the two occurrences of x in ∆ have been typed: in this derivation, every
subterm of ∆ is typed.

Intuitively, a typing derivation Π cannot tell us anything about the untyped parts
of its subject. We may say that the untyped parts of a typed term are invisible for Π.
Typability in system R0 is equivalent to head normalization (Proposition 3.7 to come).
Indeed, by instantiating the derivation of Example 3.5 above with u = Ω, we may type
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(λx.y)Ω with τ , but the non-normalizing subterm Ω is of course left untyped9 in the
derivation. If it were, we could assert that Ω is head normalizing!

We further this discussion in the next section.

Remark 3.13. By the typing constraints, it is obvious that the head variable/head
redex of a typed term is necessarily typed, since, to reach it, we only visit abstractions
or application left-hand sides (see Figure 2.9).

The notion of typed position of a term t in a derivation Π typing it can be formally
defined as follows:

Definition 3.1. Let Π a derivation typing a term t. We define the set Π̂ ⊂ supp(t) of
the typed positions in Π by the following induction on Π:

• If Π is an axiom rule (t = x), then Π̂ = {ε} = supp(t).

• If Π ends with an abs-rule (t = λx.t0) and Π0 is its immediate subderivation, then
Π̂ = {ε} ∪ 0 · Π̂0 .

• If Π ends with an app-rule (t = t1 t2), Π1 is its left premise (concluding with say
t1 : [σi]i∈I → τ) and the (Πi)i∈I (concluding respectively with t2 : σi) are its right
premises, then Π̂ = {ε} ∪ 1 · Π̂1 ∪ ∪i∈IΠ̂i

In the app-case, if I = ∅, we only have Π̂ = {ε} ∪ 1 · Π̂1 and t2 is not typed, as
expected. This definition can be adapted for D0 or any type system. In system Curry0,
every position of a typed term t is typed, for any given derivation.

3.4.2 Typing (Head) Normal Forms

By Sec. 3.3.1, we need to type head normal forms in R0 in order to characterize head
normalization. Let us recall that a zero head normal form (Sec. 2.2.1) is a term of the
form x t1 . . . tq.

Lemma 3.5. Si t = x t1 . . . tq is a ZHNF, then t is typable in R0 (resp. in D0) with any
type τ (resp. B).

Proof. This lemma could be proved by induction, using the inductive definition of ZHNF
of Sec. 2.2.1. We chose here to rather give a “global” argument. The idea is to type x with
[ ]→ . . . . . . [ ]︸ ︷︷ ︸
q occ. of [ ]

→ τ , so that t1, . . . , tq are left untyped and x t1 . . . tq, as it is represented on

the left part of Fig. 3.4 with τ = o (see Sec. 4.1.1 for more detail about this presentation).

More formally, let τ be a type. We write [ ]i → τ for [ ]→ . . .→ [ ]︸ ︷︷ ︸
i occ. of [ ]

→ τ . (inductively,

τ0 = τ and τi+1 = [ ]→ τ) We consider the derivation:

9We can also directly prove that Ω is not R0-typable by reasoning ad absurdum on a derivation Π
typing Ω
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x : [[ ]q → τ ] ` x : [ ]q → τ
ax

x : [[ ]q → τ ] ` x t1 : [ ]q−1 → τ
app

x : [[ ]q → τ ] ` x t1 . . . tq−1 : [ ]→ τ

x : [[ ]q → τ ] ` x t1 . . . tq−1 tq : τ
app

Thus, t = x t1 . . . tq is typable in R0. We can proceed likewise in D0.

Corollary 3.1. If t is a head normal form, then t is typable in R0 and in D0.

Proof. Let t = λx1 . . . xp.x t1 . . . tq and t0 = x t1 . . . tq. Then, by Lemma 3.5, there is
a derivation Π0 typing t0. When we complete Π0 by means of p ad hoc abs-rules, we
obtain a derivation Π typing t.

Invisible (Untyped) Arguments Notice that the head argument of x t1 . . . tq (namely
t1, . . . , tq) are not typed in the derivation used in the proof of Lemma 3.5 (they can even
be not typable i.e. the HNF xΩ Ω is typable, but the subterms t1 = t2 = Ω are not).
With the same derivation, we can observe that the head normal form of a term, when
it exists, is the minimal part of the term that we have to type: the deeper part of the
term are invisible (see the discussion of the previous section) for the left derivation of
Fig. 3.4.

According to this very discussion, if we want to characterize weak (or strong) nor-
malization, it is important that we type every part of each normal form, what will be
done now. For that, we use the fact that β-normal forms are “inductive assemblages of
HNF” (Sec. 2.2.2).

Lemma 3.6. Let t be a normal form. Then there is a derivation Π in R0 and in D0

typing t such that Π̂ = supp(t).

Proof. We use Lemma 2.2 and reason by induction10 on the structure of t. Thus, let us
write t = λx1 . . . xp.x t1 . . . tq with p, q > 0 and t1, . . . tq normal forms.

By Induction Hypothesis, for all 1 6 i 6 q, there is a derivation Πi concluding with
say ∆i ` ti : σi such that Π̂i = supp(ti).

Let o be a type variable. The idea is to assign to x the type [σ1] → . . . → [σq] → o
so that x can be fed with the stack t1 : σ1, . . . , tq : σq.

Formally, we set τq = o, and, for 1 6 k 6 q − 1, τi = [σk+1] → τk+1 so that
τk = [σk+1]→ . . . [σq]→ τ . We set Γ0 = x : τ0 and for 0 6 k 6 q − 1, Γk+1 = Γk + ∆k.
We consider the derivation Π0 typing x t1 . . . tq below:

Γ0 ` x : τ0 Π1 �∆1 ` t1 : σ1

x : Γ1 ` x t1 : τ1

x : Γq−1 ` x t1 . . . tq−1 : τq−1 Πq �∆1 ` tq : σq

Γq ` x t1 . . . tq−1 tq : o

10A more “small-step” induction could be given using Remark 2.3.
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x

[ ]→ . . .→ [ ]→ o

t1

@ tq

@

o λxp

. . .→ . . .→ . . .→ o

λx1

“Smallest” typing of a
HNF
The head arguments
t1, . . . , tq are left untyped!

x

[σ1 . . .]→ . . .→ [σq . . .]→ o

t1

σ1 . . .
@ tq

σq . . .
@

o λxp

. . .→ . . .→ . . .→ o

λx1

“Full” typing of a NF
• No empty type in the entries of the type

assigned to x
; the arguments are typed!
e.g., t1 at least typed with σ1, t2 at least
typed with σ2. . .

• We proceed hereditarily to type the full
Normal Form.

x

[σ1
i ]i∈I(1) → [σ2

i ]i∈I(2) → . . .→ [σqi ]i∈I(q) → τ

t1

(σ1
i )i∈I(1)

@

[σ2
i ]i∈I(2) → . . .→ [σqi ]i∈I(q) → τ

tq

(σqi )i∈I(q)@

τ λxp

. . .→ . . .→ . . .→ τ

λx1

General Typing of a
HNF
The entries of the type as-
signed to the head variable x
match the types of the head ar-
guments t1, . . . , tq

Figure 3.4: Typing (Head) Normal Forms
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Then, to get a derivation Π typing t, we complete derivation Π0 by leans of p ad hoc
abs-rules.

Since, for all 1 6 i 6 q, Π̂i = supp(ti), we have Π̂ = supp(t) as desired. A similar
argument words for D0.

3.4.3 Weighted Subject Reduction

Definition 3.2. Let Π a derivation of system R0. The size sz(Π) of Π (also called its
weight) is the number of rules of Π.

The size of a derivation can also be defined by using the same kind of induction as
that of Definition 3.1. Equivalently, the size of Π is the number of nodes (i.e. judgments)
that it contains. We can define sz(Π) inductively: sz(Π) =

∑
i∈I sz(Πi) + 1 where the

Πi are the depth one subderivations of Π (I = ∅ if Π types a variable and #I = 1 if Π
types an abstraction).

From Figure 3.2, we make the fundamental observation that if Π types a redex
(λx.r)s, then we may produce a derivation Π′ typing r[s/x] that contains few rules
than Π does: indeed, the application and the abstraction of the redex have been de-
stroyed (2 rules) as well as each axiom rule typing x (3 rules in the figure). Thus,
sz(Π′) = sz(Π)− 5. More generally, we observe that:

Proposition 3.6. Let t and t’ be two terms such that t b→ t′. If Π�Γ ` t : τ and b is a
typed position in Π, then there is a derivation Π′�Γ ` t′ : τ such that sz(Π′) < sz(Pi).

Remark 3.14.

• The proposition is not true when a untyped redex is reduced: in that case, the
rules of derivation Π are not affected (only the typed subterms may change) and
sz(Π′) = sz(Π). For instance, in the derivation Π typing t = (λy.x)u (Ex-
ample 3.5), assume that u ε→ u′ (i.e. u is a redex and u′ its reduct), so that
t

2→ (λy.x)u′. Then sz(Π) = sz(Π′) = 3, where Π′ is the same derivation with u′

instead of u.

• By Remark 3.13, the head redex of a typed term, when it exists, is typed, so that,
by Proposition 3.6, head reduction makes the size of a derivation strictly decrease.

• Subject reduction does not entail a decrease in size in system D0 due to the possible
duplications of the argument derivations (e.g., Π1 in Figure 3.1). However, D0-
typability also entails normalization thanks to Tait’s Realizability Argument, that
is presented in Sec. 4.3.

3.4.4 Characterization of Head Normalization and Completeness of
Head Reduction

We can now prove simultaneously the characterization of head normalization in system
R0 and Proposition 2.1:

Proposition 3.7. [22,23] Let t be a term. Then t is typable in system R0 iff t is head
normalizing.
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Proposition 3.8. [22,23] A term t is head normalizing iff the head reduction strategy
terminates on t.

We say then that head reduction strategy is complete for head normalization. Once
again, the latter result is external to Type Theory and is usually proved via the Stan-
dardization Theorem (Sec. 11.4 of [8]).

Those propositions are a simple consequence of the two below:

Proposition 3.9. If t is typable in system R0, then the head reduction strategy applied
to t terminates.

Proof. Assume that Π � Γ ` t : τ . We write tn for the rank n head reduct of t (i.e.
t→n

h tn) when it exists (i.e. a HNF is not reached within n−1 steps).

• By Remark 3.13, the head redex of a typed term, when it exists (i.e. when the
term is not already a HNF), is typed.

• Thus, by Proposition 3.6 and Remark 3.13, there is a sequence of derivations
Π0 Π1, Π2, . . . typing respectively t0, t1, t2, . . . such that sz(Π0) > sz(Π1) >
sz(Π2) . . .

• Since there is no strictly decreasing sequence of natural numbers that is of infinite
length, the head reduction strategy must stop at some point i.e. a head normal
form is reached.

Proposition 3.10. If t is head normalizing, then t is typable in system R0

Proof. Let t be a HN term. Thus, there are a head normal form t′ and a reduction
sequence rs such that t rs→ t′.

• By Corollary 3.1, there is a derivation Π′ � Γ ` t′ : τ for some Γ, τ .

• By subject expansion (Proposition 3.3), there is a derivation Π concluding with
Γ ` t : τ .

Remark 3.15 (Quantitative Information given by a Derivation). If we look at the proof
of Proposition 3.9, we notice that actually, the number of steps of head reduction needed
to head-normalize t is bound by sz(Π). Thus, the size of R0-derivation gives an upper
bound for the length to complete the head reduction strategy (for a term that is head
normalizing).

3.4.5 Order Discrimination

The order of a λ-term t (Definition 2.8, p. 66) is the supremal number of abstractions
that prefixes a reduction of t. The same vocable exists for types. We give here a definition
in system R0 that can be straightforwardly extended to any type system (with simple
or strict intersection types):

Definition 3.3. The order of a R0-type is the number of top-level arrows in t.
Inductively, order(o) = 0 o ∈ O is 0 and order([σi]i∈I → τ) = order(τ) + 1.
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For instance, order([σ1, σ2, σ3] → [ ] → o) = 2. A zero head normal form is a zero
term and it can be easily typed with a type of order 0, by Lemma 3.5, p. 98 (see in
particular the derivation on top of Fig. 3.4).

Observe now that, due to subject reduction, a typable term of order n can only be
typed with a type of order > n. Indeed, if Π � Γ ` t : τ and t →∗ λx1 . . . xn.t

′
0, then,

by subject reduction, there is Π′ � Γ ` λx1 . . . xn.t
′
0 : τ . But Π′ must conclude with

n abs-rule under a premise of the form Γ; x1 : [σ1
i ]i∈I(1); . . . ;xn : [σni ]i∈I(n) ` t′0 : τ0,

so that τ = [σ1
i ]i∈I(1) → . . . → [σni ]i∈I(n) → τ0 and order(τ) = n + order(τ0) > n.

But thanks to subject expansion, the typing of ZHNF and the Termination Property
(Proposition 3.8), the case of equality is possible for any typable term t:

Proposition 3.11. Let t be a R0-typable term whose order is n.

• If t is typable with τ , then the order of τ is at least n.

• Moreover, t is typable with a type whose order is equal to n.

Proof. • The first point was just discussed above.

• Since t is R0-typable, then, by Proposition 3.8, t reduces to some t′ = λx1 . . . xp.x t1 . . . tq.
Since the order of t′ is p, we have p = n. By Lemma 3.5, t′0 = x t1 . . . tq, there is a
derivation Π′0 and a context Γ such that Π′0 � Γ0 ` t′0 : o. Since the order of o is
0, after n abs-rules, we obtain from Π′0 a derivation Π′ concluding with Γ ` t′ : τ
for some context Γ and type τ whose order is n. By subject expansion, there is a
derivation Π� Γ ` t : τ . This concludes the proof.

An interesting consequence of Proposition 3.11 is that system R0 is order discri-
minating: if two typable terms have distinct orders, then they do not inhabit the same
types, and intuitively, system R0 is able to distinguish them. Since the set of R0-types
of a term t gives the denotation of t in the relational semantics [22], two terms with
distinct orders whose semantics are not empty have distinct denotations in the model.

This is valid only for typable terms. One of the contribution of this thesis is to prove
that the infinitary version of system R0, called system R, is also order discriminating
but this time, for all the λ-terms (Theorem 12.2 in Chapter 12).





Chapter 4

A Few Complements on Intersection
Types

In this chapter, we present some tools and observations to be sometimes used in this
document. In Sec. 4.1, we discuss the representation of relevant derivations, the possible
confluence of some type systems and summarize their main features. In Sec. 4.2, we
present the extension of system R0 to the explicit λ-calculus Λex (Sec. 2.4), which will
be adapted in Chapter 8. Sec. 4.3, presenting Tait’s Realizability Argument, is just
here to appreciate the relative simplicity of non-idempotent i.t.s. w.r.t. some important
aspects as termination.

4.1 A Bit of This and a Bit of That

In Sec. 4.1.1, we suggest a new presentation for the derivations in relevant intersection
type systems, that makes use of the syntax-direction of the rules. We hope that this
presentation is visual and is beamer-friendly. In Sec. 4.1.2, we give a counter-example
to the confluence of Subject reduction in system R0 and in Sec. 4.1.3, we summarize in
a table the main features of many type systems.

4.1.1 An Alternative Presentation of Relevant Derivations

When a derivation is relevant, the context of any axiom rule may be computed from the
type in its right hand side (compare rule ax with rule axw). More generally, the context
of each judgment may be computed from the ax-rules that are located above, so that we
only need to indicate the types assigned to variables in axioms. Consider for instance
the derivation Πex typing ∆ in system R0:

x : [[o, o′, o]→ o′] ` x : [o, o′, o]→ o′ x : [o] ` x : o x : [o′] ` x : o′ x : [o] ` x : o

x : [[o, o′, o]→ o′, o, o′, o] ` xx : o

` λx.x x : [[o, o′, o]→ o′, o, o′, o]→ o′

Thanks to the relevance of R0, we give with Figure 4.1 an alternative and more
visual presentation of this typing derivation (we see the types assigned in axiom rules
as inputs and the type of the term as the output).

105
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• Indicate the arity of application rules
(here, 3 for the unique app. node).

• Indicate the types given in axiom leaves.

• Compute the type of the term.

x

[o, o′, o]→ o′

x

o

x

o′

x

o

@
o′

λx

λx.xx
[o, o′, o, [o, o′, o]→ o′]→ o′

Where does this o come from?

From this axiom rule? Or this one?

Figure 4.1: Alternative Presentation for Relevant Derivations

The same presentation can be adapted to the relevant ITS D0. We may say that relevant
derivations behave like λ-terms more than irrelevant ones do.

Remark 4.1.

• Wemay notice that derivations of R0 are not labelled trees in the sense of Sec. 2.1.1.
Indeed, the edges of the R0-derivations do not have labels (heuristically, there is no
hard-wired way to point to one of the axiom rules assigning o to x in Figure 4.1,
since no label distinguish them). Moreover, this prevents us from tracking a
type inside a derivation. For instance, in Figure 4.1, the term ∆ is typed with
[o, o′, o, [o, o′, o] → o] → o′. The two occurrences of o in red can be traced back
to the two axiom rules assigning o to x. However, there is no way to associate an
occurrence in red to a particular axiom rule.

• This is to be related to the fact that “tracking” type symbol (e.g., o or →) is
impossible when using multisets. More precisely, we have for instance [σ, τ ]+[σ] =
[σ, σ, τ ], but, in this equality, we have no way to relate one occurrence of σ in [σ, σ, τ ]
to [σ, τ ] rather than [σ] and vice versa.

4.1.2 Confluence (and Non-Confluence) of Type Systems

Let us explicit the notion of reduction choices in system R0 :when Π is a R0-derivation
concluding with Γ ` t : τ and t →β t′, then subject reduction (Proposition 3.3) ensures
that there exists a derivation Π′ concluding with Γ ` t′ : τ . But actually, there may
be more than one such Π′ and this will depend on the way the argument derivations
(of the redex) are substituted during reduction (which is a matter of “choice”) as it is
described in Sec. 3.3.2. For instance, it is possible in Fig. 3.2 p. 3.2 as soon as Πa

1 and
Πb

1 are distinct. In this section, we build actual instances of reduction choices on a same
derivation Π, and explain how this makes confluence fail for system R0.

Let t0 = x (xxx)xxx For all R0-type τ , there are two distinct derivations Πτ
1 and Πτ

2

both concluding with Γτ0 ` t0 : τ , where Γτ0 = x : [[ ]→ [τ ]→ τ, [τ ]→ [ ]→ τ, τ ]. Those
two derivations are represented in Fig. 4.2 using the diagrams introduced in Sec. 4.1.1.
By lack of space, some parts of the terms have been shrunk.

Now, we set t = (λy.y (y z))t0 and t′ = t0 (t0 z), so that t → t′. Let Π be the
derivation represented in Fig. 4.3. The derivation Π would be standardly written (with
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[ ]→ [τ ]→ τ

[τ ]→ [ ]→ τ

τ

x

@

@

@

x@

x x

@

x@

x x

τ

Derivation Πτ
1

[τ ]→ [ ]→ τ

[ ]→ [τ ]→ τ τ

x

@

@

@

x@

x x

@

x@

x x

τ

Derivation Πτ
2

Figure 4.2: Reduction Choices in R0

[o]→ o

y

[o]→ o

y

o

z

@

@

λy
[[o]→ o]2 → o

@
o

Π
[o]→o
1

[o]→ o

Π
[o]→o
2

[o]→ o

Figure 4.3: Derivation Π typing (λy.y (y z))t0 with o

τ = [o]→ o and Γ = 2× Γτ0 ; z : [o]):

y : [[o]→ o]`y : [o]→ o

y : [[o]→ o]`y : [o]→ o z : [o]`z :o

y : [[o]→ o]; z : [o] ` y z : o

y : [[o]→ o]2; z : [o] ` y (y z) : o

z : [o] ` λy.y (y z) : [[o]→ o]2 → o Πτ
1 � Γτ0 ` t0 : τ Πτ

2 � Γτ0 ` t0 : τ

Γ ` (λy.y (y z))t0 : o

Since, in Π, the argument of the redex is typed twice with the same type, we may
replace the leftmost ax-rule typing y with Π

[o]→o
1 or by Π

[o]→o
2 . Thus, from Π, we may

produce two distinct derivation Π′1 and Π′2 that both type t′ with o. We say then there
are two reduction choices. We represent Π′1 and Π′2 in Fig. 4.4.

Below Π′1 and Π′2, we have coloured in red the nodes of t′ that correspond to typed
positions. Thus, from the derivation Π, we have obtained two derivation Π′1 and Π′2 that
type different parts of t′, the normal form of t. In particular, this shows that β-reduction
is not confluent for derivation of system R0: there is no Π′′ such that Π′1 and Π′2 reduce
to Π′′, since Π′1 and Π′2 are not reducible.
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Π
[o]→o
2

[o]→ o

o

z

@Π
[o]→o
1

[o]→ o

@
o

Derivation Π′1

Π
[o]→o
1

[o]→ o

o

z

@Π
[o]→o
2
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@
o

Derivation Π′2

x
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@

x@

x x

@

x

@

@

@
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@
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x

@
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x x

@

x@

x x

@

Figure 4.4: Reduction Choices

Remark 4.2.

• The non-determinism of reduction in system R0 is to be related with the fact that
derivations are non-rigid labelled trees in the sense of Sec. 2.1.1 (see Remark 3.8):
since the children of a same node (i.e. here, the argument premises of a same
judgment typing an application) are not explicitly or implicitly distinguished (if
they conclude equal subderivations), different reduction choices arise. For now,
there is no reason to remove these reduction choices in R0 (this could be done by
constraining the multiset types to never contain two occurrences of a same type,
which may be seen as a bit “unnatural”).

• But, for reasons that will be shown later, this lack of rigidity will be problematic
in later parts of this thesis (see Klop’s Problem and the presentation of Part IV,
p. 235) and we will introduce system S, which is deterministic and that can be
seen as a rigidification of system R0. In Chapter 13, we present two intermediary
systems between system R0 and system S, called system Sh and Sop, but the former
is not totally rigid and whereas the latter is not syntax directed (see Remark 13.4,
p. 299). The contribution of this chapter (Theorem 13.2) is to prove that, inter-
estingly, there is no loss of expressive power with system S, compared to systems
R0, Sh and Sop.
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4.1.3 Type Systems and their Features (Summary)

We have seen hitherto some possible features of types systems: subject reduction (Sec. 3.3),
relevance (Sec. 3.3.5) and Confluence (4.1.2). We give below a summary of features of
the different type systems that we have already met. Recall from Remark 3.4, p. 83 that
a type system is syntax directed the subject of a given derivation and its type give the
name of the last rule of this derivation. Some short arguments:

• System DΩ is Coppo and Dezani original intersection type system, as presented
by Krivine (see Sec. 3.2.1).

• System G is Gardner’s original presentation of system R0 (Sec. 3.2.1 and Re-
mark 3.8, p. 86), without multiset intersection but with a perm-rule (it is thus
almost syntax-directed).

• System D0 is implicitly rigid in that, since it forbids redundant typing, two sub-
derivations of a same D0-derivations Π are distinct, so that subderivations can be
unambiguously pointed at.

• The type systems actually enjoy deterministic subject reduction (for the reduction
of a given redex) are actually confluent.

• System D0,w is not confluent, since we must sometimes make choices during reduc-
tion in case of redundant typing, as it was suggested in the examples of Sec. 3.3.4.
The same is true for D+

0,w. As seen in Sec. 4.2, the absence of confluence is roughly
related to the fact that the typing derivations in the syntax directed i.t.s. are
usually non-rigid trees, because in those systems, types are collapsed to avoid
structural typing rules (Sec. 3.2.2).

We summaerize the previous paragraph in the following table:
Type System Syn. Dir. Rigidity S. Reduction S. Expansion Relevance Confluence

Curry0 + + + +
DΩ + + + +
G + + + + +
D0 + + + + +

D0,w + + +
D+

0,w + + +
R0 + + + +
S0 + + + + + +

We have not presented system S0 yet. System S0 is an intersection type system that
features sequences as intersection types. The use of sequential intersection type to
solve infinitary problems is one of the main contribution of this thesis (Parts III and
IV).

4.2 Intersection Types for the Lambda Calculus with
Explicit Substitutions

System R0 (Sec. 3.2.4) may be extended to the linear substitution calculus Λex defined
in Sec. 2.4 by adding the rule:

Γ;x : [σi]i∈I ` t : τ (∆i ` u : σi)i∈I

Γ + (+i∈I∆i) ` t〈x\u〉 : τ
exs
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This yields a type system for Λex (due to Kesner and Ventura [60]) that we call Rex. One
of the contributions of this thesis (Chapter 8) is to extend the counterpart of this system
characterizing strong normalization in Λex so that it characterizes strong normalization
in a new small-step version of the λµ-calculus.

The definition of size of a derivation is naturally extended by:

sz

(
Π� Γ;x : [σi]i∈I ` t :τ (Πi �∆i ` u :σi)i∈I

Γ + (+i∈I∆i) ` t〈x\u〉 : τ
exs

)
= sz(Π) + (+i∈Isz(Πi)) + 1

The notion of typed positions (i.e. Definition 3.1) extends to Rex in an obvious way and
weighted subject reduction holds for Rex:

Proposition 4.1. Assume Π�Rex
Γ ` t : τ and t→ t′.

• There exists a Rex-derivation Π′ such that Π′ �Rex
Γ ` t′ : τ .

• If the reduced redex is typed in Π, then there exists a Rex-derivation Π′ such that
Π′ �Rex

Γ ` t′ : τ and sz(Π′) < sz(Pi).

Let us informally understand why system Rex also enjoys weighted subject reduction.
The fact that it enjoys subject reduction is no more complicated than for system R0

(see Sec. 3.3.2). How is the decrease of measure ensured?

• If Π � Γ ` L[(λx.r)s] : τ and t = L[(λx.r)s] →βx L[r〈x\s〉] = t′: say that, for
some k > 0, there are k subderivations of Π that type (λx.r)s, the redex to be
fired. Each such subderivation derivation is concluded by an app-rule whose right
premise is an abs-rule. To obtain a derivation Π′ typing t′, each one of those pairs
of app-rule and abs-rule are replaced by a unique exs-rule. This yields a Π′ such
that sz(Π′) = sz(Π)− k.

• If Π � Γ ` C[x]〈x\u〉 and t = C[x]〈x\u〉 →c C[u]〈x\u〉 = t′ with |C[[x]]|x > 1
and C = Cx: one occurrence of x of t (that between brackets) is replaced by u.
This occurrence of x corresponds to k ax-rules in Π for some k > 0. To obtain a
derivation Π′ typing t′, we destroy those k ax-rules and replace them by moving
k subderivations of Π typing u (with matching types). This yields a Π′ typing t′

such that sz(Π′) = sz(Π)− k.

• If Π� Γ ` C[x]〈x\u〉 and t = C[x]〈x\u〉 →d C[u] = t′ with |C[[x]]|x = 1 and C = Cx:
this case handled as the the previous one, except that k exs-rules are destroyed,
so that we get sz(Π′) = sz(Π)− 2× k.

• If Π � Γ ` t〈x\u〉 : τ and t〈x\u〉 →w t with x /∈ fv(t): to obtain a derivation Π′

typing t, we destroy the exs-rule concluding Π, so that sz(Π′) = sz(Π)− 1.

System Rex also enjoys subject expansion:

Proposition 4.2. Let t ∈ Λex. If Γ ` t′ : τ is derivable in system Rex, then Γ ` t : τ
also is.

We easily adapt the contents of Sec. 3.4.4 to generalize Propositions 3.7 and 3.8:

Proposition 4.3. Let t ∈ Λex. Then t is typable in system Rex iff t is head normalizing.
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Proposition 4.4. A λex-term t is head normalizing iff the head reduction strategy
applied to t terminates.

Remark 4.3 (Characterizing Strong normalization in Λex). Kesner and Ventura [60]
also defined a variant of Rex that characterizes strong normalization in Λex. This type
system is an extension of type system S (to be presented in S 5.2) that characterizes
strong normalization in λ-calculus and is a variant of system R0.

4.3 Tait’s Realizability Argument

Let us have a last look at the idempotent intersection type systems. System D0,w and
its additive variant D+

0,w (Sec. 3.3.5) also characterize head normalization, as R0 does,
and can also be used to prove that the head reduction strategy is complete for head
reduction.

More precisely, systems D0,w and D+
0,w both satisfy subject reduction and subject

expansion. It is also quite easy to type every head normal form in D0,w and D+
0,w (see

Sec. 3.4.2). Thus, by subject expansion, every head normalizing term is easily typable
in D0,w and D+

0,w.
From a technical point of view, the big difference between D0,w and D+

0,w on one hand
and R0 on the other (and more generally, between idempotent and non-idempotent ITS)
is that the termination of the typable terms is far more convoluted to prove in the former
that in the latter. To well appreciate this difference, we will present in this Section 4.3,
Tait’s famous Realizability Argument, introduced in [100] and later extended to higher-
order type systems by Girard [45,46,49]. We will reason with D+

0,w (it is slightly easier),
but the proofs can be adapted to D0,w at the cost of minor modifications.

• In Sec. 4.3.1, we see why head normalization is difficult to prove for the D+
0,w-typed

terms and why we are driven to try to reason modulo substitution, which turns
out to become the Realizability Argument later.

• In Sec. 4.3.2, we explain the mechanism of Realizability and sketch a proof of the
Termination Property for system D+

0,w.

4.3.1 The Failure of an Induction

Tait’s Realizability Argument is often used when an induction fails because of the pres-
ence of redexes. Let us understand why, while trying to prove by induction the following
statement, which corresponds to Proposition 3.9 in system D+

0,w (“Termination Prop-
erty”):

Claim 4.1. If t is typable in system D+
0,w, then t is head-normalizing and more precisely,

the head reduction strategy terminates when it is applied in t.

Proof Attempt. Let us assume Π � Γ ` t : B. We try to reason by induction on the
structure of Π. Only the last subcase will fail.

• When Π contains only one ax-rule: then t = x for some x ∈ V . Of course, t (that
is x) is HN.
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• When the last rule of Π is an abs-rule: then t = λx.t0 for some t0 and Π is of the
form:

Π0 � Γ;x : {Ai}i∈I ` t0 : B0

Γ ` t : B

with B = {Ai}i∈I → B0. By induction hypothesis, t0 is HN, so t = λx.t0 is
obviously HN.

• When the last rule of Π is an app-rule: then t = t1 t2 and as it turns out, this case
cannot be directly handled and makes the proof fail. Indeed, Π is of the form:

Π1 � Γ ` t1 : {Ai}i∈I → B (Πi � Γ ` t2 : Ai)i∈I

Γ ` t : B

By induction hypothesis, we may assert that both t1 and t2 are head normalizing.
Let us consider two cases:

– The term t is of order 0. Thus, t1 may be reduced to a ZHNF xu1 . . . uq, so
that t = t1 t2 may be reduced to xu1 . . . uq t2, which is also a ZHNF. So t is
HN and the induction also works in that case.

– The order of t is > 1. Thus, t1 may be reduced to an HNF that is an
abstraction λx.t0. But even if λx.t0 is a HNF, the term t′ = (λx.t0)t2 is a
redex and is not a HNF and right now, we cannot assert anything about t′

(in particular, nothing ensures yet that t′ is head normalizing). If we reduce
t′, we obtain t′′ = t0[t2/x]. Can we easily assert that t′′ is HN? No, even if t2
is a HNF: for instance, if t2 = λy.t′2 is a HNF and t0 = xu1 . . . uq with q > 1,
then we have t′′ = (λy.t′2)u1[t2/x/x] . . . uq[t2/x], which is a head-reducible
term and there is no reason why a HNF could be reached from t′′. Can we
still proceed by induction? There again, no: since in D+

0,w, the argument
derivations of redexes may be duplicated during reduction, the size of the
derivation t′′ may be bigger than those typing t′ and t. The term t′′ itself
may be bigger than t′ and t.
Thus, as it was announced, trying to simply reason by induction on the
structure of Π may not prove Claim 4.1.

�

If we give an attentive look at this proof attempt, we notice that it fails because, given
two terms t and u, “t and u are head normalizing” does not imply (without additional
hypothesis) that t u is head normalizing (thus, we could not assert that (λx.t0)t2 was
HN in the last case). For instance, ∆ is a head normal form, but Ω = ∆ ∆ is not head
normalizing.

But still, in the last subcase (t = t1 t2 and t1 is of order > 1), it may be felt
that intuitively, in order to prove that t is head normalizing, we have to prove that
t′′ = t0[t2/x] (i.e. the head normal form t0 in which x was substituted with t2) is head
normalizing i.e. morally, we have to perform the reduction (λx.t0)t2 → t0[t2/x] to show
that t is HN.

We should also make use of the fact that the term t′′ obtained by substitution is
typable (by subject reduction) since the assumption “t0 and t2 are HN” alone is not
enough to prove that t0[t2/x] is HN (e.g., with t0 = xx and t2 = ∆).

The difficulty to get this is that the head normalization of t0 and t2 does not easily
imply that of t′′ and moreover, that t′′ may be way bigger than t, as it was noticed
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above. We may say that the idea behind Tait’s Realizability Argument, which is of
higher-order (see Remark 4.5) and that we are going to present now is to reason on
typed terms modulo substitution (of typed terms) so that the head normalization of
t′′ = t0[t2/x] is treated as the same level as that of t0. This may be seen with the
Lemma of Interpretation (Lemma 4.4) below.

4.3.2 Interpretation

For all type B:

• Let R(B) be the set of the terms t such that the head reduction terminates and
that are typable with type B in D+

0,w (i.e. t ∈ R(B) iff the head reduction strategy
starting at t terminates and there is a D+

0,w-derivation Π and a context Γ such that
Π� Γ ` t : B).

• Let R0(B) be the set of zero head normal forms that are typable with type B in
D+

0,w.

We notice again the importance of zero head normal forms, as in Sec. 3.4.2: their use
is illustrated in the proof of the pivotal Lemma 4.2 below. The definition of R and
R0 naturally extends to set types and we set R({Ai}i∈I) = ∩i∈IR(Ai) and R0({A}i) =
∩i∈IR0(Ai). We call R(B) the set of reducibility candidates of type B.

Definition 4.1. Let X ⊆ Λ. We say that X is saturated if, for all x, r, s, t1 . . . tq,
r[s/x] t1 . . . tq ∈ X implies that (λx.r)s t1 . . . tq ∈ X.

Thus, X is saturated if X is stable under “head expansion”. Since D0,w satisfies
subject expansion, for all type B (resp. set type {Ai}i∈I), R(B) (resp. R({Ai}i∈I)) is
saturated.

Definition 4.2. Let X,Y ⊆ Λ. We set X → Y = {t ∈ Λ | ∀u ∈ X, t u ∈ Y }.

Lemma 4.1.

• Let X,X ′, Y, Y ′ ⊆ Λ. If X ⊇ X ′ and Y ′ ⊆ Y , then X → Y ⊆ X ′ → Y .

• Let X,Y ⊆ Λ. If Y is saturated, then X → Y is saturated.

Proof. Straightforward.

Definition 4.3.

• An interpretation is a function φ from O to P(Λ) such that, for all o ∈ O and
t ∈ φ(o), the term t is D+

0,w-typable with o.

• An interpretation φ is saturated if, for all o ∈ O, φ(o) is saturated.

• An interpretation φ isHN-suitable if, for all o ∈ O, φ(o) is saturated and R0(o) ⊆
φ(o) ⊆ R(o).

• TheHN-interpretation is the interpretation defined by φ(o) = R(o) for all o ∈ O.

The HN-interpretation is a HN-suitable interpretation, since R(o) is obviously satu-
rated.

Let φ be an interpretation. We extend φ on TypD0
and on the set of set types by

mutual induction:
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• We set φ({Ai}i∈I) = ∩i∈Iφ(Ai).

• We set φ({Ai}i∈I → B) = φ({Ai}i∈I)→ {Ai}i∈I .

Lemma 4.2. For all set type {Ai}i∈I and type B, R0({Ai}i∈I)→ R(B) ⊆ R({Ai}i∈I →
B) and R({Ai}i∈I)→ R0(B) ⊇ R0({Ai}i∈I → B).

Proof.

• Let t ∈ R0({Ai}i∈I)→ R(B) and x ∈ V . In particular, t is typable with {Ai}i∈I →
B. Since x ∈ R0({Ai}i∈I), t x ∈ R(B). Thus, the head reduction strategy starting
at t x terminates. This easily1 implies that it also terminates when starting at t
(note that x is a variable and not a general term). Thus, t ∈ R({Ai}i∈I → B).

• Let t ∈ R0({Ai}i∈I → B). Thus, t = x t1 . . . tq for some x, t1, . . . tq. Let u ∈
R({Ai}i∈I). Then, t u is also a zero head normal form, so and t u is typable with
B, so t u ∈ R0(B). Since this holds for all u ∈ R({Ai}i∈I), t ∈ R0({Ai}i∈I → B).

Lemma 4.3. Let φ be an interpretation. For all type B:

• For all t ∈ Λ, if t ∈ φ(B), then t is D0-typable with B.

• If φ is saturated, then φ(B) is saturated.

• If φ is HN-suitable, then R0(B) ⊆ φ(B) ⊆ R(B).

The three statements are also true for set types.

Proof. By induction on B, using Lemma 4.1 for the second point and Lemma4.2 for the
third one.

Assume that φ is the HN-interpretation (Definition 4.3). Thus, φ(B) = R(B) when
B is a type variable. Lemma 4.3 seems to only ensure that φ(B) ⊆ R(B) when B is not
a type variable. However, the Lemma of Interpretation below easily implies the converse
inclusion: actually, we have φ(B) = R(B) for all type B.

Lemma 4.4 (Interpretation). Let φ be a saturated interpretation.
Assume that �D+

0,w
x1 : {A1,i}i∈I(1); . . . ;xp : {Ap,i}i∈I(p) ` t : B and, for all k ∈

{1, . . . , p}, uk ∈ φ({Ak,i}i∈I(k)).
Then t[u1/x1, . . . , un/xn] ∈ φ(B).

Intuitively, this lemma means that typing is compatible with interpretations i.e. may
help us to compute realizability candidates by substituting them to free variables: we use
reducibility candidates of types {Ak,i}i∈I(k) as entries, to output a reducibility candidate
of type B. This brings us close to reasoning modulo substitution as we suggested in
Sec. 4.3.1.

1If t is a zero term, it is obvious. If t →∗h λy.t0, then t x →∗h (λy.t0)x →h t0[x/y] →n
h t′ for some

n > 0 and HNF t′. A straightforward induction on n shows that t′ = t′0[x/y] for t′0 satisfying t0 →n
h t
′
0.

Since t′ is a HNF, t′0 also is. Since t→∗h λy.t0 →n
h λy.t

′
0, t is HN.
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Proof. By induction on the structure of t. This induction is interesting, because it makes
a tight use of the design of HN-suitability (cf. Remark 4.4).
We denote by Π a D+

0,w-derivation concluding Γ ` t : B, with Γ = x1 : {A1,i}i∈I(1); . . . ;xp :
{Ap,i}i∈I(p). We write t[~u/~x] for t[u1/x1, . . . , un/xn].

• Case t = x: obvious. Indeed, x = xk for some k and Π contains only one axiom
rule. We have B = Ak,i0 for some i0. Thus, t[~u/~x] = uk ∈ φ({Ak,i}i∈I(k)) ⊆
φ(Ak,i0) = φ(B).

• Case t = λx.t0: then B = {Ai}i∈I → B0 for some {Ai}i∈I and B, and Π is of the
form:

Γ;x : {Ai}i∈I ` t0 : B0

Γ ` λx.t0 : {Ai}i∈I → B0

By induction hypothesis, for all u ∈ φ({Ai}i∈I), t0[~u/~x, u/x] ∈ φ(B0). Since, by
Lemma 4.3, φ(B0) is saturated, we have (λx.t0)[~u/~x]u ∈ φ(B0). Since this holds
for all u ∈ φ({Ai}i∈I), then, by definition of X → Y , λx.t0[~u/~x] ∈ φ({A}i → B)
i.e. t[~u/~x] ∈ φ(B).

• Case t = t1 t2: Π is of the form:

Γ ` t1 : {Ai}i∈I → B (Γ ` t2 : Ai)i∈I

Γ ` t1 t2 : B

By induction hypothesis, t1[~u/~x] ∈ φ({Ai}i∈I → B) and t2[~u/~x] ∈ φ(Ai) for all
i ∈ I, so that t2[~u/~x] ∈ φ({Ai}i∈I). Since, by definition, φ({Ai}i∈I → B) =
φ({Ai}i∈I)→ φ(B), we have t1[~u/~x] t2[~u/~x] ∈ φ(B) i.e. t[~u/~x] ∈ φ(B).

Remark 4.4.

• We note how saturation is used in the abstraction case.

• We see that, in the abstraction case, we need that φ({Ai}i∈I → B) ⊇ φ({Ai}i∈I)→
φ(B) (to ensure that λx.t0[~u/~x] is in the interpretation of {Ai}i∈I → B), and in
the application case, that φ({Ai}i∈I → B) ⊆ φ({Ai}i∈I) → φ(B) (to ensure that
t1[~u/~x] t2[~u/~x] is in the interpretation of B).
This strongly suggests that the definition of interpretation of a type B by induction
on B (see Definition 4.3) is canonical.

Corollary 4.1.

• Let φ be a HN-suitable interpretation. For all term t ∈ Λ, if �D+
0,w

Γ ` t : B then
t ∈ φ(B).

• For all term t ∈ Λ, if �D+
0,w

Γ ` t : B, then t is head normalizing.

• The HN-interpretation φ is the only HN-suitable interpretation and actually, φ(B)
is the set of λ-terms that are D+

0,w-typable with B.

Proof. Let φ be a HN-suitable interpretation.



116 CHAPTER 4. A FEW COMPLEMENTS ON INTERSECTION TYPES

• The context Since φ is HN-suitable, by Lemma 4.3 for all x ∈ V and all set type
{Ai}i∈I , x ∈ φ({Ai}i∈I). By applying Lemma 4.4 to uk = xk for all k ∈ {1, . . . , p},
we obtain t ∈ φ(B).

• Since φ is HN-suitable, then φ(B) ⊆ R(B), so the head reduction strategy termi-
nates for t.

• The first point entails that Λ(B), the set of the terms that are D+
0,w-typable with

B, is a subset of φ(B). Since the converse inclusion holds by Lemma 4.3, φ(B) =
R(B) = Λ(B).

Remark 4.5 (Observations on Tait’s Argument). • Tait’s Realizability argument is
of higher order: we must reason both on terms (e.g., the induction on the structure
of t used in the proof of the Lemma of Interpretation (Lemma 4.4)) and on types
(e.g., the inductions on the structure of B in Lemma 4.3).

• It is also used to prove normalization in higher order simple type systems, as
recalled in Remark 3.10.



Chapter 5

Characterizing Weak and Strong
Normalization

In this chapter, we explain how we can characterize weak and strong normalization
with non-idempotent intersection types. For weak normalization, e will follow the gen-
eral scheme presented in Sec. 3.3.1 that was implemented, for head normalization, in
Sec. 3.4.4. In both cases (WN and SN), Termination will be easy to prove, as in Sec. 3.4.3
and will rely upon a simple arithmetic argument (there is no strictly decreasing sequence
of natural numbers of infinite length) via weighted subject reduction (e.g., Proposi-
tion 3.6). However, since strong normalization is not stable under subject expansion,
the proof structure of Sec. 3.3.1 cannot be used and must be adapter. Both characteri-
zation provide upper bounds on interesting reduction sequences, as in the case of head
normalization.

5.1 Characterizing Weak Normalization

We recall (Definition 2.4) that a term t is weakly normalizing if there is a reduction
path from t to a normal form. In this section, we explain how weak normalization is
characterized by a class of R0-derivations

5.1.1 Positive and Negative Occurrence of a Type

In this section, we present some technical points that will be needed in the discussions
to follow.

As it will turn out, we need to describe the occurrences of [ ] in a type τ : the empty
type [ ] occurs in τ if there is an arrow nested in τ whose source is empty e.g., [ ] occurs
in [o, [o, o′]→ [ ]→ o]→ o but not in [o, [o, o′]→ [o′]→ o]→ o.

Let us be more precise. The target of an arrow type is considered as positive whereas
its source is considered as negative. This idea is extended inductively with respect to
nesting (here, for the occurrences of [ ] in τ):

Definition 5.1. The positive and negative occurrences of [ ] are defined inductively
as follows:

• [ ] occurs positively in [ ].

• [ ] occurs positively (resp. negatively) in [σi]i∈I if there exists i ∈ I s.t. [ ] occurs
positively (resp. negatively) in σi.

117
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• [ ] occurs positively (resp. negatively) in [σi]i∈I → τ if [ ] occurs positively (resp.
negatively) in τ or negatively (resp. positively) in [σi]i∈I .

We say that there is a top-level occurrence of [ ] in τ if τ is of the form [σ1
i ]i∈I(1) →

. . . [σqi ]i∈I(q) → τ where some I(k) is empty. A top-level occurrence is negative. Induc-
tively, there is a top-level occurrence of [ ] in [σi]i∈I → τ if I = { } or there is top-level
occurrence of [ ] in τ .

The sign of an occurrence of [ ] in a type τ is given by the parity of the number of
nestings of this occurrence in multiset types and an occurrence of [ ] is top-level when it
is not nested. Note that [ ] occurs both negatively in [ ] → o and in [[ ] → o] according
to the definition above. We say that [ ] occurs positively (resp. negatively) in a context
Γ if it occurs positively (resp. negatively) in Γ(x) for some x ∈ V .

5.1.2 Unforgetfulness

By Proposition 3.9, if a term t is typed by a derivation Π, then t is head normalizing.
However, if a variable x is assigned a type with a top-level occurrence of [ ], then some
of the possible arguments tk of x in x t1 . . . tq may be left untyped. For instance, if x
is assigned [o] → [ ] → [o, o′] → o, then t2 is not typed in x t1 t2 t3, whereas t1 is typed
with o and t3 with o and o′.

This explains why, in system R0, typability ensures head normalization but not
weak normalization, since, given a R0-derivation Π typing a term t, some of the head
arguments of the head normal form of t may be left untyped (modulo some subject
reduction steps). As observed in Section 3.4.2, a derivation Π typing a term t can be a
certificate of weak normalization only if (still modulo subject reduction steps) Π types
every subterm of the normal form of t.

Thus, we must prevent that an argument of a variable (occurring in a normal form) is
left untyped. This may be achieved by considering the notion of unforgetful derivation,
so that the following property will hold: “a term is WN iff it is unforgetfully typable”
(Proposition 5.1).

Although we introduce the vocable “unforgetful” (which is motivated in Remark 5.1),
this criterion is well-known since the 80s for the characterization of weak normalization
in idempotent intersection type systems (see e.g., Theorem 4.13 of [68]):

Definition 5.2.

• A type τ is unforgetful when [ ] does not occur negatively in τ .

• A judgment Γ ` t : τ is unforgetful when [ ] occurs neither negatively in Γ nor
positively in τ .

• A derivation is unforgetful when it concludes with an unforgetful judgment.

We make the following claims, that are narrowly related to each other:

• An unforgetful derivation is a certificate of weak normalization (i.e. if t is un-
forgetfully typable, then t is WN) and conversely, a weakly normalizing term is
unforgetfully typable.

• If an unforgetful derivation types a term t, then, modulo some subject reduction
steps, the normal form of t is completely typed (there is no untyped subterm in
the NF of t).
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• If t is unforgetfully typed by Π and a variable occurrence of x is typed in Π, then
the arguments of x are not left untyped (at least when this variable occurrence is
Böhm stable). Actually, those arguments are also unforgetfully typed.

Those claims will be proved in the next sections and addressed in Remarks 5.1, 5.2 and
5.3. This will provide a type-theoretic characterization of weak normalization and a
proof of completeness of the minimal reduction stategy w.r.t. weak normalization.

Remark 5.1. If τ is an unforgetful type, then there is no top-level occurrence of [ ] in
an unforgetful type τ , si that, if the head variable x of t = x t1 . . . tq has been assigned
an unforgetful type τ , then each head argument tk (1 6 k 6 q) must be typed at least
once, since there is no top-level occurrence of [ ] in τ .

5.1.3 Unforgetfulness and Typing Rules

The first observation to be made is that unforgetfulness is stable under subject reduc-
tion and subject expansion, by context preservation. Let us prove now some technical
lemmas. A look at the abs-rule in R0 yields:

Lemma 5.1. Let Π a derivation typing an abstraction λx.t0 and Π0, the subderivation
of Π typing t0. Then Π is unforgetful iff Π0 is unforgetful.

Proof. Π is of the form:

Π =
Π0 � Γ;x : [σi]i∈I ` t0 : τ

Γ ` λx.t0 : [σi]i∈I → τ

The statement is then a straightforward consequence of Definition 5.2.

Remark 5.2.

• Let us call co-unforgetful a type τ in which [ ] does not occur positively. Thus,
by Definition 5.2 a judgment is unforgetful when the types in the context are
unforgetful and the type of the subject is co-unforgetful.

• The abs-rule allows a transition from Γ, x : [σi]i∈I ` t : τ to Γ ` λx.t : [σi]i∈I → τ .
Notice that a negative (resp. positive) occurrence of [ ] in [σi]i∈I corresponds to
a positive (resp. negative) one in [σi]i∈I → τ i.e. some negative (resp. positive)
occurrences in the context of the judgment the premise will correspond to some
positive (resp. negative) occurrences of [ ] in the type of an abstraction. This
roughly motivates Definition 5.2 by the first item of this remark and explains
Lemma 5.1.

As reminded above, some parts of a typed term may not be typed, but when a head
normal form is unforgetfully typed, all the head arguments are typed, as expected:

Lemma 5.2. If Π is an unforgetful derivation typing the head normal form t = λx1 . . . xp.x t1 . . . tq
then there are unforgetful subderivations Π1, . . . ,Πq of Π that respectively type t1, . . . , tq.

Proof. By Lemma 5.1, there is a subderivation Π0 of Π that unforgetfully types the zero
head normal form t0 = x t1 . . . tq – say that Π0 concludes with Γ ` x t1 . . . tq : τ where [ ]
does not occur negatively in Γ or positively in τ .

Let τ0 be the type assigned to the unique left subderivation typing the occurrence of
x as the head variable of t0. By typing constraints, τ0 is of the form [σ1,i]i∈I(1) → . . .→
[σq,i]i∈I(q) → τ and the derivation Π0 is of the form:
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Γ0 ` x : τ0 (Π1,i �∆1,i ` t1 : σ1,i)i∈I(1)

Γ1 ` x t1 : τ1

Γq−1 ` x t1 . . . tq−1 : τq−1 (Πq,i �∆q,i ` tq : σq,i)i∈I(q)

Γq ` x t1 . . . tq−1 tq : τ

where Γ0 = x : τ0, Γk+1 = Γk + (+i∈I(k+1)∆k+1,i) for 0 6 k 6 q − 1, τq = τ and
τk = [σki ]→ τk+1 for 0 6 k 6 q − 1 (note that Γ = Γq).

Since the head variable is free in Γ, τ0 appears in Γ. Then, by unforgetfulness, [ ]
cannot occur negatively in τq, so that:

• Neither I(1), . . . , I(q − 1) nor I(q) is empty.

• [ ] cannot occur positively in one of the σki .

For instance, there is a i1 ∈ I(1) and we set Π1 = Π1
i0
, ∆1 = ∆1

i0
and σ1 = σ1

i0
, so

that Π1 �∆1 ` t1 : σ1. As noted above, [ ] does not occur positively in σ1. Moreover,
since ∆1 6 Γ, [ ] does not occur negatively in ∆1, so that Π1 is unforgetful. We reason
likewise for t2, . . . , tq.

Remark 5.3. We notice that an occurrence of [ ] in a σk,i (for some 1 6 k 6 q and
i ∈ I(k)) whose nesting depth is n will correspond to an occurrence of [ ] in the type
[σ1
i ]i∈I(1) → . . . → τ of the head variable x whose nesting depth is n + 1. Moreover,

since σk,i is a type given to the head argument tk, which is a normal form, σk,i is co-
unforgetful i.e. a type in which [ ] does not occur positively (Remark 5.2). This explains
why unforgetfulness is not only about the top-level occurrences of [ ].

Remark 5.4. Actually, we notice that every subderivation of the unforgetful derivation
Π that types a head argument is also unforgetful.

We recall from Sec. 2.3.4 that b ∈ supp(t) is Böhm stable if b is reached from the
root of t by visiting a series of HNF.

Lemma 5.3. Let Π an unforgetful derivation typing a term t.

• If b is Böhm stable, then b is a typed position in Π and the subderivations of Π
corresponding to position b are unforgetful.

• If b is the position of a maximal head reducible subterm of t, then b is a typed
position in Π and the subderivations of Π corresponding to position b are unfor-
getful.

Proof.

• By induction on the Böhm stability of b, using Lemmas 5.1 and 5.2 (the latter
when we visit head arguments).

• Let b be the position of a maximal head reducible subterm of t. If t is head
reducible, then b = ε and the only minimal redex is the head redex ans it is typed.
Let us assume then that t is a HNF. In that case, b = b0 · 0p·1k·2 where b0 is a
Böhm stable position of t and t|b is a head argument of t|b0 . By the first point,
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there is an unforgetful subderivation Π0 of Π that types t|b0 . By Lemma 5.2, there
is an unforgetful subderivation Π∗ of Π that types t|b, so that the head redex of
t|b (which is a minimalt redex of t) is typed.

Remark 5.5. We actually notice that every subderivation of the unforgetful derivation
Π that corresponds to a Böhm stable position is unforgetful.

By Lemma 5.3, in the case of unforgetful typing, every minimal redex is typed and
minimal reduction (Section 2.3.5) allows us to apply weighted subject reduction (Propo-
sition 3.6), yielding:

Corollary 5.1. Let Π an unforgetful derivation concluding with Γ ` t : τ . If t →m t
′,

then there is a derivation Π′ concluding with Γ ` t′ : τ such that sz(Π′) < sz(Π).

5.1.4 Weak Normalization

In this section, we explain how to characterize weak normalization (instead of head
normalization) by means of an intersection type system and we also prove that the
minimal strategy (Section 2.3.5) is complete for weak normalization. Since the leftmost
outermost strategy and the Böhm reductions strategies are instances for the minimal
reduction stategy, this will also prove that they are complete for weak normalization.

As in Section 3.4, we reuse the general scheme sketched in Section 3.3.1.

Proposition 5.1. Let t be a term. Then t is unforgetfully typable in system R0 iff t is
weakly normalizing.

Proposition 5.2. A term t is weakly normalizing iff the minimal reduction stategy
terminates on t.

Although not explicitly due to Gardner [43] or de Carvalho [22], Propositions 5.1 and
5.2 are well-known folklore, since from a type system characterizing HN, one may char-
acterize WN just by considering unforgetful judgments. They are a simple consequence
of the two below:

Proposition 5.3. If t is unforgetfully typable in system R0, then the minimal reduction
stategy applied to t terminates (i.e. reaches a normal form).

Proof. Assume that Π � Γ ` t : τ is unforgetful and we consider an instance rs of the
minimal reduction strategy starting from t. Let us prove that there is no such instance
that is of infinite length. This will be enough to conclude.

We write tn for the term that appears after n reduction steps in rs, when it exists
when it exists (i.e. n is lesser or equal than the length of rs).

• By Corollary 5.1, there is a sequence of derivations Π0 Π1, Π2, . . . typing respec-
tively t0, t1, t2, . . . such that sz(Π0) > sz(Π1) > sz(Π2) . . .

• Thus, the length of rs must be lesser or equal than sz(Π). Thus, any instance of
the minimal reduction strategy is of finite length, as demanded.
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Proposition 5.4. If t is weakly normalizing, then t is unforgetfully typable in system
R0.

Proof. Let t be a WN term. Thus, there are a normal form t′ and a reduction sequence
rs such that t rs→ t′.

• We notice that the proof of Lemma 3.6, together with Lemma 5.1, yields an unfor-
getful derivation for any given normal form. Thus, there is an unforgetful deriva-
tion Π′ � Γ ` t′ : τ for some Γ, τ .

• By subject expansion (Proposition 3.3), there is a derivation Π concluding with
Γ ` t : τ . Since Π′ is unforgetful, Π also is.

Remark 5.6 (Upper Bound on the Minimal Reduction Strategy). If we look at the proof
of Proposition 5.3, we notice that actually, the number of steps of minimal reduction to
normalize t is bounded by sz(Π). Thus, the size of an unforgetful R0-derivation gives an
upper bound for the length to complete an instance of the minimal reduction strategy,
in particular, of the leftmost outermost reduction strategy and instances of the Böhm
reduction stategy.

5.2 Characterizing Strong Normalization

In this section, we will characterize the set of strongly normalizing λ-terms with intersec-
tion types. Contrary to the case of weak normalization, we will actually have to modify
the typing rules of R0 to achieve this purpose.

The size |t| of a λ-term is the cardinal of its support (Definition 2.1). We will reuse
Notation 2.2 i.e. , given a SN term t, η(t) denotes the maximal length of a reduction
sequence starting at t.

The reduction step t b→ t′ is an erasing reduction step if x /∈ fv(r) where t|b =
(λx.r)s. In that case, note that t′|b = r and the argument s of the fired redex is
indeed erased during reduction. For instance, t1 = y((λx.y)z)

2→ y y = t′1 is an erasing
reduction step, whereas t2 = y(λx.x x)z

2→ y (z z) = t′2 is non-erasing since t|2 = (λx.r)s
with r = xx, s = z and x ∈ fv(r).

5.2.1 Erasable Subterms

In Sec. 3.4.1, we noticed that, given a R0-derivation Π typing a term t, some parts of t
could be left untyped by Π e.g., the unique derivation Π concluding with x : [[ ]→ o] `
x I : o does not type the subterm I (where I = λx.x), although there are also derivations
typing x I such that it is typed (e.g., the one concluding with x : [[[o]→ o]→ o] ` x I : o).

Thus, in the term t = x I, the subterm I may or may not be typed, depending on
the R0-derivation typing t. However, let us notice now that there are terms t such that
no argument u of t may be typed as a subterm of t u. For instance, in (λx.y)u, the
argument u cannot be typed, whether u is HN or not (Example 3.5 in Sec. 3.4.1). Why
is that? As noted in Remark 3.2.4, λx.y may only be typed in R0 with a type of the
form [ ] → τ and thus, for all R0-derivation Π typing (λx.y)u, u is left untyped i.e.
2 /∈ Π̂. This is because u is an erasable subterm of (λx.y)u: indeed, (λx.y)u→ y and u
is absent from y. By the way, we may give a general definition of erasable subterms:
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Definition 5.3. Let t ∈ Λ and b ∈ supp(t). Then b is the positition of an erasable
subterm of t if there is a reduction sequence rs such that Restrs(b) = ∅.

Actually, even an unforgetful derivation Π cannot type the erasable subterms of its
subject (this may be proved by induction on b and rs in Definition 5.3). From the
type-theoretic point of view, if u is SN, then (λx.y)u also is, but no R-derivation Π can
be a certificate of strong normalization of (λx.y)u since a R0-typing of (λx.y)u cannot
“reach” u (i.e. cannot type u as a subterm), whether u is SN or not.

Now, if we want to characterize strong normalization in Λ, we need to consider
derivations that even type erasable subterms. For that, we need to modify system R0.
Since system R0 characterizes head normalization, we refer to it asH and we define a new
system that we refer to as S, which appears in [20] (slight variants appear in [14,36,60]).
System S has the same (multiset) types and judgments as H does, but is inductively
defined by the following rules:

x : [τ ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I I 6= ∅
Γ +i∈I ∆i ` t u : τ

app[∗]

Γ ` t : [ ]→ τ ∆ ` u : σ

Γ + ∆ ` t u : τ
app[ ]

Thus, S is similar to H/R0 (same ax-rule, same abs-rule, almost the same app-rule)
except when typing an application t u such that t that does not demand a typing of its
argument u (i.e. t : [ ] → τ for some τ). By induction on t, this proves that, if Π types
t in system S, then no subpart of t is untyped in Π, which is a good start for S to
characterize strong normalization!

For instance, the derivation on top of Sec. 3.4.1 is not valid in system S. However,
if a term u is typable in system S by a derivation Πu, then we can also type (λy.x)u in
S (compare again with Example 3.5):

x : [τ ] ` x : τ
ax

x : [τ ] ` λy.x : [ ]→ τ
abs

Πu �S ∆ ` u : σ

x : [τ ] + ∆ ` (λy.x)u : τ
app[ ]

Remark 5.7.

• The typing rule app[ ] can be understood as a controlled weakening/subtyping be-
cause t : [ ]→ τ is taken as t : [σ]→ τ . As remarked above, we need an irrelevant
system to type erasable subterms and to characterize strong normalization, but
system S may be considered as the least irrelevant choice to obtain this.

• Another way to modify system R0 so that strong normalization is characterized
by typability is the following:

1. Forbid the empty multiset in types.

2. Use the rules abs, app of system R0 (the argument must then be typed by
modification 1).
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3. Replace the ax-rule with the following irrelevant variant:

i0 ∈ I
x : [σi]i∈I ` x : σi0

axw

We thus obtain that a type system that is far more irrelevant than S is.

• See also system Sw in Sec. 5.2.4.

Let us prove now that system S indeed characterizes strongly normalizing λ-terms.

5.2.2 Subject Reduction and Expansion in S

As discussed in Sec. 3.3, subject reduction and expansion are crucial for an intersection
type system to characterize normalization. What about system S?

Notice that every redex of a typed S-typed term is typed but subject reduction
and expansion are not satisfied in system S for erasing reduction steps e.g., we have
(λy.x)u → x but x : [τ ] + ∆ ` x : τ is not S-derivable whenever ∆ is not the empty
context, because of the relevance of the ax-rule. Conversely, if u = z, then x : [τ ] ` x : τ
is S-derivable, but x : [τ ] ` (λx.y)u : τ is not.

However, weighted subject reduction and subject expansion are valid for non-erasing
reduction steps:

Property 5.1 (Weighted Non-Erasing Subject Reduction for S). If Π �S Γ ` t : τ
and t → t′ is a non-erasing reduction step, then there is a S-derivation Π′ such that
Π�S Γ ` t′ : τ and sz(Π′) < sz(Π).

Proof. This proposition is a particular case of Property 7.1, page 158, which is presented
with a complete proof.

Property 5.2 (Non-Erasing Subject Expansion for S). If �SΓ ` t′ : τ and t → t′ is a
non-erasing reduction step, then �SΓ ` t : τ .

Proof. This proposition is a particular case of Property 7.2, page 163, which is presented
with a complete proof.

Figure 3.2 is valid for non-erasing reduction steps of S, roughly because when reduc-
tion is not erasing, the app[∗]-rules typing the application of the redex are instances of
the app-rule of system R0.

For all contexts Γ, we define the domain dom(Γ) for Γ by dom(Γ) = {x ∈ V |Γ(x) 6=
[ ]}. A staightforward induction on the structure of Π shows the following result, some-
times referred to (maybe a bit abusively) as a relevance lemma:

Lemma 5.4 (Relevance). If �SΓ ` t : τ , then dom(Γ) = fv(t).

We also note that we may prove now that typability is stable for erasing head -
reduction or expansion steps, provided the argument is typable. We actually do that in
the particular case of the zero head reducible terms:

Lemma 5.5. If Π �S Γ ` t : τ and t = (λx.r)s t1 . . . tq → r t1 . . . tq = t′ is an erasing
reduction step (x /∈ fv(r)), then there is a S-derivation Π′ and a context Γ′ such that
Π�S Γ′ ` t′ : τ and sz(Π′) < sz(Π).



5.2. CHARACTERIZING STRONG NORMALIZATION 125

Proof. By induction on q. Only the case q = 0 is non-trivial. Thus, let us assume q = 0,
so that Π is of the form:

Π =

Πr � Γ ` r : τ

Γ ` λx.r : [ ]→ τ Πs �∆ ` s : σ

Γ + ∆ ` (λx.r)s : τ
app[ ]

where x /∈ fv(r) and, by Lemma 5.4, x /∈ dom(Γ). Then (λx.r)s → r and we can set
Π′ = Πr.

Lemma 5.6. If �SΓ′ ` t′ : τ , u is S-typable and t = (λx.r)s t1 . . . tq → r t1 . . . tq is an
erasing head reduction step, then there is a judgment Γ such that �SΓ ` t : τ .

Proof. By induction on q. Only the case q = 0 is non-trivial. Thus, let us assume q = 0,
so that Π′ concludes with Γ ` r : τ where x /∈ fv(r) and, by Lemma 5.4, x /∈ dom(Γ).

By hypothesis, there is a derivation Πu concluding with ∆ ` s : σ for some ∆ and
σ. We then set:

Π =

Π′ � Γ ` r : τ

Γ ` λx.r : [ ]→ τ Πu �∆ ` s : σ

Γ + ∆ ` (λx.r)s : τ
app[ ]

Adapting the general proof scheme To sum up, subject reduction and expansion
are not true in the general case for system S. They are ensured for the non-erasing
reduction steps only (Properties 5.1 and 5.2). We also have proved that, for erasing
steps, typability is stable under head reduction and head expansion, provided, in the
latter case, the created argument is typable (Lemmas 5.6 and 5.6).

The hitch is that we cannot prove at this stage that typability is stable under re-
duction and expansion (with a typable created argument) because Lemmas 5.6 and 5.6
do not ensure context preservation (see Sec. 3.3.3). Of course, this stability is a simple
consequence of Proposition 5.5 to come, but again, at this stage, we cannot prove it.

Since we do not have general subject reduction and expansion for system S, the
general proof scheme of Sec. 3.3.1 cannot1 be applied. But if we make the best of
Properties 5.1, 5.2 and of Lemmas 5.5, 5.6, this very scheme can adapted so that we
obtain that indeed, S-typability characterizes strong normalization. But this demands
one thing more: we need to restate “t is SN” as an inductive predicate, which is done in
the next section.

5.2.3 Strong Normalization as an Inductive Predicate

We defined in Sec. 2.2.3 strong normalization by “a term t is SN if there is no reduction
path of infinite length starting at t”. As justified in the previous section, we must present
strong normalization as an inductive predicate. We define below a new predicate, namely

1This does not come fully as a surprise because strong normalization differs from head and weak
normalizations, in that, SN is not about the existence of at least one reduction path leading to a final
state, as noted in Sec. 2.2, but states that every reduction path is finite. This is also materialized by the
fact that strong normalization is not stable under expansion in the general case: if the expansion of a
SN term creates a non-SN argument, then the expanded term is not SN e.g., y is SN, t := (λx.y)Ω→ y
but t is not SN.
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ISN (where the letter I stands for “Inductive”) and we prove that it is actually equivalent
to SN:

t1, . . . , tq are ISN
x t1 . . . tq is ISN (q > 0)

t is ISN
λx.t is ISN

r[s/x] t1 . . . tq and s are ISN
(λx.r)s t1 . . . tq is ISN

Lemma 5.7. For all t ∈ Λ. Then t is SN iff t is ISN.

Proof. This Lemma is a consequence of the Claims 5.1 and 5.2 below.

Claim 5.1. If t is SN, then t is ISN.

Proof. Let t be a SN term. We show that t is ISN by induction on the pair 〈η(t), |t|〉
(using the lexicographical order).

• The base case is 〈η(t), |t|〉 = 〈0, 1〉. Then t = x is a variable and x is ISN by
definition.

• If t = λx.t0, then the subterm t0 is SN and 〈η(t0), |t0|〉 < 〈η(t), |t|〉. The induction
hypothesis gives that t0 is ISN, and thus by definition, we get t = λx.t0 is ISN.

• If t is an application, then t = x t1 . . . tq or t = (λx.r)s t1 . . . tq (with q > 0).
The subterms tk are obviously SN with 〈η(tk), |tk|〉 < 〈η(t), |t|〉. It follows by the
induction hypothesis that ti is ISN for all k ∈ {1, . . . , q}. We now consider every
possible case.

– If t = x t1 . . . tq, then the fact that the tk are ISN implies that x t1 . . . tq is
ISN definition.

– If t = (λx.r)s t1 . . . tq, the subterm r is SN and 〈η(r), |r|〉 < 〈η(t), |t|〉. By the
induction hypothesis it follows that r is ISN. Moreover, let

t = (λx.r)s t1 . . . tq →β r[s/x]t1 . . . tq = t′

Since t′ is SN and η(t′) < η(t), then 〈η(t′), |t′|〉 < 〈η(t), |t|〉. By the induction
hypothesis it follows that t′ is ISN. Since s is also ISN, then “t is ISN” holds
by definition.

Claim 5.2. If t is ISN, then t is SN.

Proof. Let t be a ISN term. We show that t is SN by induction on the definition of ISN.

• If t = x t1 . . . tq is ISN with t1, ..., tq ISN, then by induction hypothesis we have
t1, ..., tq are SN, and it follows that t is SN.

• If t = λx.t0 with t0 is ISN, then, by induction hypothesis, we have t0 is SN, and it
follows that t is also SN.

• If t = (λx.r)s t1 . . . tq with s, r[s/x] t1 . . . tq ISN, then by induction hypothesis,
s and r[s/x] t1 . . . tq are SN. Moreover, the fact r[s/x] t1 . . . tq is SN implies that
r[s/x] and the tk are SN, and by observing that, if r → r′ then r[s/x]→ r′[s/x], we
obtain that r is SN because r[s/x] is. We show that t is SN by a second induction
on η(r) + η(s) +

∑
i=1...q η(ti).

Let us see how are all the reducts of t.
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– If t→ (λx.r′)s t1 . . . tq = t′, where r → r′ or t→ (λx.r)s′ t1 . . . tq = t′, where
s → s′, or t → (λx.r)s t1 . . . t

′
k . . . tq = t′, where ti → t′i, then t

′ is SN by the
second induction hypothesis.

– If t → r[s/x] t1 . . . tq = t′, then t′ is SN as already remarked by the first
induction hypothesis.

Since all the one-step reducts of t are SN, then t is SN.

5.2.4 Characterizing Strong Normalization

As explained, we first show that any typable term t is (I)SN.

Lemma 5.8. If t is S-typable, then t is (I)SN.

Proof. Let Π � Γ ` t : τ . We proceed by induction on sz(Π). When Π ends with the
rule ax or abs, the proof is straightforward, so that we consider a derivation ending with
app[∗] or app[ ], where t = x t1 . . . tq or t = (λx.r)s t1 . . . tq.

By construction, it is not difficult to see that there are subderivation (Πtk)k∈{1...q}
typing respectively tk such that (sz(Πtk) < sz(Π))k∈{1...q} so that the induction hypoth-
esis implies that the tk (with 1 6 k 6 q) are ISN. In the second, s is ISN for the same
reason. We analyse the different subcases:

• If t = x t1 . . . tq, then the fact that the tk (1 6 k 6 q) are SN directly implies that
x t1 . . . tq is SN.

• If t = (λx.r)s t1 . . . tq, there are two subcases:

– x ∈ fv(r). Using Property 5.1, we get Π′ � Γ ` r[s/x] t1 . . . tq : τ such that
sz(Π′) < sz(Π). Then the induction hypothesis gives r[s/x] t1 . . . tq is SN.
This, together with the fact that s is SN, implies that t is SN.

– x /∈ fv(u). By Lemma 5.5, we get Π′ typing r[s/x] t1 . . . tq with sz(Π′) <
sz(Π). Then the induction hypothesis gives that r[s/x] t1 . . . tq is SN. This,
together with the fact that s is SN, implies that t is SN.

And any SN term turns out to be typable:

Lemma 5.9. If t is (I)SN, then t is S-typable.

Proof. We reason by induction on “t is ISN”. The two first cases are straightforward.
Let t = (λx.r)s t1 . . . tq be ISN and coming from the assumption that r[s/x] t1 . . . tq

and s are ISN. By the induction hypothesis, r[s/x] t1 . . . tq and s are both typable. We
consider two subcases. If x ∈ fv(r), then (λx.r)s t1 . . . tq is typable by Property 5.2.
Otherwise, x /∈ fv(r) and we use Lemma 5.6.

Lemma 5.8, 5.9 allow us to conclude with the equivalence between typability and
strong-normalization for the λ-calculus (first part of the following theorem):
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i0 ∈ I
Γ;x : [τi]i∈I ` x : τi0

ax
Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I I 6= ∅
Γ +i∈I ∆i ` t u : τ

app[∗]

Γ ` t : [ ]→ τ ∆ ` u : σ

Γ + ∆ ` t u : τ
app[ ]

Figure 5.1: System Sw

Proposition 5.5. [19, 20] Let t be a λ-term. Then t is S-typable iff t is strongly
normalizing.
Moreover, if t is S-typable with a derivation Π, then sz(Π) gives an upper bound to the
maximal length of a reduction sequence starting at t.

Proof. The second part of the statement is proved in the next section, by first modifying
system S.

5.2.5 Obtaining an Upper Bound for Normalizing Sequence

In this section, we sketch the proof of the last part of Proposition 5.5 i.e. if Π is a
S-derivation typing t, then not only is t strongly normalizing, but sz(Π) also gives an
upper bound for the length of a reduction sequence starting at t.

To prove that, the idea is the following: we embed system S into a new system Sw,
which enjoys weighted subject reduction contrary to S and preserves the size of system
S. System Sw is given by Fig. 5.1.

The irrelevance of system Sw is more precisely captured by the following lemma:

Lemma 5.10 (Weakening). If Π �Sw Γ ` t : τ , then, for all Γ′ > Γ, there is a Sw-
derivation Π′ � Γ′ ` t : τ such that sz(Π′) = sz(Π).

Proof. The proof is straightforward by induction on Π. It is true for “axiom derivations”
thanks to axw.

Lemma 5.10 is used in the proof of Substitution Lemma (Lemma 5.12), and again in
the proof of subject reduction (Property 5.3) to handle the possible occurrence of app[ ]

at the root of a derivation typing a redex.
Lemma 5.4 is of course false for Sw, but we have an inclusion:

Lemma 5.11. If �SwΓ ` t : τ , then dom(Γ) ⊃ fv(t).

Proof. Straightforward by induction on the structure of the Sw-derivations.

Remark 5.8 (Failure of Subject Expansion). Subject expansion does not hold in system
Sw e.g., we have t := λz.(λx.y)z → λz.y =: t′, and we may derive ` λx.y : [ ] → τ in
Sw (assign τ to y), but it is not possible to derive ` t : [ ] → τ : indeed, by app[∗], the
occurrence of z in t must be typed and t has types of the form [σi]i∈I → τ where I 6= ∅.

We have a substitution Lemma with a quantitative flavour:
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Lemma 5.12. If Π �Sw Γ;x : [σi]i∈I ` t : τ and, for all i ∈ I, Φi �Sw Γui ` u : σi, then,
there exists a derivation Πt[u/x] concluding with Γ + (+i∈IΓ

u
i ) ` t[u/x] : τ such that

sz(Πt[u/x]) 6 sz(Π) + (+i∈Isz(Φi))− |I|.

Proof. By induction on the structure of Π. The only interesting case is axw. The abs and
app-rules are handled as in the relevant case. See for instance the proof of Lemma 7.4 for
a system Sλµ that extends system S for λµ-calculus (system Sλµ resorts to the formalism
of auxiliary derivations introduced in Sec. 7.1). We have now two subcases:

• t = x: let us assume that Π is of the form:

i0 ∈ I
Γ;x : [σi]i∈I ` t : τ

axw

Since Φi0 concludes with Γui0 ` u : σi0 , by Lemma 5.10, there is a derivation
Φ′i0 concluding with Γ + (+i∈IΓ

u
i ` u : σ0 such that sz(Φ′i0) = sz(Φi0). We

have sz(Π) = 1 and |I| − 1 6 +i∈I\{i0}sz(Φi) (for all i, 1 6 sz(Φi)), sz(Φ′i0) =
sz(Φi0) = sz(Π)−1+sz(Φi0) 6 sz(Π)−1+sz(Φi0)+(+i∈I\{i0}sz(Φi)−(|I|−1)) =
sz(Π) + (+i∈Isz(Φi))− |I|.

• t = y 6= x: let us assume that Π is of the form:

τ occurs in Γ(y)

Γ;x : [σi]i∈I
y : τaxw

Let us define Π′ by
τ occurs in Γ(y)

Γ + (+i∈IΓ
u
i ) ` y : τ

axw

so that sz(Π′) = 1. We conclude because +i∈Isz(Φi) > |I| (see previous case), so that
sz(Π′) = 1 = sz(Π) 6 sz(Π) + (+i∈Isz(Φi))− |I|.

We can prove now weighted subject reduction for system Sw:

Property 5.3. Let Π�Sw Γ ` t : τ . If t→ t′, then there is a Sw-derivation Π′ concluding
with Γ ` t′ : τ such that sz(Π′) < sz(Π).

Proof. By induction on the relation →. We only show the main cases of reduction at
the root t = (λx.r)s → r[s/x], the other ones being straightforward (note that every
subterm of a Sw-typed term is also typed). We have now two subcases, depending on
the rule typing the application of the redex:

• app[∗]: the derivation Φ has the following form:

Φ =

Πr � Γr;x : [σi]i∈I ` r : τ

Γr ` λx.r : [σi]i∈I → τ (Φi � Γi ` s : σi)i∈I

Γ ` (λx.r)s : τ
app[∗]

where Γ = Γ + (+i∈IΓi) and I 6= ∅. By Lemma 5.12 applied to t = r and u = s,
there is a derivation Π′ concluding with Γ ` r[s/x] : τ and sz(Π′) 6 sz(Πr) +
(+i∈Isz(Φi))− |I|.
Since sz(Π) = sz(Πr) + (+i∈Isz(Φi)) + 2, we have sz(Π′) < sz(Π) as expected.
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• app[ ]: the derivation Φ has the following form:

Φ =

Πr � Γr ` r : τ

Γr ` λx.r : [ ]→ τ Φ� Γs ` s : σ

Γ ` (λx.r)s : τ
app[ ]

where Γ = Γr + Γs and x /∈ dom(Γr). By Lemma 5.11, x /∈ r, so that t′ = r. By
Lemma 5.10, there is a Sw-derivation Π′�Γr+Γs ` r : τ such that sz(Π′) = sz(Πr).

Since sz(Π) = sz(Πr) + sz(Πs) + 2, we have sz(Π′) < sz(Π) as expected.

We may then prove by induction on n:

Lemma 5.13. Let t ∈ Λ, rs a reduction sequence of length n starting at t and Π a
Sw-derivation typing t. Then sz(Π) > n+ 1.

Proof. The case n = 1 is obvious and the inductive step is a direct consequence of
Property 5.3.

The lemma entails the last part of Proposition 5.5. This concludes the presentation
of the techniques that will be exported to λµ-calculus in Chapter 7.



Part II

Resources for Classical Natural
Deduction
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Presentation
Lambda-Mu calculus (λµ) is a computational interpretation of classical natural deduc-
tion, as λ-calculus is for intuitionistic natural deduction.

It was for a long time believed that the Curry-Howard correspondence could not be
extended to classical logic until Griffin [53] observed that Feilleisen’s C operator can be
typed with the double-negation elimination and the control operator call−cc of Scheme
with Peirce’s Law (see Sec. 6.1.1). There were various reasons for this belief:

• If two proofs of e.g., the classical sequent caclculus Π and Π′ conclude with same
judgment Γ ` ∆, then they are equal up to cut-elimination steps (which correspond
to β-reduction steps via the Curry-Howard isomorphism).

• Joyal’s Lemma [70]: a cartesian closed category with a dualizing object is a pre-
order, which generalizes the previous fact.

• The fact that classical logic is not constructive e.g., from a proof an existantial
proposition ∃x. P(x), one may not necessarily extract an existential witness as
in the intuitionistic case (but only finite list of possible candidates, by Herbrand’s
Theorem).

After Griffin, λµ-calculus was introduced by Parigot [89] as a simple term notation
for classical natural deduction proofs, and the (simply typed) λµ-calculus is an extension
of the (simply typed) λ-calculus that encodes usual control operators as call−cc. Other
calculi were proposed since then, as for example Curien-Herbelin’s λµµ̃-calculus [32]
based on classical sequent calculus.

Many notions relative to λ-calculus can be extended to λµ, like normalization (e.g.,
head, weak or strong). Parigot [91] proved that simply typable λµ-terms are strongly
normalizing (this result is stated in Theorem 6.1). One may want to know whether
types can provide the same kind of characterizations of head/weak/strong normaliza-
tion in λµ-calculus as they do in λ-calculus (see Propositions 3.7, 5.1 and 5.5), and not
just a guarantee of normalization (i.e. only the implication “typable ⇒ normalizing”).
Laurent [73] pioneered a type system featuring intersection and union types, char-
acterizing head and weak normalization in λµ-calculus. Van Bakel [109] later proposed
intersection type systems characterizing strong normalization [110,111].

Aside from the work of Laurent and van Bakel et al. cited above, intersection and
union types were also studied in the framework of classical logic [38,65], but there is no
work adressing the problem from a quantitative perspective. Type-theoretical characte-
rization of strong-normalization for classical calculi were provided both for λµ [110] and
λµµ̃-calculus [38, 108], but the (idempotent) typing systems do not allow constructing
decreasing measures for reduction, thus a resource aware semantics cannot be extracted
from those interpretations. Models for classical calculi were proposed in [4,98,113], thus
limiting the characterization of operational properties to head-normalization. Different
small step semantics for classical calculi were developed in the framework of needed-
ness [6, 92], without resorting to any resource aware semantical argument.

Towards Non-Idempotent Types Both Laurent and van Bakel’s work feature idem-
potent type operators. Thus, there are still some crucial aspects of computation, like
the use of resources (e.g., time and space), that still need to be logically understood,
as they were with non-idempotent intersection types for λ-calculus (see beginning of



Chapter 3). Extending the understanding of resource consumption outside the pure λ-
calculus is a big challenge facing the programming language community. It would lead
to a new understanding of programming languages and proof assistants, with a clean
type-theoretic account of resource capabilities.

We want in particular to associate quantitative information to languages being able
to express control operators, that can enrich the declarative programming languages
with imperative features.

• One of the contribution of this thesis, presented in Chapter 7, is the definition
of two resource aware type systems for the λµ-calculus based on non-idempotent
intersection and union types, coming along with the very simple combinato-
rial arguments (provided by the non-idempotent approach, see Sec. 3.4.3 and Re-
mark 3.15 for instance), only based on a decreasing measure, to characterize head
or strongly normalizing terms by means of typability.

• The second contribution of this thesis (Chapter 8) in the field of classical calculi
is the definition of a new resource aware operational semantics for λµ, called λµr,
which is compatible with the non-idempotent typing system defined for λµ. In-
deed, we first define a set of reduction rules –inspired from the substitution at a
distance paradigm [3, 60], presented in Sec. 2.4 and 4.2 – that gives a small-step
implementation of the λ-calculus. We then extend the typing system for λµ, so
that the extended reduction system λµr preserves (and decreases the size of) typ-
ing derivations. Using this arithmetical argument, we thus derive a very simple
characterization of strongly normalizing terms by means of typability, thus partic-
ularly simplifying existing proofs of strong normalization for small-step operational
semantics of classical calculi [93].

Before presenting these contributions, we dedicate a Chapter 6 to the basics of pure and
simply λµ-calculus and in particular, to the relation between the operational semantics
of λµ and cut-elimination in minimal classical natural deduction.
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Chapter 6

The Lambda-Mu Calculus

In this chapter, we present the pure (Sec. 6.2.1) and simply typed (Sec. 6.2.2) λµ-calculus.
As it turns out, strong normalizing terms can also be defined in λµ and simple typababil-
ity is a guarantee of strong normalization as in the case of the simply typed λ-calculus.
This leads us to look for type-theoretic characterizations in Chapters 7 and 8.

• Section 6.1 briefly presents a few ways to obtain classical logic from intuitionis-
tic/minimal natural deduction e.g., by adding the elimination of the double nega-
tion, the excluded middle and Peirce’s Law in Sec. 6.1.1 or by just allowing several
formulas in the right-hand sides of sequents in Sec. 6.1.2. In this latter section, we
present a focussed classical natural deduction which λµ-calculus is designed to be
the term calculus counterpart of via the Curry-Howard correspondence (Sec. 3.1.1).

• The λµ-calculus is then introduced in Sec. 6.2, first, in its pure untyped version
(Sec. 6.2.1) then in its simply typed version (Sec. 6.2.2). The operational semantics
of the pure λµ is presented in Sec. 6.2.3, just before being interpreted as a cut-
elimitation step (Sec. 6.2.4) in the simply typed case, still via the Curry-Howard
correspondence. The extension of the notions of head, weak or strong normal-
ization may be found in Sec. 6.2.5. Since every simply-typed term is strongly
normalizing (Theorem 6.1, due to Parigot [90,91]), this raises the question of char-
acterizing normalization that is handled in the two next chapters.

6.1 Classical Logic in Natural Deduction

In this section, we present different ways to obtain classical logic from intuitionistic
natural deduction. The last one is used to construct the λµ-calculus (Sec. 6.1.2).

6.1.1 Getting Classical Logic

Intuitionistic natural deduction NJ can be enriched with the constant ⊥, representing
falsehood, coming along with the elimination rule ex falso quodlibet meaning that any-
thing can be deduced from false:

Γ ` ⊥
Γ ` A

exfalso

Thus, if a collection of sequents (Γi)i∈I entail ⊥, it also entails any formula A.
Intuitionistic logic without ⊥ is known as minimal intuitionistic logic. In the presence

of ⊥, the negation of A, denoted ¬A, may be defined by ¬A = A→ ⊥. Indeed, by modus
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` ¬¬A→ A
¬¬e ` ((A→ B)→ A)→ A

Peirce
Γ ` A ∨ ¬¬A

exmid

Figure 6.1: Obtaining Classical Logic

ponens, we may deduce ⊥ from A and ¬A (A → ⊥). In NJ, we may easily derive the
sequent ` A → ¬¬A for any formula A (and actually, ` A → ((A → B) → B) for all
A, B) by starting with the two axiom rules giving A→ B ` A→ B and A ` A.

However, the converse implication ¬¬A → A (i.e. ((A → ⊥) → ⊥) → A), which
gives the complete equivalence between any formula A and its double-negation ¬¬A, is
valid for classical logic but not for intuitionistic logic. This implication is known as the
elimination of double negation.

Actually, there are several very well-known ways to obtain classical natural deduction
NK from NJ. For that, we may just add to NJ either:

• The elimination of double negation ¬¬e (discussed above),

• or Peirce’s Law Peirce,

• or the law of excluded middle exmid, allowing to assert A∨¬A for any formula A.

These 3 additional rules may be found in Fig. 6.1. Peirce’s Law is different from ¬¬e
and exmid in that, it does not (explicitly or implicitly) use the symbol ⊥. It can thus
be used to recover a minimal classical logic i.e. classical logic without the symbol ⊥ and
the rule exfalso.

Note that the law of excluded middle supposes that we also use the connective ∨
(disjunction). That is why it will not be addressed much here, but it provides however
a very direct obstruction to the last rule property for classical logic, whereas it is an
emblematic feature of intutionistic logic. For instance, in NJ, it is known (see e.g., [49],
5.2.1.) that any proof Π of a disjunction A ∨ B can be rewritten (with cut-elimination
steps) into a proof Π′ of A ∨ B concluding with an introduction of disjunction, which
shows that, if A ∨ B is provable, then either A or B is provable. With the excluded
middle, ` C ∨¬C is immediately derivable, whereas ` C and ` ¬C could be unprovable
(e.g., when C is a propositional variable) or at least, very difficult to prove.

The last rule property, also valid (in NJ) for existential propositions, illustrates why
intuitionistic logic is essentially constructive whereas classical logic is not. This is one of
the main reasons why, until the observations of Griffin [53] (p. II), it was thought that
the Curry-Howard correspondence (Sec. 3.1.1) could not be extended to classical logic,
since a program is supposedly an effective/constructive computation.

6.1.2 Focused Classical Natural Deduction

An alternative way to recover classical natural deduction consists in just allowing several
formulas on the right-hand sides of sequents with an axiom rule of the form:

Γ, A ` A,∆
ax

for any formula A and sequences of formulas Γ and ∆ (with an implicit exchange rule).
Indeed, recalling that ¬A = A→ ⊥, excluded middle becomes easily derivable with this
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formalism:

A ` A,⊥
ax

` A,¬A
→i

More subtly, we may also derive Peirce’s Law, which is done in Fig. 6.2.

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Figure 6.2: Infering Peirce’s Law

Simply typed λµ-calculus is based upon a “focused” variant of natural deduction with
several formulas on the right-hand side of a sequent: a sequent is then a triple of the
form Γ ` A | ∆, in which A is called the active formula. In that case, implication can
be introduced or eliminated (modus ponens) only in the active part of the sequents. But
we may freely choose which formula on the right-hand side of ` is active, thanks to the
rule:

Γ ` B | A,∆
Γ ` A | B,∆

act

Contraction is implicit in ∆, but we also resort to an explicit rule to contract the active
formula if it also occurs inactively:

Γ ` A | A,∆
Γ ` A | ∆

contrac

With this focused style, the proof of Peirce’s Law becomes:

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |

Figure 6.3: Infering Peirce’s Law (Focused Version)

6.2 The Lamda-Mu Calculus

This section gives the syntax (Sec. 6.2.1) and the operational semantics (Sec. 6.2.3) of
the λµ−calculus [89].
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Command [α]u

u

0
α

µ-Abstraction µα.c

c

0
µα

Figure 6.4: Lambda-Mu Objects as Labelled Trees

6.2.1 Lambda-Mu Terms

We consider a countable infinite set of variables x, y, z, . . . (resp. continuation names
α, β, γ, . . .). The set of objects (Oλµ), terms (Tλµ) and commands (Cλµ) of the λµ-
calculus are given by the following grammars (see Fig. 6.4):

(objects) o ::= t | c
(terms) t, u, v ::= x | λx.t | tu | µα.c
(commands) c ::= [α]t

We sometimes write Tλ (instead of Λ) for the set of λ-terms. Notice that the grammar
extends λ-terms with two new constructors: commands [α]t and µ-abstractions µα.c.
The size of an object o is also denoted by |o| (straighforward extension of Def. 2.1).
Free and bound variables of objects are defined as expected, in particular fv(µα.c) :=
fv(c) and fv([α]t) := fv(t). Free names of objects are defined as follows:

fn(x) := ∅ fn(tu) := fn(t) ∪ fn(u)
fn(λx.t) := fn(t) fn([α]t) := fn(t) ∪ {α}
fn(µα.c) := fn(c) \ {α}

Bound names are defined accordingly. We work with the standard notion of α-
conversion i.e. renaming of bound variables and names, thus for example:

[δ](µα.[α](λx.x))z ≡ [δ](µβ.[β](λy.y))z

Subsitutions are defined as in Sec. 2.1.2 and replacements are (finite) functions
from names to terms specified by {α1//u1, . . . , αn//un} (n ≥ 0). Intuitively, the operation
{u//α} passes the term u as an argument to any command of the form [α]t. Formally, the
application of the replacement Σ to the term o, written oΣ, may require α-conversion
in order to avoid the capture of free variables/names, and is defined as:

x{u//α} := x (λz.t){u//α} := λz.t{u//α}
([α]t){u//α} := [α](t{u//α})u (tv){u//α} := t{u//α}v{u//α}
([γ]t){u//α} := [γ]t{u//α} (µγ.c){u//α} := µγ.c{u//α}

For example, if I = λz.z, then (x(µα[α]y)(λz.z x))[I/x] = I(µα[α]y)(λz.z I), and
[α]x(µβ.[α]y){I//α} = [α](xµβ.[α]y I))I.

Substitution and replacement enjoy the following well-known interaction properties.

Lemma 6.1. 1. If x /∈ fv(v) and x 6= y then o[u/x][v/y] = o[v/y][u[v/y]/x].

2. If α /∈ fn(v) and α 6= β then o{u//α}{v//β} = o{v//β}{u{v//β}//α}.

3. If x /∈ fv(v), then o[u/x]{v//α} = o{v//α}[u{v//α}/x].

4. If α /∈ fn(v), then o{u//α}[v/x] = o[v/x]{u[v/x]//α}.
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Γ;x : A ` x : A | ∆
ax

Γ;x : A ` t : B | ∆
Γ ` λx.t : A→ B | ∆

abs

Γt ` t : A→ B | ∆t Γu ` u : A | ∆u

Γt :: Γt ` t u : B | ∆t :: ∆u
app

Γ ` t : B | α : A,∆

Γ ` µα.[β]t : A | (β : B) :: ∆
µ1

Γ ` t : A | α : A,∆

Γ ` µα.[β]t : A | ∆
µ

Figure 6.5: Simply Typing the λµ-Calculus (System Curry
λµ
0 )

6.2.2 Simply Typed Lambda-Mu Calculus

We consider the set of simple types defined in Sec. 3.1.3 and we present the Parigot’s
extension of system Curry0 to λµ-calculus.

A (variable) context Γ, also called a variable assignment is a partial function from
the set of term variables V to the set of simple types and a (name) context ∆, also
called a name assignement is a partial function from the set of names to the set of
simple types. The domain of a name assignment ∆ is also written dom(∆). The notion
of compatible name assignments is naturally extended and if ∆1, ∆2 are compatible,
their join is also written ∆1 :: ∆2. If dom(∆1) ∩ dom(∆2) = ∅, we may also write ∆1; ∆2

instead of ∆1 :: ∆2.
The set of derivations of simply typed λµ-calculus is defined inductively by the rules

of Fig. 6.5.
Those rules are licit only if the joins of variables and name contexts are defined.

Forgetting about variables, terms and name, we recognize the proof calculus sketched in
Sec. 6.1.2: the rule µ1 corresponds to rule act and the rule µ2 to contrac.

6.2.3 Operational Semantics

The λµ-calculus is given by the set of objects introduced in Sec. 6.2.1 and the reduction
relation→λµ , often written just→, which is the closure by all contexts of the following
rewriting rules

(λx.t)u →β t[u/x]
(µα.c)u →µ µα.c{u//α}

Thus, β-reduction is defined as before and the calculus is extended with a µ-rule,
which is illustrated by Fig. 6.6 (compare with Fig. 2.6). Its operational semantics of λµ-
calculus is perhaps better understood when we see how subject reduction is processed
for typed terms (Sec. 6.2.4). Note that µ-reduction does not destroy the µ-abstraction
of the fired redex, whereas β-reduction destroys the λ-abstraction of the fired β-redex.

An alternative specification of the µ-rule, suggested by Andou [5], is given by (µα.c)u
→µ µγ.c{γ.u//α}, where {γ.u//α} denotes the fresh replacement meta-operation as-
signing [γ](t{γ.u//α})u to [α]t (thus changing the name of the command), in contrast to
{u//α} introduced in Sec. 6.2.1 which replaces [α]t by [α](t{u//α})u. We remark how-
ever that the resulting terms µα.c{u//α} and µγ.c{γ.u//α} are α-equivalent; thus e.g.,



140 CHAPTER 6. THE LAMBDA-MU CALCULUS

µα.([α]x){u//α} = µα.[α]xu ≡ µγ.[γ]xu = µγ.([α]x){γ.u//α}. We keep in mind this
alternative formulation of the µ-rule which will justify the operational semantics of the
λµr-calculus that will be introduced in Sec. 8.1.

Redex: (µα.c)s

µα

@

c

ri

α

ri

α

s

Reduct: µα.c{s//α}

c

ri s

@

α

ri s

@

α

µα

Figure 6.6: Mu-Reduction from the Tree Perspective

A typical example of expressivity in the λµ-calculus is the encoding of the control
operator call−cc by setting call−cc := λy.µα.[α]y(λx.µβ.[α]x) which gives raise to
the following reduction sequence:

call−cc t u1 . . . un →β (µα.[α]t(λx.µβ.[α]x))u1 . . . un
→µ (µα.[α]t(λx.µβ.[α]xu1)u1)u2 . . . un
→∗µ µα.[α]t(λx.µβ.[α]xu1 . . . un)u1 . . . un

6.2.4 Subject Reduction for Simply Typed Lambda-Mu

The operational semantics of the λµ-calculus is designed so that a µ-reduction step
mimicks a cut-elimination step for the focused classical natural deduction of Sec. 6.1.2:

Proposition 6.1. Simply typed λµ-calculus enjoys subject reduction: if o →λµ o
′ and

Γ ` o : B | ∆ is derivable, then Γ ` o′ | ∆ is derivable.

y : (A→ B)→ A ` y : (A→ B)→ A |

x : A ` x : A | β : B

x : A ` µβ.[α]x : B | α : A

` λx.µβ.[α]x : A→ B | α : A

y : (A→ B)→ A ` y(λx.µβ.[α]x) : A | α : A

y : (A→ B)→ A ` µα.[α]y(λx.µβ.[α]x) : A |
` λy.µα.[α]y(λx.µβ.[α]x) : (A→ B)→ A)→ A |

Figure 6.7: Simply Typing call-cc
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We do not give a proof of this proposition, but it is illustrated by Fig. 6.8 by consid-
ering a derivation Π simply typing a µ-redex (µα.[γ]r)s: we indicate only the types that
are involved in the correctness of the reduction (we thus omit most part of the variable
and name contexts). Obtaining a derivation Π′ typing the reduct µα.[γ]r{s//α} from
the derivation Π typing the redex (µα.[γ]r)s is done by:

• Destroying the app-rule of the redex at the root of Π.

• Creating nested app-rules above each α-naming rule in Πr. Those α-naming rule
are applied to subterms ri typed with A→ B in Π.

• Duplicating the argument derivation Πs typing the argument s of the redex with
A as argument derivations of the aforementioned app-rules.

• Note that the derivations Πi may be nested one in another (so that in the derivation
typing the reduct, some Π′i may be not quite equal to Π′i).

Since the ri are typed with A→ B, then ri s is correctly typed with B. But now, in Π′,
the α-naming rules save the type B instead of A→ B in Π.

Πi(i ∈ I)

ri : A→ B | γi : Ci; α : A→ B

µγi.[α]r : Ci | α : A→ B

Πr

r : C | γ : C; α : A→ B

µα.[γ]r : A→ B | γ : C

Φ

s : A
app

(µα.[γ]r)s : B | γ : C

Π′i(i ∈ I)

ri{s//α} : A→ B | γi : Ci; α : B
app

ri{s//α} s : B | γi : Ci; α : B

µγi.[α]ri{s//α} s : Ci | α : B

Πr

Φ

s : A

r{s//α} : C | γ : C; α : B

µα.[γ]r{s//α} : B | γ : C

Figure 6.8: Subject Reduction for Simply Typed Λµ

6.2.5 Normalization in Lambda-Mu Calculus

Let us describe now a few variants of normalization1 in λµ-calculus. A normal form
of Λµ is a term that does not contain a redex (i.e. (λx.r)s or (µα.[γ]r)s) and things go
smoothly with weak and strong normalization:

Definition 6.1.

• A λµ-object o is said to be weakly normalizing if there is a reduction sequence
starting at o reaching a normal form.

• A λµ-object o is said to be strongly normalizing if there is no infinite reduction
sequence starting at o.

1By lack of time and space, we did not study weak normalization (and its prospective type-theoretic
characterisations) in λµ-calculus in the course of this PhD. Unforgetfulness (Definition 5.2) can probably
be adapted for Λµ.
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The following proposition, coming from Parigot [91], is an extension of Theorem 3.1:

Theorem 6.1. If a λµ-object is simply typable, then it is strongly normalizing.

Head normal forms and head reducible terms are a bit more complicated to define
in Λµ. A HNF of Λµ is an object consisting in a redex ((λx.r)s or (µα.[γ]r)s) applied
to a stack of arguments t1 . . . tq, then a series of possibly interwoven abstractions λx or
µα.[γ], that can end with a naming [α]. Formally, we define head-contexts Oh by the
following grammar:

Oh ::= Th | Ch
Th ::= 2 t1 . . . tq(q > 0) | λx.Th | µα.Ch
Ch ::= [α]Th

A head-normal form is an object of the form Oh[x], where x is any variable replacing
the constant 2 (x may be captured in Oh). Thus, for example µα.[β]λy.x(λz.z) is a head-
normal form. An object o ∈ Oλµ is said to be head-normalizing, written o ∈ HN(λµ),
if o →∗λµ o

′, for some head-normal form o′. Remark that o ∈ HN(λµ) does not imply
o ∈ SN(λµ) while the converse necessarily holds. We write HN(λ) and SN(λ) when t is
restricted to be a λ-term and the reduction system is restricted to the β-reduction rule.

A redex u = (λx.r)s or u = (µα.[γ]r)s in an object of the form t := Oh[u] is called the
head-redex of t. The reduction step o → o′ contracting the head-redex of o is called
head-reduction. The reduction sequence composing head-reduction steps until head-
normal form is called the head-strategy. If the head-strategy starting at o terminates,
then o ∈ HN(λµ), while the converse will be stated later (cf. Thm. 7.1), as it was proved
for λ-calculus (Proposition 3.8).

A reduction step o → o′ is said to be erasing iff o = (λx.u)v and x /∈ fv(u), or
o = (µα.c)u and α /∈ fn(c) (recall the beginning of Sec. 5.2) e.g., (λx.z)y →β z and
(µα.[β]x)I →µ µα.[β]x are erasing steps. A reduction step o → o′ which is not erasing
is called non-erasing. Reduction is stable by substitution and replacement. More
precisely, if o → o′, then o[u/x] → o′[u/x] and o{u//α} → o′{u//α}. This gives the
following corollary.

Corollary 6.1. If o[u/x] is SN (resp. o{u//α} is SN) , then o is also SN.



Chapter 7

Non-Idempotent Intersection and
Union Types for Lambda-Mu

In this chapter, we present the first contribution of this thesis, that is published in [62].
We introduce two types systems Hλµ and Sλµ that characterize normalization in λµ-
calculus (head and strong respectively), and do not just ensure it. For that, we will
resort to intersection and union types, to overcome the limitations of simple typing.

In Chapter 6, we presented the pure and the simply typed λµ-calculus of Parigot [89]
and we stated one of Parigot’s theorems (Theorem 6.1), that establishes the strong
normalization of simply typed λµ-calculus.

But note that Parigot’s theorem is not a characterization and that the simple types
for λµ suffer from the same drawbacks as they do for λ-calculus. For instance, we recall
that the normal form ∆ = λx.x x is not a simply typable λ-term. The introduction of
names in the operational semantics of λµ actually raises new examples of non-simply
typable normal forms e.g., t := x(µβ.[α]I)(µβ.[α]K) (where I = λx.x and K = λxy.x):
indeed, λx.x has simple types of the form A → A and K simple types of the form
A′ → B′ → A′ and the equality A → A = A′ → B′ → A′ is impossible with simple
types (because A′ and B′ → A′ do not have the same number of symbols), so that the
free name α cannot save both the type of I and that of K.

The idea behind intersection type systems was the following (introduction of Sec. 3.2):
each occurrence of any variable x may be given a different type (and even several dif-
ferent types), what may be described as a form of “unconstrained polymorphism”. The
types assigned to x are then collected by means of the intersection operator.

The idea behind (intersection and) union type systems for λµ-calculus [73] is the
counterpart of this relaxation for names instead of just variables: a name α may be used
to save as many types as we want. The types that α saved are colleced by means of the
union operator.

Concretely, in an intersection and union type system, a name may be assigned a new
type (or several new ones) each time that it occurs in a command. Thus, the term t
above becomes easily typable and more generally, it is easy to type any normal form of
the λµ-calculus. With unconstrained polymorphic variables and names, it does not come
as a suprise that we also recover subject expansion, which is the second ingredient (after
the typing of the NF) to obtain an implication “Normalizing⇒ Typable”, as it has been
already noticed many times in this document (e.g., Sec. 3.3.1 for head/weak normaliza-
tion or end of Sec. 5.2.2 for strong normalization). Along with the direct implication
“Typable ⇒ Normalizing”, this gives the expected characterization of normalization by
typability.

143
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By the way, why using a union operator rather than also using intersection for names
? Intuitively, because variable contexts are located on the left-hand side of ` and name
contexts on its right-hand side. But we recall that A1, . . . , Am ` B1, . . . , Bn corresponds
to A1 ∧ . . . ∧ Am ` B1 ∨ . . . ∨ Bn. Thus, a variable x that has been assigned several
formulas has morally been assigned their conjunction and a name α that saves several
formulas morally saves their disjunction. More semantically, if we collected the types
given to a name with the intersection ∧ instead of ∨, we would lose the Curry-Howard
correspondence. For instance, instead of typing some λµ-term with A ∨ ¬A, we would
type it with A ∧ ¬A, which is a bit problematic...

Remark 7.1. There also exists types systems for λµ-calculus featuring only intersection
(but not union) types, but still characterizing normalization [110, 111]. Indeed, the use
of union types for names may be bypassed by suitably resorting to subtyping (which
may be seen as a form of weakening) and by restricting just a bit the polymorphism of
names.

Let us understand how this works with an example and assume that the name α both
saves A → C and B → C i.e. α saves A → C ∨ B → C. Since in propositional logic,
(A→ C)∨(B → C) implies (A∧B)→ C, the name assignement α : (A→ C)∨(B → C)
may be weakened into α : (A ∧ B) → C. Note that this works only because the arrow
types A→ C and B → C have the same target C and this kind of formalism supposes
that the names are imposed to save types with a common target.

Thus, in order to characterize normalization in λµ, we will resort to intersection and
union type. But moreover, we want to do that in a quantitative way, as it was announced
in the introduction of Part II. Indeed, the non-idempotent approach provides very simple
combinatorial arguments, only based on a decreasing measure, to characterize head or
strongly normalizing terms by means of typability (recall Sec. 3.4 for HN and Sec. 5.2 for
SN). We show that for every typable term t with type derivation Π, if t reduces to t′, then
t′ is typable with a type derivation Π′ such that the measure of Π is strictly greater than
that of Π′. In the well-known case of the λ-calculus, this measure is simply based on the
structure of type tree derivations given by the number of its nodes (Definition 3.2), which
strictly decreases along reduction. However, in the λµ-calculus, the creation of nested
applications during µ-reduction may increase the number of nodes of the corresponding
type derivations, so that such a naive definition of measure is not decreasing anymore.
We then take into account not only the structure of derivations, but also the structure
(multiplicity and size) of certain types appearing in the derivations, thus ensuring an
overall decreasing of the measure during reduction.

7.1 Auxiliary Judgments and Choice Operators

As mentioned before, our results rely on typability of λµ-terms in suitable systems with
non-idempotent types. Let us find first more readable denotations for the known systems,
depending on:

• Their target calculus (for now, Λ and later, Λµ).

• The type of normalization they characterize (here, head or strong normalization).

• Whether they feature (or not) auxiliary judgments, to be presented in Sec. 7.1.
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x : [τ ] ` x : τ
ax

Γ ` t : τ

Γ \\x ` λx.t : Γ(x)→τ
abs

Γ ` t : [σk]k∈K→τ (Γk ` u : σk)k∈K

Γ ∧k∈K Γk ` t u : τ
app

Figure 7.1: System Hλ

x : [τ ] ` x : τ
ax

Γ ` t : τ

Γ \\x ` λx.t : Γ(x)→ τ
abs

(Γk ` t : σk)k∈K

∧k∈KΓk  t : [σk]k∈K
∧

Γ ` t : I → σ Γ′  u : I
Γ ∧ Γ′ ` t u : σ

app

Figure 7.2: System H′λ

System R0 (Sec. 3.2.4), that characterizes head normalization, for λ-calculus (Proposi-
tion 3.7) will be renamed Hλ and system S (Sec. 5.2.1), that characterizes strong nor-
malization for λ-calculus (Proposition 5.5), will be renamed Sλ.

Auxiliary judgments are a great tool to simplify the grammar of derivations of inter-
section type systems. We may introduce them to reformulate systemHλ (i.e.Gardner/de
Carvalho’s system R0), which is recalled in Fig. 7.1. For that, we now distinguish two
sorts of judgments: regular judgments of the form Γ ` t : σ assign types to terms,
and auxiliary judgments of the form Γ  t : I assign intersection types I := [σi]i∈I
to terms.

An equivalent formulation of systemHλ, calledH′λ, is given in Fig. 7.2. There are two
inherited forms of type derivations: regular (resp. auxiliary) derivations are those
that conclude with regular (resp. auxiliary) judgments. Notice that I = ∅ in rule (∧)
gives  u : [ ] for any term u, e.g.,  Ω : [ ], so that one can derive x : [τ ] ` (λy.x)Ω : τ
in this system (see Sec. 3.4.1). Notice also that systems Hλ and H′λ are relevant, i.e.
they lack weakening. Equivalence between Hλ and H′λ gives the following corollary of
Proposition 3.7:

Corollary 7.1. Let t ∈ Tλ. Then t is H′λ-typable iff t is HN.

Auxiliary judgments turn out to be fundamental to lighten the key tools of the forth-
coming typing systems for λµ.

Now, let us turn our attention to system Sλ, coming from Bucciarelli, Kesner and
Ventura and presented in Sec. 5.2.1. This system characterizes strong normalization
(Theorem 5.5) and its rules are recalled in Fig. 7.3. Applications t u are typed according
to one of the two following cases:

• If t is typed with [σi]i∈I → τ and I is not empty, then the argument u must be
typed with σi for all i ∈ I (while respecting the multiplicities of the σi). This
corresponds to an auxiliary typing of u with [σi]i∈I .

• If t is typed with [ ]→ τ (the source of the argument is empty), then the argument
u must still be typed with an arbitrary type σ.



146
CHAPTER 7. NON-IDEMPOTENT INTERSECTION AND UNION TYPES FOR

LAMBDA-MU

x : [τ ] ` x : τ
ax

Γ ` t : τ

Γ \\x ` λx.t : Γ(x)→τ
abs

Γ ` t : [ ]→τ ∆ ` u : σ

Γ ∧∆ ` t u : τ
app[ ]

Γ ` t : [σk]k∈K→τ (∆k ` u : σk)k∈K K 6= ∅
Γ ∧k∈K ∆k ` t u : τ

app[∗]

Figure 7.3: System Sλ

x : [τ ] ` x : τ
ax

Γ ` t : τ

Γ \\x ` λx.t : Γ(x)→τ
abs

(Γk ` t : σk)k∈K

∧k∈KΓk  t : [σk]k∈K
∧

Γ ` t : I→τ ∆  u : I∗

Γ ∧∆ ` t u : τ
app

Figure 7.4: System S ′λ

In the second case, σ is indeed arbitrary (it is unrelated to the type of t), and thus, may
be chosen non-deterministically (as long as u is typable with σ): this can be handled
with the following non-deterministic choice operator _∗, defined on intersection
types as follows:

[σi]
∗
i∈I :=

{
[τ ] if I = ∅ and τ is any arbitrary type
[σi]i∈I if K 6= ∅

System Sλ can then be reformulated in a system called S ′λ, given in Fig. 7.4 (the metavari-
able I still stands for a multiset type [σi]i∈I). As before, we use regular as well as aux-
iliary judgments. The two rules app[ ] and app[∗] are now subsumed in the unique rule
app. Notice that I = ∅ in rule ∧ is still possible, but derivations of the form  t : [ ],
representing untyped terms, will never be used. The operator _∗ in rule app is used
to impose an arbitrary type to an erasable term, i.e. when t has type [ ] → τ , then u
still needs to be typed with an arbitrary type [σ], as in system Sλ. Thus, the auxiliary
judgment typing u on the right premise of app cannot assign [ ] to u. This should be
understood as a sort of controlled weakening, as explained in Remark 5.7. Here is an
example of type derivation in system S ′λ, which is the transcription of the one concluding
Sec. 5.2.1:

x : [σ] ` x : σ

x : [σ] ` λy.x : [ ]→ σ

z : [τ ] ` z : τ

z : [τ ]  z : [τ ]

x : [σ], z : [τ ] ` (λy.x)z : σ

Since Sλ and S ′λ are equivalent, Theorem 5.5 gives:

Corollary 7.2. Let t ∈ Λ. Then t is S ′λ-typable iff t is SN.

Remark 7.2 (Auxiliary Judgments and Strictness). Strict intersection types [106] are
defined by forbidding intersection types as the targets of arrow types (see for instance
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[107], Def. 1.12) and usually, strict intersection type systems are presented so that a
term cannot have an intersection type: indeed, if we had Γ;x : [σi]i∈I ` t : [τj ]j∈J , then,
syntactically, the abs-rule would give Γ ` λx.t : [σi]i∈I → [τj ]j∈J and [σi]i∈I → [τj ]j∈J
i.e. the type system would not be correctly defined.

However, our syntax with auxiliary derivations/judgments does not suffer from this
problem: it is not licit to apply an abs-rule to an auxiliary judgment Γ;x : [σi]i∈I  t :
[τj ]j∈J and it is thus impossible to get a type that is not strict in H′λ and S ′λ.

7.2 Quantitative Type Systems for the λµ-Calculus

We present in this section two quantitative systems for the λµ-calculus, systems Hλµ
(Sec. 7.2.2) and Sλµ (Sec. 7.2.4), characterizing, respectively, head and strong λµ-normalizing
objects. Since λ-calculus is embedded in the λµ-calculus, then the starting points to de-
sign Hλµ and Sλµ are, respectively, H′λ and S ′λ, introduced in Sec. 7.1.

The set of head normalizing and that strongly normalizing λµ-objects were defined
in Sec. 6.2.5. We respectively denote them HN(λµ) and SN(λµ).

7.2.1 Types

We consider again a countable set O of type variables. The following categories of types
are defined:

(Object Types) A := C | U
(Command Type) C := #
(Union Types) U ,V ::= 〈σk〉k∈K
(Intersection Types) I ::= [Uk]k∈K
(Types) σ, τ ::= o | I → U

The constant # is used to type commands, union types to type terms and intersection
types to type variables (thus left-hand sides of arrows). Both [σk]k∈{1..n} and 〈σk〉k∈{1..n}
can be seen as multisets, representing, respectively, σ1∩ . . .∩σn and σ1∪ . . .∪σn, where
∩ and ∪ are both associative, commutative, but non-idempotent. We may omit the
indices in the simplest case: thus [U ] and 〈σ〉 denote singleton multisets. We define the
operator ∧ (resp. ∨) on intersection (resp. union) multiset types by : [Uk]k∈K∧[V`]`∈L :=
[Uk]k∈K + [V`]`∈L and 〈σk〉k∈K ∨ 〈τ`〉`∈L := 〈σk〉k∈K + 〈τ`〉`∈L, where + always means
multiset union.

Remark 7.3 (Overload of Metavariable o). The metavariable o is overloaded: it may
denote a type variable as well as an object of λµ, but this ambiguity will always be
straightforwardly dissolved by the context.

The non-deterministic choice operator _∗ is now defined on intersection and union
types:

[Uk]∗k∈K :=

{
[U ] if K = ∅ U 6= 〈 〉 is any arbitrary non-empty union type
[Uk]k∈K if K 6= ∅

〈σk〉∗k∈K :=

{
〈σ〉 if K = ∅ and σ is any arbitrary blind type
〈σk〉k∈K if K 6= ∅

where a blind type is a type of the form [ ]→ . . .→ [ ]→ o. The choice operator for
union type is defined so that (1) the empty union cannot be assigned to µ-abstractions
(see discussion on the non-emptiness of union-types, page 150) (2) subject reduction is
guaranteed in system Hλµ for erasing steps (µα.c)u→ µα.c (α /∈ fn(c)).
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The arity of types (resp. union multiset types) is defined by induction: for types
σ, if σ = I → U , then ar(σ) := ar(U) + 1, otherwise, ar(σ) := 0; for union multiset
types, ar(〈σk〉k∈K) := Σk∈K ar(σk). Thus, the arity of a type is the number of top-
level arrows that it contains. The cardinality of multisets is defined, as before, by
|[Uk]k∈K | = |〈σk〉k∈K | := |K|.

As before also, Variable assignments (Γ) are functions from variables to intersec-
tion multiset types. Similarly, name assignments (∆), are functions from names to
union multiset types. The domain of ∆ is given by dom(∆) := {α | ∆(x) 6= 〈 〉}, where
〈 〉 is the empty union multiset. When α /∈ dom(∆), then ∆(x) stands for 〈 〉. We write
∆ ∨∆′ for α 7→ ∆(α) + ∆′(α), where dom(∆ ∨∆′) = dom(∆) ∪ dom(∆′).

When dom(Γ) and dom(Γ′) are disjoint, we may write Γ; Γ′ instead of Γ ∧ Γ′. We
write x : [Uk]k∈K ; Γ, even when K = ∅, for the following variable assignment (x :
[Uk]k∈K ; Γ)(x) = [Uk]k∈K and (x : [Uk]k∈K ; Γ)(y) = Γ(y) if y 6= x. Similar concepts
apply to name assignments, so that α : 〈σk〉k∈K ; ∆ and ∆ \\α are defined as expected.

We now present our typing systems Hλµ and Sλµ , both having regular (resp. aux-
iliary) judgments of the form Γ ` t : U | ∆ (resp. Γ  t : I | ∆), together with
their respective notions of regular and auxiliary derivations. An important syntactical
property they enjoy is that both are syntax directed, i.e. for each (regular/auxiliary)
typing judgment j there is a unique typing rule whose conclusion matches the judgment
j (Remark 3.4, p. 83). This makes our proofs much simpler than those arising with
idempotent types which are based on long generation lemmas (see also Sec. 3.2.1).

7.2.2 System Hλµ

In this section we present a quantitative typing system for λµ, called Hλµ , characterizing
head λµ-normalization. It can be seen as a first intuitive step to understand the typing
system Sλµ , introduced later in Sec. 7.2.4, and characterizing strong λµ-normalization.
However, the two systems will not be described and studied in the same way: by lack
of space we choose to discuss Hλµ in a more informal and compact way, while reserving
more space and discussion to system Sλµ .

The (syntax directed) rules of the typing system Hλµ appear in Fig. 7.5. Rule app is
to be understood as a logical admissible rule: if union (resp. intersection) is interpreted
as the ∨ (resp. ∧) logical connective, then ∨k∈K (Ik ⇒ Uk) and (∧k∈K Ik) implies
(∨k∈K Uk). Intuitively, if (1) in a family of implication, at least one is true and (2) all
the premises of the implications are true, then we may conclude that at least one of the
targets of those implications is true. As in the simply typed λµ-calculus (Sec. 6.2.2),
the name-rule saves a type U for the name α, however, in our system, the corresponding
name assignment ∆∨ {α : U}, specified by means of ∨, collects all the types that α has
been assigned during the derivation. Notice that the restore-rule is not deterministic
since ∆(α)∗ denotes an arbitrary union type, a choice that is now discussed.

The use of _∗ in the restore-rule can be seen as a weakening on the righ hand-sides
of sequents. However, as it will be discussed in Sec. 7.5, this does not compromise the
nice features of relevant type assignments systems, leading us to question the notion of
relevance in general.

In simply typed λµ, call−cc = λy.µα.[α]y(λx.µβ.[α]x) is typed with ((a → b) →
a) → a (Peirce’s Law), as seen in Fig. 6.7, so that the fact that α is used twice in
the type derivation is not explicitly materialized (same comment applies to idempotent
intersection/union types). This makes a strong contrast with the derivation in Fig. 7.6,
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U 6= 〈 〉
x : [U ] ` x : U | ∅

ax
Γ ` t : U | ∆

Γ \\x ` λx.t : 〈Γ(x)→ U〉 | ∆
abs

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

name
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

(Γk ` t : Uk | ∆k)k∈K

∧k∈KΓk  t : [Uk]k∈K | ∨k∈K∆k

∧

Γt ` t : 〈Ik → Uk〉k∈K | ∆t Γu  u : ∧k∈KIk | ∆u

Γt ∧ Γu ` t u : ∨k∈KUk | ∆t ∨∆u
app

Figure 7.5: System Hλµ

Φy

x : [Ua] ` x : Ua |
x : [Ua] ` [α]x : # | α : Ua

x : [Ua] ` µβ.[α]x : Ub | α : Ua
` λx.µβ.[α]x : 〈[Ua]→ Ub〉 | α : Ua
 λx.µβ.[α]x : [〈[Ua]→ Ub〉] | α : Ua

y : [Uy] ` y(λx.µβ.[α]x) : Ua | α : Ua
y : [Uy] ` [α]y(λx.µβ.[α]x) : # | α : 〈Ua,Ua〉
y : [Uy] ` µα.[α]y(λx.µβ.[α]x) : 〈Ua,Ua〉 |
` λy.µα.[α]y(λx.µβ.[α]x) : 〈[Uy]→ 〈Ua,Ua〉〉 |

Figure 7.6: Typing call−cc

where Ua := 〈b〉, Ub := 〈b〉 (given two type variables a and b), Uy := 〈[〈[Ua]→ Ub〉]→ Ua〉
and Φy � y : [Uy] ` y : Uy | . Indeed, we can distinguish two different uses of names :

• The name α is saved twice by a name-rule : once for x and once for y(λx.µβ.[α]x),
both times with type Ua. After that, the abstraction µα.[α]y(λx.µβ.[α]x) restores
the types that were stored by the two free occurrences of α. A similar phenomenon
occurs with λ-abstractions, which restore the types of the free ocurrences of vari-
ables in the body of the functions.

• The name β is not free in [α]x, so that a new union type Ub is introduced to
type the abstraction µβ.[α]x. From a logical point of view, this corresponds to a
weakening on the right-hand side of the sequent. Notice, consequently, that λ and
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sz(
x : [U ] ` x : U | ∅

ax) := 1

sz(
Φt � t

Γ \\x ` λx.t : 〈Γ(x)→ U〉 | ∆
abs) := sz(Φt) + 1

sz(
Φt � t

Γ ` [α]t : # | ∆ ∨ {α : U}
name) := sz(Φt) + ar(U)

sz(
Φc � c

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore) := sz(Φc) + 1

sz(
(Φk � t)k∈K

∧k∈KΓk  t : [Uk]k∈K | ∨k∈K∆k

∧) := Σk∈K sz(Φk)

sz(
Φt � t Φu � u

Γ ` t u : ∨k∈KVk | ∆
app) := sz(Φt) + sz(Φu) + |K|

Figure 7.7: Derivation Sizes in Sλµ

µ-abstractions are not treated symmetrically: when x is not free in t, then λx.t
will be typed with [ ]→ σ (where σ is the type of t), and no new intersection type
is introduced for the abstracted variable x.

Thus, µ-abstractions have two uses: to restore saved types and to create new types,
which explains the fact that empty union types are banned. Indeed, if �Γ ` t : U | ∆,
then U 6= 〈 〉.

Why union types cannot be empty? Let us suppose that empty union types may be
introduced by the restore-rule, at least when α /∈ fn(c), so that for example t = µβ.[α]x
would be typed with 〈 〉 (this can be obtained by simply changing ∆(α)∗ to ∆(α) in the
restore-rule). Suppose also an object o containing 2 occurrences of the subcommand
[γ]t, so that γ receives the union type 〈 〉 twice in the corresponding name assignment.
Then, the term µγ.o will be typed with 〈 〉 = 〈 〉 ∨ 〈 〉, which does not reflect the fact
that γ is used twice, thus losing the quantitative flavour of the system (see also a formal
argument just after Lemma 7.2). Note that in Laurent’s system featuring idempotent
intersection and union types, commands cannot have an empty union type either (see
Sec. 4.1 of [73]).

We extend now the notion of size derivation (Sec. 3.2) to system Hλµ (and later
to Sλµ), which is a natural number representing the amount of crucial information in a
tree derivation. Formally, for any type derivation Φ, sz(Φ) is inductively defined by the
following rules, where we use an abbreviated notation for the premises. Indeed, the size
of derivations typing commands takes into account the arity of their corresponding type;
and this is essential to materialize a decreasing measure for µ-reduction (see Sec. 7.2.3
and 7.3 for Sλµ). Notice that sz(Φ) ≥ 1 holds for any regular derivation Φ, whereas, by
definition, the derivation of the empty auxiliary judgment  t : [ ] | has size 0.

SystemHλµ behaves as expected, in particular, typing is stable by reduction (Subject
Reduction) and anti-reduction (Subject Expansion), and Subject Reduction is actually
weighted, as in Proposition 3.6. Moreover,

Theorem 7.1. Let o ∈ Oλµ . Then o is Hλµ-typable iff o ∈ HN(λµ) iff the head-strategy
terminates on o. Moreover, if o is Hλµ-typable with tree derivation Π, then sz(Π) gives
an upper bound to the length of the head-reduction strategy starting at o.

We do not provide the proof of this theorem, because it uses special cases of the
more general technology that we are going to develop later to deal with strong nor-



7.2. QUANTITATIVE TYPE SYSTEMS FOR THE λµ-CALCULUS 151

malization. However, in Sec. 7.2.3, we explain how system Hλµ was designed from a
“global” perspective. Notice that Theorem 7.1 ensures that the head-strategy is com-
plete for head-normalization in λµ, thus generalizing Proposition 3.8.

A last comment of this section concerns the restriction of system Hλµ to the pure
λ-calculus: union types, name assignements and rules restore and name are no more
necessary, so that every union multiset takes the single form 〈τ〉, which can be simply
identified with τ . Thus, the restricted typing system Hλµ becomes the one in Fig. 7.2.

7.2.3 Design of System Hλµ

Figure 7.8 aims to explain why subject reduction holds in system Hλµ . For that, we
consider the reduction step t = (µα.[γ]r)s → µα.[γ]r{s//α} = t′ where t is the subject
of a Hλµ-derivation Π. We are mainly interested in the types Fi, Ui and the intersection
types Ii: each Fi is a “arrow union type” such that Sc(Fi) = Ii and Tg(Fi) = Ui i.e. there
are Ii,k and Ui,k (k ranging over some K(i)) such that Fi = 〈Ii,k → Ui,k〉k∈K(i), Ii =
∧k∈K(i)Ii,k and Ui = 〈Ui,k〉k∈K(i). We set F = ∨i∈IFi = 〈Ik → Uk〉k∈K withK = ]i∈IKi

(disjoint union). The letter F stands for “function type” and a term t with type Fi can
be fed with an argument u of type Ii, which yields the term t u of type Ui. Likewise,
if t is typed with ∨i∈IFi, then it can be fed with an argument u of type ∧i∈IIi, which
yields the term t u of type ∨i∈IUi. Remember for the following that F is a type that
contain |K| strict arrow types.

We associate the union type metavariable C to the name metavariable γ (although
C should not be used for union type): they are involved in the µ-rules, but they are not
affected by the subject reduction (compare Π and Π′).

Obtaining a derivation Π′ typing the reduct µα.[γ]r{s//α} from the derivation Π
typing the redex (µα.[γ]r)s is done by:

• Destroying the app-rule of the redex at the root of Π.

• Creating nested app-rules above each α-naming rule in Πr.

• Suitably dispatching components of the auxiliary argument derivation Ψs typing
the argument s of the redex as auxiliary argument derivations of the aforemen-
tioned created app-rules.

All this is represented in Fig. 7.8, in which we have put the uninvolved parts of the
typing in lighter shades. The subterm µγi.[α]ri{s//α} of the derivation Π′ typing the
reduct has the same type Ci as the subterm µγi.[α]ri of the derivation Π typing the
redex: this is roughly the reason why derivation Π′ is correct (i.e. respects the typing
rules of Hλµ).

Now, notice that, while reducing the µ-redex, the app-rule at the root is destroyed
but that there are |I| new app-rules that appear for each α-command. That is why
the app-rule at the root of the redex should count more than the new ones. The most
natural choice is to associate to an app-rule the size of union type it uses on the left
handside i.e. the number |K| of strict arrow types. However, this does not decrease the
total size of app-rules in the derivation (but this does not increase it either). That is
why one needs to ensure the decrease in another way, which is done through the naming
rules.

The name α is assigned the types Fi (i ∈ I) in the redex and the types Ui (i ∈ I) in
the reduct: intuitively, α is used to save smaller types in the “reduct derivation” than
in the “redex derivation”. Formally, we notice that there is a decrease in arity of the
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• Fi = 〈Ii,k → Ui,k〉k∈K(i)

• Ii = ∧k∈K(i)Ii,k
• Ui = ∨k∈K(i)Ui,k
• Fi can be “fed” with Ii,

then outputting Ui

Πr

Γr ` r : C | ∆r, α : ∨i∈IFi
Γr ` µα.[γ]r : ∨i∈IFi | ∆r∨ γ : C

Πi (i ∈ I)

Γi ` ri : Fi | ∆i, γi : Ci
Γi ` µγi.[α]ri : Ci | ∆i∨ α : Fi

Φi (i ∈ I)

Γsi  s : Ii | ∆s
i
app

Γ ` (µα.[γ]r)s : ∨i∈IUi | ∆∨ γ : C

After reducing the µ-redex at root, we obtain:

Π′i (i ∈ I)

Γ′i ` ri{s//α} : Fi | ∆′i, γ : Ci

Φi (i ∈ I)

Γsi  s : Ii | ∆s
iapp

Γ′′i ` ri{s//α}s : Ui | ∆′′i , γ : Ci
Γ′′i ` µγi.[α]ri{s//α}s : Ci | ∆′′i ∨ α : Ui

Πr

Γ ` r{s//α} : C | ∆, α : ∨i∈IUi
Γ ` µα.[γ]r{s//α} : ∨i∈IUi | ∆∨ γ : C

Remark 7.4 (Reading the Figure).

• The subderivations of Πr concluding with an α-naming rule (i.e. the Πi) may be nested
one into another e.g., some Πi may be a subderivation of some Πj .

• We made the implicit assumption that, for all i ∈ I, Ci 6= 〈 〉. If not, we should decorate
the figure with choice operators e.g., writing µγi.[α]ri : C∗i instead of µγi.[α]ri : Ci.

• We also assume that I 6= ∅ (non-erasing red. step) but a figure can be easily drawn in
that case. Note that it is vital to create h-types in this case (see the example in Sec. 7.5).

• There should be only one argument auxiliary derivation Φ typing the argument s of the
redex, concluding with +i∈IΓs

i  s : +i∈IIi | +i∈I∆s
i but we have preferred here to

decompose it into several auxiliary derivations (as allowed by Lemma 7.3) to prepare
subject reduction.

• Π′i, Γ′i and ∆′i are not necessarily equal to Πi, Γi and ∆i, because there may be some
nested α-commands. Moreover, Γ′′i = Γ′i + (+k∈K(i)Γi) and ∆′′i = ∆′i ∨ (∨k∈K(i)∆i,k).

• It may be that r = ri for some i. In that case, we need to slightly modify the above
picture.

Figure 7.8: Subject Mu-Reduction



7.2. QUANTITATIVE TYPE SYSTEMS FOR THE λµ-CALCULUS 153

U 6= 〈 〉
x : [U ] ` x : U | ∅

ax
Γ ` t : U | ∆

Γ \\x ` λx.t : 〈Γ(x)→ U〉 | ∆
abs

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

name
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

(Γk ` t : Uk | ∆k)k∈K

∧k∈KΓk  t : [Uk]k∈K | ∨k∈K∆k

∧

Γt ` t : 〈Ik → Uk〉k∈K | ∆t Γu  u : ∧k∈KI∗k | ∆u

Γt ∧ Γu ` t u : ∨k∈KUk | ∆t ∨∆u
app

Figure 7.9: System Sλµ

types saved by α after reducing the subject. This is why we associated (Fig. 7.7) to a
naming/saving rule the arity1 of the saved type.

7.2.4 System Sλµ
This section presents a quantitative typing system characterizing strongly β-normalizing
λµ-terms. The (syntax directed) typing rules of the typing system Sλµ appear in Fig. 7.9.
As in system S ′λ, the operation _∗ is used to choose arbitrary types for erasable terms,
so that no subterm is untyped, thus ensuring strong λµ-normalization. Thus:

Lemma 7.1. If �Γ ` t : U | ∆, then U 6= 〈 〉.

As well as in the case of Hλµ , system Sλµ can be restricted to the pure λ-calculus.
Using the same observations at the end of Sec. 7.2.2, we obtain the typing system S ′λ in
Fig. 7.4 that characterizes β-strong normalization.

We also have a Relevance Lemma (extending Lemma 5.4), often used in proofs:

Lemma 7.2 (Relevance). Let o ∈ Oλµ . If Φ�Γ ` o : A | ∆, then dom(Γ) = fv(o) and
dom(∆) = fn(o).

Relevance holds thanks to the choice operator _∗: indeed, if ∆(α)∗ is replaced by
∆(α) in the restore-rule, then the following derivations gives a counter-example to the
relevance property, where α ∈ fn([α]µβ.[γ]x) but α /∈ dom(γ : 〈o〉).

x : [〈o〉] ` x : 〈o〉 |
x : [〈o〉] ` [γ]x : # | γ : 〈o〉

x : [〈o〉] ` µβ.[γ]x : 〈 〉 | γ : 〈o〉
x : [〈o〉] ` [α]µβ.[γ]x : # | γ : 〈o〉

1Other choices could be made, such as the size (number of nodes) |U| of the saved type U , inductively
defined by |o| = 1, |I → U| = |I|+ |U|+ 1, |[Ui]i∈I | = +i∈I |Ui|, |〈τi〉i∈I | = +i∈I |τi|.
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7.3 Typing Properties

This section shows two fundamental properties of reduction (i.e. forward) and anti-
reduction (i.e. backward) of system Sλµ . In Sec. 7.3.1, we analyse the Weighted Subject
Reduction property, and we prove that reduction preserves typing and decreases the size
of type derivations. The proof of this property makes use of two fundamental properties
(Lemma 7.4 and 7.5) guaranteeing well-typedness of the meta-operations of substitution
and replacement. Sec. 7.3.2 is devoted to Subject Expansion, which states that non-
erasing anti-reduction preserves types. The proof uses the fact that reverse substitution
(Lemma 7.7) and reverse replacement (Lemma 7.8) preserve types.

We start by stating an interesting property, to be used in our forthcoming lemmas,
that allows us to split and merge auxilary derivations typing the same term:

Lemma 7.3. Let I = ∧k∈KIk. Then Φ � Γ  t : I | ∆ iff ∃(Γk)k∈K ,∃(∆k)k∈K s.t.
(Φk � Γk  t : Ik | ∆k)k∈K , Γ = ∧k∈KΓk and ∆ = ∨k∈K∆k. Moreover, sz(Φ) =
Σk∈Ksz(Φk).

7.3.1 Forward Properties

We first state the substitution lemma, which guarantees that typing is stable by substi-
tution. The lemma also establishes the size of the derivation tree of a substituted object
from the sizes of the derivations trees of its components.

Lemma 7.4 (Substitution). Let Θu � Γu  u : I | ∆u. If Φo � Γ;x : I ` o : A | ∆,
then there is Φo[u/x] such that

• Φo[u/x] � Γ ∧ Γu ` o[u/x] : A | ∆ ∨∆u.

• sz(Φo[u/x]) = sz(Φo) + sz(Θu)−#I.

Proof. We prove a more general statement, namely: Let Θu � Γu  u : I | ∆u.

• If Φo � Γ;x : I ` o : A | ∆, then there is Φo[u/x] such that

Φo[u/x] � Γ ∧ Γu ` o[u/x] : A | ∆ ∨∆u

• If Φo � Γ;x : I  t : J | ∆, then there is Φo[u/x] such that

Φo[u/x] � Γ ∧ Γu  t[u/x] : J | ∆ ∨∆u

In both cases sz(Φo[u/x]) = sz(Φo) + sz(Θu)−#I.
We proceed by induction on the structure of Φo.

• ax:

– If o = x, then I := [U ] is a singleton, Γ = ∆ = ∅ and o[u/x] = u. The
derivation Θu is necessarily of the following form

Φ′u � Γ′ ` u : U|∆′

Γ′  u : [U ] | ∆′
∧

We then set Φx[u/x] = Φ′u. Then sz(Φx[u/x]) = sz(Φx) + sz(Θu)−#I, since
sz(Φx) = 1 = #I and sz(Θu) = sz(Φ′u).
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– If o = x 6= y, then I = [ ] and o[u/x] = y. Moreover, Θu is necessarily :

∅  u : [ ] | ∅
∧

We set Φy[u/x] = Φo. Then sz(Φy[u/x]) = sz(Φy) +sz(Θu)−#I since |I| = 0
and sz(Θu) = 0.

• abs : then o = λx.t and the derivation has the following form

Φo =
Φt � Γ;x : I; y : J ` t : Ut | ∆
Γ;x : I ` λy.t : 〈J → Ut〉 | ∆

By the i.h., we have Φt[u/x]�(Γ; y : J )∧Γu ` t[u/x] : U | ∆∨∆u with sz(Φt[u/x]) =
sz(Φt) + sz(Θu) − #I. By α-conversion y /∈ fv(u) so that y /∈ dom(Γu) by
Lemma 7.2, thus (Γ; y : J ) ∧ Γu = (Γ ∧ Γu); y : J . We set then Φ(λy.t)[u/x] =

Φt[u/x]

Γ ∧ Γu ` λy.t[u/x] : 〈J → Ut〉 | ∆ ∨∆u

We have sz(Φ(λy.t)[u/x]) = sz(Φt[u/x]) + 1 =i.h. sz(Φt) + sz(Θu) − #I + 1 =
sz(Φ) + sz(Θu)−#I.

• ∧: then o is a term t and Φo has the following form

(�Γk;x : Ik ` t : Uk | ∆k)k∈K

Γ;x : I  t : [Uk]k∈K | ∆

where I = ∧k∈KIk, Γ = ∧k∈KΓk and ∆ = ∨k∈K∆k. By Lemma 7.3 there are
auxiliary derivations (�Γku  u : Ik | ∆k

u)k∈K such that Γu = ∧k∈KΓku and ∆u =
∨k∈K∆k

u. The i.h. gives derivations (�Γk ∧Γku ` t[u/x] : Uk | ∆k ∧∆k
u)k∈K and we

construct the following auxiliary derivation to conclude

(�Γk ∧ Γku ` t[u/x] : Uk | ∆k ∧∆k
u)k∈K

∧k∈KΓk ∧ Γku  t[u/x] : [Uk]k∈K | ∨k∈K∆k ∧∆k
u

We have ∧k∈KΓk ∧ Γku = Γ∧ Γu and ∨k∈K∆k ∧∆k
u = ∆∨∆u as desired. The size

statement trivially holds by the i.h..

• app: then o = t v and the derivation has the following form Φ =

Φt � Γt;x :It` t :〈Ik→Vk〉k∈K |∆t Γv;x :Ivv : ∧k∈KI∗k |∆v

Γ;x : I ` tv : ∨k∈KVk | ∆

where Γ = Γt ∧ Γv, ∆ = ∆t ∨∆v and I = It ∧ Iv.
Moreover, by Lemma 7.3 we can split Θu in Θt

u � Γtu  u : It | ∆t
u and Θv

u � Γvu 
u : Iv | ∆v

u s.t. sz(Θu) = sz(Θt
u) + sz(Θv

u).

By the i.h., there is Φt[u/x] � Γ′t ` t[u/x] : 〈Ik → Vk〉k∈K | ∆′t, where Γ′t = Γt ∧ Γtu
and ∆′t = ∆t ∨∆t

u and sz(Φt[u/x]) = sz(Φt) + sz(Θu)−#It.
Also by the i.h., there is Φv[u/x] � Γ′v  v[u/x] : ∧k∈KI∗k | ∆′v, where Γ′v = Γv ∧ Γvu
and ∆′v = ∆v ∨∆v

u and sz(Φv[u/x]) = sz(Φv) + sz(Θv
u)−#Iv.
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We set then

Φo[u/x] =
Φt[u/x] Φv[u/x]

Γ′ ` (t v)[u/x] : ∨k∈KVk | ∆′

where Γ′ = (Γt∧Γtu)∧(Γv∧Γvu) = Γ∧Γu and ∆′ = (∆t∨∆t
u)∨(∆v∨∆v

u) = ∆∨∆u

as desired.

We conclude since

sz(Φo[u/x]) = sz(Φt[u/x]) + sz(Φv[u/x]) + |K|
=i.h. (sz(Φt) + sz(Θt

u)− |It|)+
(sz(Φv) + sz(Θv

u)− |Iv|) + |K|
= sz(Φ) + sz(Θu)− |I|

• All the other cases are straightforward.

Typing is also stable by replacement. Moreover, we can specify the exact size of the
derivation tree of the replaced object from the sizes of its components.

Lemma 7.5 (Replacement). Let Θu � Γu  u : ∧k∈KI∗k | ∆u where α /∈ fn(u). If
Φo � Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, then there is Φo{u//α} such that :

• Φo{u//α} � Γ ∧ Γu ` o{u//α} : A | α : ∨k∈KVk; ∆ ∨∆u.

• sz(Φo{u//α}) = sz(Φo) + sz(Θu).

Proof. We prove a more general statement, namely:
Let Θu � Γu  u : ∧k∈KI∗k | ∆u where α /∈ fn(u).

• If Φo�Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, then there is Φo{u//α} such that Φo{u//α}�
Γ ∧ Γu ` o{u//α} : A | α : ∨k∈KVk; ∆ ∨∆u.

• If Φo � Γ  o : J | α : 〈Ik → Vk〉k∈K ; ∆, then there is Φo{u//α} such that
Φo{u//α} � Γ ∧ Γu  t{u//α} : J | α : ∨k∈KVk; ∆ ∨∆u

In both cases, sz(Φo{u//α}) = sz(Φo) + sz(Θu).

We reason by induction on Φo. Let us call Uα = 〈Ik → Vk〉k∈K and U ′α = ∨k∈KVk.

• ax: o = x, thus we have by construction

Φo � x : [U ] ` x : U |

so that K = ∅. Thus, ∧k∈KI∗k = [ ] and Γu = ∆u = ∅, then Θu is :

 u : [ ] |
∧

Thus, sz(Θu) = 0.

We set Φo{u//α} = Φo and the first result holds because the derivation has the
desired form. We conclude since sz(Φo{u//α}) = sz(Φo) + sz(Θu) as desired.
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• abs: then o = λx.t, o{u//α} = λx.(t{u//α}) and by construction we have

Φλx.t �
Φt � x : I; Γ ` t : U | α : Uα; ∆

Γ ` λx.t : 〈I → U〉 | α : Uα; ∆
abs

By i.h., it follows that

Φt{u//α} � (x : I; Γ) ∧ Γu ` t{u//α} : U | α : U ′α; ∆ ∨∆u

with sz(Φt{u//α}) = sz(Φt) + sz(Θu). By α-conversion we can assume that x /∈
fv(u), thus by Lemma 7.2 x /∈ dom(Γu), so that (x : I; Γ) ∧ Γu = x : I; Γ ∧ Γu.

We thus obtain Φλx.t{u//α} of the form:

Φt{u//α}

Γ ∧ Γu ` λx.t{u//α} : 〈I → U〉 | α : U ′α; ∆ ∨∆u
abs

We conclude since
sz(Φλx.t{u//α}) = sz(Φt{u//α}) + 1

=i.h. sz(Φt) + sz(Θu) + 1
= sz(Φλx.t) + sz(Θu)

• app: then o = tv, o{u//α} = t{u//α} v{u//α} and by construction we have Φo =

Φt� Γt ` t : Ut | α : 〈Ik → Vk〉k∈Kt ; ∆t Φv�Γv v : Jv | α : 〈Ik → Vk〉k∈Kv ; ∆v

Γ ` o : U | α : 〈Ik → Vk〉k∈K ; ∆

where Ut = 〈J` → U`〉`∈L, Jv = ∧`∈LJ ∗` , U = ∨`∈LU` (those types are of no
matter here, except they satisfy the typing constraint of app), Γ = Γt ∧ Γv, ∆ =
∆t ∨∆v, K = Kt ]Kv.

Moreover, by Lemma 7.3, we can split Θu in Θt
u � Γtu  u : ∧k∈KtI∗k | ∆t

u and
Θv
u � Γvu  u : ∧k∈KvI∗k | ∆v

u s.t. sz(Θu) = sz(Θt
u) + sz(Θv

u).

By i.h., we have Φt{u//α} � Γt ∧ Γtu ` t{u//α} : Ut | α : ∨k∈KtVk; ∆t ∨ ∆t
u (since

α /∈ fn(u)) with sz(Φt{u//α}) = sz(Φt) + sz(Θt
u).

Also by i.h., we have Φv{u//α} � Γv ∧ Γvu  v{u//α} : Jv | α : ∨k∈KvVk,∆v ∨ ∆v
u

with sz(Φv{u//α}) = sz(Φv) + sz(Θv
u).

We can now construct the following derivation

Φt{u//α} Φv{u//α}

Γ′ ` o{u//α} : U | α : ∨k∈KVk; ∆′

where Γ′ = (Γt ∧ Γtu) ∧ (Γv ∧ Γvu) = (Γt ∧ Γv) ∧ (Γtu ∧ Γvu) = Γ ∧ Γu and likewise,
∆′ = ∆ ∨∆u as desired.

Moreover,

sz(Φ(tv){u//α}) = sz(Φt{u//α}) + sz(Φv{u//α}) + |L|
=i.h. (sz(Φt) + sz(Θt

u)) + (sz(Φv) + sz(Θv
u)) + |L|

= (sz(Φt) + sz(Φv) + |L|) + (sz(Θt
u) + sz(Θv

u))
= sz(Φtv) + sz(Θu)
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• If o = [α]t, then o{u//α} = [α]t{u//α}u and by construction we have a derivation
Φ[α]t of the form:

Φt � Γ ` t : 〈Ik → Vk〉k∈Kt | α : 〈Ik → Vk〉k∈Kα ; ∆

Γ ` [α]t : # | α : 〈Ik → Vk〉k∈K ; ∆
name

where K = Kt ]Kα.

Moreover, by Lemma 7.3, we can split Θu in Θt
u � Γtu  u : ∧k∈KtI∗k | ∆t

u and
Θα
u � Γαu  u : ∧k∈KαI∗k | ∆α

u s.t. sz(Θu) = sz(Θt
u) + sz(Θα

u).

By the i.h., we have Φt{u//α} � Γ0 ` t{u//α} : 〈Ik → Vk〉k∈Kt | α : ∨k∈KαVk; ∆0

with Γ0 = Γ ∧ Γαu , ∆0 = ∆ ∨∆α
u and sz(Φt{u//α}) = sz(Φt) + sz(Θα

u).

We can then construct the following derivation Φ[α]t{u//α}u:

Φt{u//α} Θt
u

Γ′ ` t{u//α}u : ∨k∈KtVk | α : ∨k∈KαVk; ∆′

Γ′ ` [α]t{u//α}u : # | α : ∨k∈KVk; ∆′

with Γ′ = Γ0 ∧ Γtu = Γ ∧ Γαu ∧ Γtu = Γ ∧ Γu and likewise ∆′ = ∆ ∨ ∆u (since
α /∈ fn(u)) as expected.

We conclude since

sz(Φ[α]t{u//α}u) = sz(Φt{u//α}u) + ar(∨k∈KtVk)
= sz(Φt{u//α}) + sz(Θt

u) + |Kt|+ ar(∨k∈KtVk)
=i.h. (sz(Φt) + sz(Θα

u)) + sz(Θt
u) + ar(〈Ik → Vk〉k∈Kt)

= sz(Φt) + sz(Θu) + ar(〈Ik → Vk〉k∈Kt)
= sz(Φ[α]t) + sz(Θu)

• All the other cases are straightforward.

Notice that the type of α in the conclusion of the derivation Φo{u//α} (which is
∨k∈KVk) is strictly smaller than that of the conclusion of the derivation Φo (which is
〈Ik → Vk〉k∈K). The substitution and the replacement Lemmas are used in the proof
of Weighted Subject Reduction for Sλµ (extending Proposition 5.1, since System Sλµ
extends System Sλ).

Property 7.1 (Weighted Subject Reduction for µ). Let Φ � Γ ` o : A | ∆. If
o→ o′ is a non-erasing step, then there exists a derivation Φ′ � Γ ` o′ : A | ∆ such that
sz(Φ) > sz(Φ′).

Proof. By induction on the relation →. We only show the main cases of reduction at
the root, the other ones being straightforward.

• If o = (λx.t)u, then o′ = t[u/x] and x ∈ fv(t). The derivation Φ has the following
form:

Φ =

Φt � Γt;x : I ` t : U | ∆t

Γt ` λx.t : 〈I → U〉 | ∆t Θu � Γu  u : I∗ | ∆u

Γ ` o : U | ∆
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where Γ = Γt ∧ Γu, ∆ = ∆t ∨∆u. Indeed, x ∈ fv(t) implies by Lemma 7.2 that
I 6= [ ] so that I∗ = I = [Uk]k∈K for some K 6= ∅ and some (Uk)k∈K .

Lemma 7.4 yields a derivation Φ′t[u/x] � Γt ∧ Γu ` t[u/x] : U | ∆t ∨ ∆u with
sz(Φ′t[u/x]) = sz(Φt) + sz(Θu) − |K| (|I| = |K|). We set Φ′ = Φ′t[u/x] so that
sz(Φ) = sz(Φt) + 1 + sz(Θu) + 1 > sz(Φ′).

• If o = (µα.c)u, then o′ = µα.c{u//α} and α ∈ fn(c).

The derivation Φ has the following form:

Φ =

Φc � Γc ` c : # | α : Vc; ∆c

Γc ` µα.c : Vc | ∆c Θu � Γu  u : Iu | ∆u

Γc ∧ Γu ` (µα.c)u : U | ∆c ∨∆u

where Vc = 〈Ik → Vk〉k∈K , Iu = ∧k∈KI∗k , U = ∨k∈KVk, Γ = Γc∧Γu and ∆ = ∆c∨
∆u. Lemma 7.5 then gives the derivation Φc{u//α}�Γc ∧ Γu ` c{u//α} : # | α : ∨k∈KVk; ∆c ∨∆u.
Since α ∈ fn(c) by hypothesis, then K 6= ∅ by Lemma 7.2 so that we construct
the following derivation:

φ′ �
Φc{u//α}

Γc ∧ Γu ` µα.c{u//α} : ∨k∈KVk | ∆c ∨∆u

We conclude since

sz(Φ′) = sz(φc{u//α}) + 1

=L. 7.5 sz(Φc) + sz(Θu) + 1
< sz(Φc) + 1 + sz(Θu) + |K|
= sz(Φµα.c) + sz(Θu) + |K| = sz(Φ)

The step < is justified by K 6= ∅.

Actually, for non-erasing reduction steps, Fig. 7.8 is still valid, which intuitively
explains (without the painful inductions above) why Property 7.1 holds.

Discussion A first remark about the property above is that the whole discussion
concluding Sec. 5.2.2 is still valid for Sλµ and that variable and name assignments are not
necessarily preserved by erasing reductions. Thus, for example, consider t = (λy.x)z →
x = t′. The term t is typed with a variable assignment whose domain is {x, z}, while
t′ can only be typed with an assignment whose domain is {x}. Concretely, starting
from a derivation of x : [〈a〉], z : [〈b〉] ` (λx.y)z : 〈a〉 (the simplified type derivation of
this term in the S ′λ system appears on page 146), we can only construct a derivation of
x : [〈a〉] ` x : 〈a〉, so that the type is preserved while the variable assignment is not.
Actually, our restricted form of subject reduction (i.e. for non-erasing steps only) is
sufficient for our purpose, along with an equivalent for Sλµ of Lemma 5.5, dealing with
erasing head-reduction steps. This result is easy to prove and stated below:
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Lemma 7.6. If Π �Sλµ Γ ` t : U | ∆ and t = (λx.r)s t1 . . . tq → r t1 . . . tq = t′

or t = (µα.c)s t1 . . . tq → µα.c t1 . . . tq is an erasing reduction step (i.e. x /∈ fv(r) or
α /∈ fn(c) respectively), then there is a Sλµ-derivation Π, a variable context Γ′ and a
name context ∆′ such that Π′ �Sλµ Γ′ ` t′ : U | ∆′ and sz(Π′) < sz(Π).

Note that, as in Sec. 5.2.2, at this stage, we cannot prove the implication “if o → o′

and o is typable, then so is o′”: for now, we have this implication for non-erasing steps
and for erasing head reduction steps only. See how we manage to get from this the proof
of Lemma 7.11.

A second remark is that the consideration of arities of names in the definition of the
size of derivations (third case name) is crucial to guarantee that µ-reduction decreases
sz(_), a matter that was already (informally) addressed in the conclusion of Sec. 7.2.3.
This is perfectly reflected in Lemma 7.5, where the type of α in the conclusion of the
derivation Φo{u//α} is strictly smaller than that of the conclusion of the derivation Φo.

Furthering the discussion of page 7.2.2, a third point is again about the use of the
choice operator in the typing rule restore, which does not allow for the type 〈 〉 to
be assigned to α when α /∈ fn(c). More precisely, assume, just temporarily, that the
restore rule does not use the choice operator, so that a µ-abstraction can be typed
with 〈 〉. Set u := µβ.[γ]y and c := [α]µδ.[α]u so that u, µδ.[α]u and µα.c are typed
with 〈 〉. The resulting type derivation Φc � Γ ` c : # | ∆ contradicts the Relevance
Lemma 7.2, simply because α /∈ fn(∆) but α has two free occurrences in c. This has
heavy consequences that can be illustrated by the reduction sequence t = (µα.c)x →
µα.[α](µδ.[α](µβ.[γ]y)x)x→∗ µα.c = t′. Indeed, the type of µα.c, which is 〈 〉, holds no
information capturing the number of free occurrences of α in c, so that there is no local
way to know how many times the argument x should be typed in the whole derivation
of the term (µα.c)x. This prevents the reduction relation to decrease any reasonable
measure associated to type derivations.

7.3.2 Backward Properties

Subject expansion is based on two technical properties: the first one, called reverse
substitution, allows us to extract type information for an object o and a term u from
the type derivation of o[u/x]; similarly, the second one, called reverse replacement, gives
type information for a command c and a term u from the type derivation of c{u//α}.
Formally,

Lemma 7.7 (Reverse Substitution). Let Φ′�Γ′ ` o[u/x] : A | ∆′ Then ∃Γ,∃∆,∃I, ∃Γu,∃∆u

such that:

• Γ′ = Γ ∧ Γu,

• ∆′ = ∆ ∨∆u,

• �Γ;x : I ` o : A | ∆

• �Γu  u : I | ∆u.

Proof. We prove a more general statement, namely:

• If Φ′ � Γ′ ` o[u/x] : A | ∆′, then �Γ;x : I ` o : A | ∆, Γu  u : I | ∆u, � Γu 
u : I | ∆u, Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨∆u for some I, Γ, Γu, ∆, ∆u.
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• If Φ′ � Γ′  t[u/x] : J | ∆′, then �Γ;x : I  t : J | ∆, Γu  u : I | ∆u, � Γu 
u : I | ∆u, Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨∆u for some I, Γ, Γu, ∆, ∆u.

We proceed by induction on the structure of Φ′.

• ax:

– If o = y 6= x, then y[u/x] = y. By construction, one has that Γ′ = y : [U ]
and A = U . The result thus holds for I = [ ], Γ = Γ′, ∆ = ∆′, Γu = ∅ and
∆u = ∅ as  u : [ ] | is derivable by the ∧ rule.

– ax: If o = x, then x[u/x] = u. By construction, one has that A = U . We
type x with the axiom rule:

x : [U ] ` x : U |

so that the property holds for Γ = ∆ = ∅, I = [U ], Γu = Γ′, ∆u = ∆′, where
�Γu  u : I | ∆u is obtained by the rule ∧ from Γ′ ` u : U | ∆′.

• abs: o = λy.t and (λy.t)[u/x] = λy.t[u/x]. Then Φ′ is of the form

Φ′t � Γ′; y : J ` t[u/x] : V | ∆′

Γ′ ` λy.t[u/x] : 〈J → V〉 | ∆′

where U = 〈J → V〉.
By the i.h. Γ′; y : I = Γt ∧ Γu and ∆′ = ∆ ∨ ∆u, �Γt;x : I ` t : V | ∆ and
�Γu  u : I | ∆u. By α-conversion we can assume that y /∈ fv(u), so that
y /∈ dom(Γu) by Lemma 7.2 and thus Γt = Γ; y : J and Γ′ = Γ ∧ Γu. Hence, we
obtain Γ;x : I ` λy.t : U | ∆ by the rule abs.

• app: o = t v and (t v)[u/x] = t[u/x]v[u/x]. By construction, we have that Γ′ =
Γ′t ∧ Γ′v and ∆′ = ∆′t ∨∆′v and �Γ′t ` t[u/x] : Ut | ∆′t, � Γ′v  v : Jv | ∆′v with
Ut = 〈Jk → Uk〉k∈K , Jv = ∧k∈KJ ∗k (those types are of no matter here, except
they satisfy the typing constraint of app). By the i.h. there are:

– Γt, It, ∆t, Γtu, ∆t
u s.t. Γ′t = Γt∧Γtu, ∆′t = ∆t∨∆t

u, �Γt;x : It ` t : Ut | ∆t

and �Γtu  u : It | ∆t
u.

– Γv, Iv, ∆v, Γvu, ∆v
u s.t. Γ′v = Γv ∧ Γvu, ∆′v = ∆v ∨∆v

u, � Γv;x : Iv  v :
Jv | ∆v and �Γvu  u : Iv | ∆v

u.

Thus, we can type t v with :

�Γt;x : It ` t : Ut | ∆t �Γv;x : Iv  v : Jv | ∆v

Γ;x : I ` tv : U | ∆

where Γ = Γt ∧ Γu, ∆ = ∆t ∨∆u, I = It ∨ Iv.
We obtain �Γu  u : I | ∆u with Γu = Γtu ∧ Γvu, ∆u = ∆t

u ∨∆v
u by Lemma 7.3.

• The other cases are similar.
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Lemma 7.8 (Reverse Replacement). Let Φ′ � Γ′ ` o{u//α} : A | α : V; ∆′, where
α /∈ fn(u). Then ∃Γ, ∃∆, ∃Γu,∃∆u,∃(Ik)k∈K ,∃(Vk)k∈K such that:

• Γ′ = Γ ∧ Γu,

• ∆′ = ∆ ∨∆u,

• V = ∨k∈KVk,

• �Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, and

• �Γu  u : ∧k∈KI∗k | ∆u

Proof. We prove a more general statement, namely :

• If Φ′�Γ′ ` o{u//α} : A | α : V; ∆′, then �Γ ` o : A | α : 〈Ik → Vk〉k∈K ; ∆, �Γu 
u : ∧k∈KI∗k | ∆u where Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨ ∆u, V = ∨k∈KVk for some
Γ, Γu, ∆, ∆u, (Vk)k∈K , (Ik)k∈K .

• If Φ′�Γ′  t{u//α} : J | α : V; ∆′, then �Γ  t : J | α : 〈Ik → Vk〉k∈K ; ∆, �Γu 
u : ∧k∈KI∗k | ∆u where Γ′ = Γ ∧ Γu, ∆′ = ∆ ∨ ∆u, V = ∨k∈KVk for some
Γ, Γu, ∆, ∆u, (Vk)k∈K , (Ik)k∈K .

We proceed by induction on the structure of Φ′.

• ax: o = x and o{u//α} = x. Then Φ′ is of the form x : [U ] ` x : U | and we
have V = 〈 〉 so that we set Γ = x : [U ], Γu = ∆u = ∆ = ∅, K = ∅. Notice that
 u : [ ] | always holds.

• abs: o = λy.t and (λy.t){u//α} = λy.t{u//α}. Then Φ′ is of the form

Γ′; y : J ` t{u//α} : Ut | α : V; ∆′

Γ′ ` λy.t{u//α} : 〈I → Ut〉 | α : V; ∆′

The i.h. gives Γ′; y : J = Γt ∧ Γu, V = ∨k∈KVk, ∆′ = ∆ ∨∆u, � Γt ` t : Ut | α :
〈Ik → Vk〉k∈K ; ∆ and �Γu  u : ∧k∈KI∗k | ∆u. By α-conversion we can assume
that y /∈ fv(u), so that y /∈ dom(Γu) holds by Lemma 7.2 and thus Γt = Γ; y : J .
Hence, we obtain

�Γ; y : J ` t : Ut | α : 〈Ik → Vk〉k∈K ; ∆

�Γ ` λy.t : 〈J → Ut〉 | α : 〈Ik → Vk〉k∈K ; ∆

From that, the desired conclusion is straightforward.

• o = [α]t and o{u//α} = [α]t{u//α}u. Then Φ′ has the following form

Γ′t`t{u//α}:〈Ik→Vk〉k∈Kt |α:Vα;∆′t Γtuu:∧k∈KtI
∗
k |α:Vu;∆t

u

Γ′t ∧ Γtu ` t{u//α}u : ∨k∈KtVk | α : Vα; ∆′

Γ′ ` [α]t{u//α}u : # | α : ∨k∈KtVk ∨ Vα; ∆′

where Γ′ = Γ′t ∧ Γtu, ∆′ = ∆t ∨ ∆t
u and V = ∨k∈KtVk ∨ Vα ∨ Vu. Moreover, the

hypothesis α /∈ fn(u) implies Vu = 〈 〉 by Lemma 7.2.
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The i.h. gives �Γ ` t : 〈Ik → Vk〉k∈Kt | α : 〈Ik → Vk〉k∈Kα ; ∆, � Γαu  u :
∧k∈KαI∗k | ∆α

u where Γ′t = Γ ∧ Γαu , ∆′t = ∆ ∨∆α
u , and Vα = ∨k∈KαVk. W.l.o.g we

can assume Kα ∩Kt = ∅. We then set K = Kα ]Kt and we define :

�Γ ` t : 〈Ik → Vk〉k∈Kt | α : 〈Ik → Vk〉k∈Kα ; ∆

Γ ` [α]t : # | α : 〈Ik → Vk〉k∈K ; ∆

By Lemma 7.3, we also have �Γu  u : ∧k∈KI∗k | ∆u with Γu = Γtu ∧ Γαu , ∆u =
∆t
u ∨∆α

u . We can then conclude since Γ ∧ Γu = Γ ∧ (Γαu ∧ Γtu) = Γ′t ∧ Γtu = Γ′ and
likewise ∆ ∨∆u = ∆′.

• o = tv so that o{u//α} = t{u//α}v{u//α}. Then Φ has the following form:

�Γ′t`t{u//α}:Ut|α:Vt;∆′t �Γ′vv{u//α}:Jv |α:Vv ;∆′v

Γ′ ` t{u//α}v{u//α} : U | α : V; ∆′

where V = Vt ∨ Vα, Γ′ = Γ′t ∧ Γ′v, ∆′ = ∆′t ∨ ∆′v, Ut = 〈Jk → Uk〉k∈K and
Jv = ∧k∈KJ ∗k (those types are of no matter here, except they satisfy the typing
constraint of app).

The property then trivially holds by the i.h. (we proceed as in the complete proof
of Lemma 7.7, case app).

• The other cases are similar.

We will make use of the following property (which extends Property 5.2) in Sec. 2.2.3
to show that normalization implies typability.

Property 7.2 (Subject Expansion for λµ). Assume Φ′ � Γ′ ` o′ : A | ∆′. If o→ o′

is a non-erasing step, then there is Φ� Γ′ ` o : A | ∆′.

Proof. By induction on the reduction relation. We only show the main cases of reduction
at the root, the other ones being straightforward by induction. We can then assume
A = U for some union type U .

• If o = (λx.t)u, then o′ = t[u/x] with x ∈ fv(t). The Reverse Substitution
Lemma 7.7 yields

– Γ′ = Γ ∧ Γu,

– ∆′ = ∆ ∧∆u,

– �Γ;x : I ` t : U | ∆, and

– �Γu  u : I | ∆u.

Moreover, x ∈ fv(t) implies by Lemma 7.2 that I 6= [ ], so that I∗ = I. We can
then set :

Φ =

�Γ;x : I ` t : U | ∆
Γ ` λx.t : 〈I → U〉 | ∆ �Γu  u : I | ∆u

Γ′ ` (λx.t)u : U | ∆′
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• If o = (µα.c)u, then o′ = µα.c{u//α} with α ∈ fn(c). Moreover, α ∈ fn(c{u//α})
and Φ′ has the following form:

Γ′ ` c{u//α} : # | α : U ; ∆′

Γ′ ` µα.c{u//α} : U | ∆′

where U 6= 〈 〉 holds by Lemma 7.2, since α ∈ fn(c{u//α}), so that the restore

rule is correctly applied. Then the Reverse Replacement Lemma 7.8 yields:

– Γ′ = Γc ∧ Γu,

– ∆′ = ∆c ∨∆u,

– U = ∨k∈KVk,
– �Γc ` c : # | α : 〈Ik → Vk〉k∈K ; ∆c, and

– �Γu  u : ∧k∈KI∗k | ∆u.

Moreover, U 6= 〈 〉 implies K 6= ∅, thus 〈Ik → Vk〉∗k∈K = 〈Ik → Vk〉k∈K and we
conclude by constructing the following derivation:

�Γc ` c : # | α : Vc; ∆c

Γc  µα.c : Vc | ∆c �Γu  u : Iu | ∆u

Γ′  (µα.c)u : U | ∆′

where Vc = 〈Ik → Vk〉k∈K , Iu = ∧k∈KI∗k

We may also prove easily that typability is stable by “creating head expansion”
provided the created argument of the redex is typable. This is an extension Lemma 5.6
(and it is useful for the same reasons):

Lemma 7.9. If Π′ �Sλµ Γ′ ` t′ : U | ∆′, t = (λx.r)s t1 . . . tq → r t1 . . . tq = t′ or
t = (µα.c)s t1 . . . tq → (µα.c) t1 . . . tq is an erasing reduction step (i.e. x /∈ fv(r) or
α /∈ fn(c) respectively) and s is Sλµ-typable, then there is a Sλµ-derivation Π, a variable
context Γ and a name context ∆′ such that Π�Sλµ Γ ` t : U | ∆.

7.4 Strongly Normalizing λµ-Objects

In this section we show the characterization of strongly-normalizing objects of the `µ-
calculus by means of the typing system introduced in Section 7.2, i.e. we show that an
object o is strongly-normalizing iff t is typable.

Since (1) we have not proved yet that Sλµ-typability is stable under reduction (but
we have weighted SR for non-erasing steps by Property 7.1 and Lemma 7.6 for erasing
head reduction steps) (2) Sλµ-typability is not stable under expansion (but we have
subject expansion for non-erasing steps by Property 7.2 and Lemma 7.6), we must use
the general scheme exposed at the end of Sec. 5.2.2 (used for strong normalization in
λ-calculus) instead of that of Sec. 3.3.1. To be able to make something out of the
properties and lemmas quoted above, we must reformulate strong normalization in an
inductive way (Lemma 7.10), as it was done in Sec. 5.2.3.

To sum up, the proof of the main contribution of this chapter (Theorem 7.2) relies
on the following three steps:



7.4. STRONGLY NORMALIZING λµ-OBJECTS 165

• We define an inductive set ISN(λµ) which turns to be equivalent to the set of
λµ-strongly normalizing objects SN(λµ) (Lemma 7.10).

• We show that every typable object is in ISN(λµ) (Lemma 7.11).

• We show that every o in ISN(λµ) is typable (Lemma 7.12).

We start by defining the inductive set ISN(λµ) as is the smallest subset of Oλµ
satisfying the following closure properties:

(1) If t1, . . . , tq (q > 0) ∈ ISN(λµ), then x t1 . . . tq ∈ ISN(λµ).

(2) If t ∈ ISN(λµ), then λx.t ∈ ISN(λµ).

(3) If c ∈ ISN(λµ), then µα.c ∈ ISN(λµ).

(4) If t ∈ ISN(λµ), then [α]t ∈ ISN(λµ).

(5) If s, r[s/x] t1 . . . tq (q > 0) ∈ ISN(λµ), then (λx.r)s t1 . . . tq ∈ ISN(λµ).

(6) If s, µα.c{s//α} t1 . . . tq (q > 0) ∈ ISN(λµ), then (µα.c)s t1 . . . tq ∈ ISN(λµ).

We can formally relate SN(λµ) and ISN(λµ):

Lemma 7.10. SN(λµ) = ISN(λµ).

Proof. This Lemma is a consequence of the Claims 7.1 and 7.2 below.

Claim 7.1. Let o ∈ SN(λµ). Then o ∈ ISN(λµ).

Proof. We show o ∈ ISN(λµ) by induction on 〈η(o), |o|〉. We handle only the new cases
compared to those of Claim 5.1 (which are directy adapted to λµ).

• If o = [α]t, then the subterm t verifies t ∈ SN(λµ) and 〈η(t), |t|〉 < 〈η(o), |o|〉.
The induction hypothesis gives t ∈ ISN(λµ), and thus by definition we get [α]t ∈
ISN(λµ).

• The case t = µα.c is similar.

• If o = (µα.c)s t1 . . . tq. The sub-objects c, s and the tk satisfy c, s, tk ∈ SN(λµ)
with 〈η(c), |c|〉, 〈η(s), |s|〉, 〈η(tk), |tk|〉 < 〈η(o), |o|〉. It follows by the induction
hypothesis that c, s and tk (for all k ∈ {1, . . . , q}) are in ISN(λµ). Moreover, let

o = (µα.c)s t1 . . . tq →µ (µα.c{s//α})t1 . . . tq = o′

We have o′ ∈ SN(λµ) and η(o′) < η(o), so that 〈η(o′), |o′|〉 < 〈η(o), |o|〉. By the
induction hypothesis, it follows that o′ ∈ ISN(λµ). Since also s ∈ ISN(λµ), hence
by definition, o ∈ ISN(λµ).

Claim 7.2. Let o ∈ ISN(λµ). Then o ∈ SN(λµ).

Proof. We show o ∈ SN(λµ) by induction on the definition of ISN(λµ). We handle only
the cases that cannot be straightforwardly adapted from the proof of Claim 5.2.
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• If o = [α]t with t ∈ ISN(λµ), then, by induction hypothesis, we have t ∈ SN(λµ)
and it follows that o ∈ SN(λµ).

• The case o = µα.c with c ∈ ISN(λµ) is similar.

• If o = (µα.c)s t1 . . . tq with s, µα.c{s//α} t1 . . . tq ∈ ISN(λµ), then by i.h. c and
µα.c{s//α} t1 . . . tq are in SN(λµ). Moreover, the fact µα.c{s//α} t1 . . . tq is SN
implies that c{s//α} and the tk are SN, and by observing that, if c → c′ then
c{s//α} → c′{s//α}, we obtain that c is SN because c{s//α} is. We show that o is
SN by a second induction on η(c) + η(s) +

∑
i=1...q η(ti). Let us see how are all

the reducts of o.

– If o→ (µα.c′)s t1 . . . tq = o′, where c→ c′ or o→ (µα.c)s′ t1 . . . tq = o′, where
s → s′, or o → (µα.c)s t1 . . . t

′
i . . . tq = o′, where ti → t′i, then o

′ ∈ SN(λµ) by
the second induction hypothesis.

– If o→ µα.c{s//α} t1 . . . tq = o′, then o′ ∈ SN(λµ) as already remarked by the
first induction hypothesis.

Since all the one-step reducts of o are in SN(λµ), then o ∈ SN(λµ).

As explained, we first show that any typable object o belongs to ISN(λµ).

Lemma 7.11. If o is Sλµ-typable, then o ∈ ISN(λµ).

Proof. Let Φ�Γ ` o : A | ∆. We proceed by induction on sz(Φ). When Φ does not end
with the rule (app) the proof is straightforward, so that we consider a derivation ending
with (app), where A = U and o = x t1 . . . tq or o = (λx.r)s t1 . . . tq or o = (µα.c)s t1 . . . tq,
where q > 0. The two first cases are handled as in the proof of Lemma 5.8, so let us
deal only with the third one.

By construction, it is not difficult to see that there are subderivations Φs and
(Φtk)k∈{1...q} typing s and tk respectively such that sz(Φs) < sz(Φ), (sz(Φtk) < sz(Φ))k∈{1...q}
so that the induction hypothesis gives s ∈ ISN(λµ) and (tk ∈ ISN(λµ))k∈{1...q}. There
are two subcases:

• α ∈ fn(c). Using Proposition 7.1, we get Φ′ � Γ ` µα.c{s//α} t1 . . . tq | ∆ such
that sz(Φ′) < sz(Φ). Then the induction hypothesis gives µα.c{s//α} t1 . . . tq ∈
ISN(λµ). This, together with s ∈ ISN(λµ) gives o ∈ ISN(λµ).

• α /∈ fn(c). Then, by Lemma 7.6, we have a Sλµ-derivation Π′ typing µα.c t1 . . . tq
such that sz(Φ′) < sz(Φ). Then µα.c t1 . . . tq ∈ ISN(λµ) holds by the induction
hypothesis. This, together with s ∈ ISN(λµ), gives o ∈ ISN(λµ).

And any object o ∈ ISN(λµ) turns out to be typable.

Lemma 7.12. If o ∈ ISN(λµ), then o is Sλµ-typable.
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Proof. We reason by induction o ∈ ISN(λµ). The four first cases are straightforward.
The fifth one (o = (λx.r)s t1 . . . tq etc) is handled as in the proof of Lemma 5.9.

Let o = (µα.c)s t1 . . . tq ∈ ISN(λµ) coming from µα.c{s//α} t1 . . . tq, s ∈ ISN(λµ). By
the induction hypothesis, µα.c{s//α} t1 . . . tq and s are both typable. We consider two
subcases. If α ∈ fn(c), then (µα.c)s t1 . . . tq is typable by Proposition 7.2. Otherwise,
we use Lemma 7.9.

Lemma 7.11, 7.12 and the equality stated by Lemma 7.10 allow us to conclude with
the equivalence between Sλµ-typability and strong-normalization for the λµ-calculus.

Theorem 7.2. Let o ∈ Oλµ . Then o is typable in system Sλµ iff o ∈ SN(λµ). Moreover,
if o is Sλµ-typable with a derivation Π, then sz(Π) gives an upper bound to the maximal
length of a reduction sequence starting at o.

To prove the second statement it is sufficient to endow the system with non-relevant
axioms for variables and names, as we did for λ-calculus and system Sλ in Sec. 5.2.5. This
modification, which does not preserve subject expansion (see Remark 5.8), is however
sufficient to extend Property 5.3 and to guarantee weighted subject reduction in all
the cases (erasing and non-erasing steps) without changing the original measure of the
derivations in system Sλµ .

1

7.5 Relevance (an Inquiry)

Before concluding this chapter, let us have a prospective and informal discussion on
relevance. In the course of this PhD, relevance/irrelevance quickly appeared as very
important features of intersection type systems. Basically, relevance simply means the
prohibition of weakening (Sec. 3.3.5).

The author had discussions with several researchers about this notion. The only
consensus that emerged was that “relevance was a matter of philosophy”. For instance,
Gardner/de Carvalho’s system R0 is presented as relevant in this thesis. However, one
participant argued that λx.y could be typed (with [ ]→ τ) and that relevance concerns
only λI terms (i.e. terms t such that, if t|b = λx.u, then x ∈ fv(u)), so that R0 was
actually not relevant.

The author would say that a system is relevant as long as subject reduction just clones
β-reduction. We iterate the following sentence (from Sec. 4.1.1): relevant derivations
behave like λ-terms more than irrelevant ones do. A bit more precisely, perhaps a type
system could be considered as relevant as long as weakenings do not add a layer of
non-determinism. For instance:

• In system D0 (idempotent intersection, relevant): subject reduction is determinis-
tic (Sec. 3.3.2).

• In system R0 (non-idempotent intersection, relevant): subject reduction is not de-
terministic (Sec. 4.1.2), but it just consists in destroying axiom leaves and moving
argument derivations (Sec. 3.3.2).

• In system D0,w (idempotent intersection, irrelevant): we may discard some ar-
gument derivation during reduction (see left-part of Fig. 3.3 in Sec. 3.3.4), which
can entail a loss of context preservation. This loss of context preservation can be
corrected by using weakenings (see the proof sketch following 3.5).
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• In system Sw (non-idempotent intersection, irrelevant): subject reduction is also
ensured by weakening for some erasing steps (see e.g., the proof of Property 5.3).

In the λµ-calculus, not only for the characterization of strong normalization (Sλµ) but
also for that of head normalization (system Hλµ), the presence of the choice operator _∗
in the restore-rule can be seen as a weakening (on the right-hand sides of sequents), as
noted in Sec. 7.2.2.

However, this rule does not compromise the operational behaviour of subject re-
duction: if t = (µα.c)s → µα.c{s//α} = t′ is an erasing step (α /∈ fn(c)) and the
Hλµ-derivation Π types t, then Π is of the form:

Π =

Φc � Γ ` c : # | ∆
Γ ` µα.c : 〈[ ]→ σ〉 | ∆
Γ ` (µα.c)s : 〈σ〉 | ∆

where α /∈ dom(∆). The derivation Π′ obtained from Π by subject reduction is the
following:

Π′ =
Φc � Γ ` c{s//α} : # | ∆
Γ ` µα.c{s//α} : 〈σ〉 | ∆

In Π, the choice operator was instantiated with the blind type [ ] → σ and Π′, we just
have to instantiate it with 〈σ〉. Thus, to obtain Π′, no additional weakening (compared
to Π) is needed (e.g., contrary to the proofs of Lemma 5.12, or Property 5.3, p. 129).
Thus, one may say that system Hλµ is dynamically relevant and indeed, in Sec. 7.2.3,
we saw that subject reduction in Hλµ for the µ-rule consisted in not much more than
moving argument derivations (and destroying the app-rule of the µ-redex). Another
way to understand this consists is to go back to the discussion on the typing of call−cc
in Hλµ , p. 7.2.2. When ∆(α) is not empty, the µ-abstraction restores the type ∆(α)
whereas when ∆(α) is empty, µα creates a type via the choice operator. In the latter
case, the restore rule almost behaves like an axiom rule (on names instead of variable).
Distinguishing explicitly those two rules could help to think of Hλµ as a relevant system
(and more generally, the fact that even in Laurent’s system [73], union types cannot be
empty). For now, these considerations are only prospective: one still needs to find a
satisfactory formal definition (including its dynamical aspects) and relevance remains to
be better understood.



Chapter 8

A Resource Aware Semantics for
the Lambda-Mu-Calculus

In this chapter, we present λµr a resource aware semantics for λµ-calculus, that processes
both substitution and replacements linearly i.e. one occurrence after ther other. This
calculus λµr is an extension of Accattoli and Kesner calculus with Explicit Substitution
(Sec. 2.4). As the previous chapter, this is common work with Delia Kesner.

We then endow the λµr-calculs with a type system that both extends (1) the quanti-
tative type system Sλµ presented in Sec. 7.2, and (2) the variant of system Rex (Sec. 4.2)
that would characterize Strong Normalization in Λex, which is not presented here by lack
of time.

The main point is to define the operational semantics (so that replacement is linearly
processed) and the size measure associated to the new typing rules (so that we obtain
a weighted subject reduction property). The latter point is tricky since we need to use
half-integers instead of just the plain integers as for the other quantitative system that
were hitherto presented.

Apart from that, the proof and the progression exactly follows that of Chapter 7 e.g.,
we do not use the general scheme of Sec. 3.3.1 but that at the end of Sec. 5.2.2 (see also
the discussion following Property 7.1): we only have weighted subject reduction and
subject expansion in the non-erasing cases and we must therefore reformulate strong
normalization in the calculus as an inductive predicate.

For those reasons, not as many details and explanations as in Chapter 7 will be given,
except in the first section (operational semantics, typing rules and size).

We could also probably define linear head reduction for this calculus and also obtain
a type-theoretic characterization, but this was not investigated yet, by lack of time.

8.1 The λµr-calculus

This section introduces the syntax (Sec. 8.1.1) and the operational semantics (Sec. 8.1.2)
of the λµr-calculus, a resource aware model of λµ. The λµr-calculus is an extension of
the (intuitionistic) linear substitution calculus [2], deeply studied in rewriting theory and
implicit complexity and that is briefly presented in Sec. 2.4.

169
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8.1.1 Syntax

The set of objects (Oλµr), terms (Tλµr) and commands (Cλµr) of the λµr-calculus are
given by the following grammars

(objects) o ::= t | c
(terms) t, u ::= x | λx.t | tu | µα.c | t〈x\u〉
(commands) c ::= [α]t | c〈α\\β.u〉

The construction 〈x\u〉 (resp. 〈α\\β.u〉) is called an explicit substitution (resp. ex-
plicit replacement). Remark that explicit substitutions do not apply to commands
and explicit replacements do not apply to terms and that explicit replacements and
substitutions both resort to angle brackets: we distinguish explicit replacement from
explicit substitution by the metavariables and the use of \\ instead of just \.

An explicit substitution 〈x\u〉 implements the meta-substitution operator [u/x] while
an explicit replacement 〈α\\β.u〉 implements the fresh replacement meta-operator {β.u//α}
introduced in Sec. 6.2.3, i.e. the small step computation of c〈α\\β.u〉 replaces only one
occurrence of [α]t inside c by [β]t〈α\\β.u〉u [5]. As in Sec. 6.2.1, the size of an object
o is denoted by |o|.

The notions of free and bound variables and names are extended as expected,
in particular fv(t〈x\u〉) := (fv(t) \ {x}) ∪ fv(u) and fn(c〈α\\β.u〉) := (fn(c) \ {α}) ∪
{β} ∪ fn(u). The derived notion of α-conversion (i.e. renaming of bound variables and
names) will be assumed in the rest of the paper. The number of free occurrences
of the variable x (resp. the name α) in o is denoted by |o|x (resp. |o|α). For instance,
([γ]x[x/y])〈γ\\β.z〉 =α ([γ′]x′[x′/y])〈γ′\\β.z〉.

List (L), term (TT, CT, OT), and command (TC, CC, OC) contexts are respectively
defined by the following grammars:

L ::= 2 | L〈x\u〉
TT ::= 2 | λx.TT | TT t | t TT | µα.CT | TT〈x\t〉 | t〈x\TT〉
CT ::= [α]TT | CT〈α\\β.u〉 | c〈α\\β.TT〉
OT ::= TT | CT
TC ::= λx.TC | TC t | t TC | µα.CC | TC〈x\t〉 | t〈x\TC〉
CC ::= � | [α]TC | CC〈α\\β.u〉 | c〈α\\β.TC〉
OC ::= TC | CC

The hole 2 (resp. �) can be replaced by a term (resp. a command); indeed, L[t] denotes
the replacement of 2 in L by the term t (similarly for TT[t], CT[t] and OT), while CC[c]
denotes the replacement of � in CC by the command c (similary for TC and OC). The
meta-expressions can be read like this: TC denotes a context that takes a command (C
on the right) and outputs a term (T on the left).

Let S be a set of objects. Proceeding as in Sec. 2.2, we write OTS for a term context
OT which does not capture the free variables and names of any object in S, i.e. there are
no abstractions and substitutions in the context that bind a symbol that occurs free in
an objects in S. For instance TT = λy.2 (resp. µ β.�) can be specified as TTx (resp. TCα)
while TT = λx.2 (resp. µα.�) cannot. In order to emphasize this particular property
we may write TTS [[t]] (resp. OCS [[c]]) instead of TTS [t] (resp. OCS [c]), and we may omit S
when it is clear from the context. Same concepts apply to command contexts, i.e. OCS

does not capture the variables and names in S and the notation used for that is OCS [[c]].
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8.1.2 Operational Semantics

The reduction rules of the λµr-calculus aim to give a resource aware semantics to the
λµ-calculus, based on the substitution/replacement at a distance paradigm [2,3]. Indeed,
the reduction relation λµr of the calculus is given by the context closure of the following
rewriting rules.

L[(λx.t)u] →B L[t〈x\u〉]
TT[[x]]〈x\u〉 →c TT[[u]]〈x\u〉 if |TT[[x]]|x > 1
TT[[x]]〈x\u〉 →d TT[[u]] if |TT[[x]]|x = 1
t〈x\u〉 →w t if x /∈ fv(t)
L[(µα.c)u] →M L[µγ.c〈α\\γ.u〉] if γ is fresh
CC[[[α]t]]〈α\\γ.u〉→cn CC[[[γ]tu]]〈α\\γ.u〉 if |CC[[[α]t]]]α > 1
CC[[[α]t]]〈α\\γ.u〉→dn CC[[[γ]tu]] if |CC[[[α]t]]|α = 1
c〈α\\γ.u〉 →wn c if α /∈ fn(c)

where TT is to be understood as TTx and CC as CCα,γ .
We use→w for the reduction relation generated by the rules→w and→wn and→λµr for

the non-erasing reduction relation →λµr \ →w. For instance, the big step reduction

(µα.[α]x(µβ.[α]λx.xx))u→µ µγ.[γ]x(µβ.[γ](λx.xx)u))u

where α has been alpha-renamed to γ, can be now emulated by 3 small steps :

(µα.[α]x(µβ.[α]λx.xx))u
→M µγ.([α]x(µβ.[α]λx.xx))〈α\\γ.u〉
→cn µγ.([α]x(µβ.[γ](λx.xx)u))〈α\\γ.u〉
→dn µγ.[γ]x(µβ.[γ](λx.xx)u))u

Notice that the occurrences of α are (arbitrarily) replaced by γ one after another, thus
replacement is linearly processed. When there is just one occurrence of α left, the small
reduction step dn performs the last replacement and erases the remaining ER 〈α\\γ.u〉
to complete the operation.

More generally, not only the syntax of the λµr-calculus can be seen as a refinement
of the λµ-calculus, but also its operational semantics. Formally,

Lemma 8.1. If o ∈ Oλµ , then o→λµ o
′ implies o→+

λµr
o′.

Moreover, we can project λµr-reduction sequences into λµ-reduction sequences. In-
deed, consider the projection function P(_) computing all the explicit substitutions and
replacements of an object, thus in particular P(t〈x\u〉) := P(t)[P(u)/x] and P(c〈α\\α′.u〉) :=
P(c){α′.P(u)//α}. Then,

Lemma 8.2. If o ∈ Oλµr , then o→λµr o
′ implies P(o)→∗λµ P(o′).

8.1.3 Typing System

In this section we extend the (quantitative) typing system Sλµ in order to capture the
λµr-calculus, the aim being to characterize the set of strongly λµr-normalizing objects
by using quantitative arguments.

More precisely, system Sλµ is enriched with the two typing rules in Fig. 8.1. Rule
(exs) is inspired by the derivation tree typing the term (λx.t): indeed, any derivation
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Γt;x : I ` t : U | ∆t Γu  u : I∗ | ∆u

Γt ∧ Γu ` t〈x\u〉 : U | ∆t ∨∆u
(exs)

Γc ` c : # | ∆c;α : 〈Ik → Vk〉k∈K Γu  u : (∧k∈KI∗k)∗ | ∆u

Γc ∧ Γu ` c〈α\\α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨k∈KVk
(exr)

Figure 8.1: System Sλµr

�Γ ` (λx.t)u : V | ∆ induces two derivations �Γt, x : I ` t : V | ∆t and �Γu  u :
I∗ | ∆u, from which we can type t〈x\u〉. Likewise, the rule (exr) is motivated by the
derivation tree typing a µ-redex. In particular, when K = ∅ (i.e. when α /∈ fn(c)),
then (∧k∈∅I∗k)∗ = [ ]∗, so that the outer star in (∧k∈KI∗k)∗ gives an arbitrary multiset [σ]
ensuring the typing (and thus the SN property) of the replacement argument u. Notice
that Lemma 7.1 still holds for Sλµr .

As one may expect, system Sλµr encodes a non-idempotent and relevant system for
intuitionistic logic with explicit substitutions [60]. More precisely, restricting rule (exs)
to λ-terms with explicit substitutions gives the following rule:

Γ;x : I ` t : σ Γ′  u : I∗

Γ ∧ Γ′ ` t〈x\u〉 : σ

A Relevance Lemma also holds for λµr:

Lemma 8.3 (Relevance). Let o ∈ Oλµr . If �Γ ` o : A | ∆ (resp. �Γ  t : I | ∆
with I 6= [ ]), then fv(o) = dom(Γ) and fn(o) = dom(∆) (resp. fv(t) = dom(Γ) and
fn(t) = dom(∆)).

We now extend the function sz(_) introduced in Sec. 7.2.4 by adding the following
cases:

sz(
Φt � t Φu � u

Γt ∧ Γu ` t〈x\u〉 : U | ∆ ∨∆u
(exs)) := sz(Φt) + sz(Φu)

sz(
Φc � c Φu � u

Γc ∧ Γu ` c〈α\\α′.u〉 : # | ∆c ∨∆u
(exr))

:= sz(Φc) + sz(Φu) + |K| − 1
2

Notice that sz(Φ) > 1 still holds for any regular derivation Φ.
As explained in Sec. 7.3.1, weighted subject reduction holds for µ-reduction steps

like t = (µα.c)u →µ µγ.c{γ.u//α} = t′ because γ is typed in t′ with smaller arity than
that o α in t. The (big) step above is emulated in the λµr-calculus by the (small) steps
t →M µγ.c〈α\\γ.u〉 →+

cn,dn,wn t
′, where cn and dn perform linear replacements, so they

are also naturally expected to decrease the size of type derivations. However, for the
first step t = (µα.c)u→M µγ.c〈α\\γ.u〉 = t′, even if no real replacement has taken place
yet, we should still have a quantifiable decrease of the form sz(Φt) > sz(Φt′). This is
the reason we use "−1

2" when defining the size of explicit replacements, which does not
compromise the forthcoming weighted subject reduction property.

One may naively think that the "−1
2" component in the size definition of an explicit

replacement can compromise the decrease of the size for a step t = µγ.c〈α\\γ.u〉 →dn
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µα.c{γ.u//α} = t′, when c holds exactly one occurence of α : indeed, removing the
explicit replacement 〈α\\γ.u〉 induces an increase of the measure equal to 1

2 . However,
the arity contribution of (the unique occurrence of) α in t is greater than that of the new
occurrence of γ in t′: the replacement operation then induces a decrease of the measure
which is equal to some k > 1; and thus the overall decrease of the measure is in the
worst case k − 1

2 > 0, which still grants sz(Φ) > sz(Φ′). The decrease of the measure
for a wn-step is more evident. Last, but not least, the fact that sz(Φ) is a half-integer
> 1 ensures that the measure is still well-founded.

8.2 Typing Properties

As in the case of the λµ-calculus, we show that the refined λµr-calculus is well-behaved
w.r.t. the extended typing system Sλµr . This is done by means of forward (Sec. 8.2.1)
and backward (Sec. 8.2.2) properties.

8.2.1 Forward Properties

Weighted Subject reduction for the λµr-calculus (Lemma 8.6) is based on the fact that
linear substitution (Lemma 8.4) and linear replacement (Lemma 8.5) preserve types.

Lemma 8.4 (Linear Substitution). Let Θu � Γu  u : I | ∆u. If ΦOT[[x]] � Γ;x : I `
OT[[x]] : A | ∆, then ∃I1,∃I2, ∃Γ1

u,∃Γ2
u, ∃∆1

u, ∃∆2
u s.t.

• I = I1 ∧ I2, where I1 6= [ ],

• Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u,

• Θ1
u � Γ1

u  u : I1 | ∆1
u,

• Θ2
u � Γ2

u  u : I2 | ∆2
u,

• ΦT[[u]] � Γ ∧ Γ1
u;x : I2 ` OT[[u]] : A | ∆ ∨∆1

u, and

• sz(ΦOT[[u]]) = sz(ΦOT[[x]]) + sz(Θ1
u)− |I1|.

Proof. The proof is by induction on the context OT so we need to prove the statement
of the lemma for regular derivations simultaneously with the following one for non-
empty auxiliary derivations: if ΦTT[[x]] � Γ;x : I  TT[[x]] : J | ∆ and J 6= [ ], then
∃I1, ∃I2,∃Γ1

u, ∃Γ2
u,∃∆1

u,∃∆2
u s.t.

• I = I1 ∧ I2, where I1 6= [ ],

• Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u,

• Θ1
u � Γ1

u  u : I1 | ∆1
u,

• Θ2
u � Γ2

u  u : I2 | ∆2
u,

• ΦTT[[u]] � Γ ∧ Γ1
u;x : I2  TT[[u]] : J | ∆ ∨∆1

u, and

• sz(ΦTT[[u]]) = sz(ΦTT[[x]]) + sz(Θ1
u)− |I1|.
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Notice that I 6= [ ] by Lemma 8.3, since x ∈ fv(OT[[x]]) (resp. x ∈ fv(TT[[x]])). We
only show the case OT = 2 since all the other ones are straightforward. So assume
OT = 2. Then I = [U ] for some U and the derivation Φx has the following form :

Φx =
x : [U ] ` x : U | ∅

Thus, sz(Φx) = 1. We set then Θ1
u = Θu and Θ2

u =  u : [ ] | . We have sz(Φu) =
sz(Θ1

u) = sz(Φx) + sz(Θu)− |I1| since |I1| = 1.

Lemma 8.5 (Linear Replacement). Let Θu�Γu  u : ∧`∈LI∗` | ∆u s.t. α /∈ fv(u). If
ΦOC[[[α]t]]�Γ ` OC[[[α]t]] : A | α : 〈I` → V`〉`∈L; ∆, then ∃L1, ∃L2,∃Γ1

u, ∃Γ2
u,∃∆1

u,∃∆2
u,∃ΦOC[[[α′]tu]]

s.t.

• L = L1 ] L2, where L1 6= ∅.

• Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u,

• Θ1
u � Γ1

u  u : ∧`∈L1I∗` | ∆1
u,

• Θ2
u � Γ2

u  u : ∧`∈L2I∗` | ∆2
u,

• ΦOC[[[α′]tu]] � Γ∧ Γ1
u ` OC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆∨∆1

u, and

• sz(ΦOC[[[α′]tu]]) = sz(ΦOC[[[α]t]]) + sz(Θ1
u).

Proof. The proof is by induction on the context OC so we need to prove the statement of
the lemma for regular derivations simultaneously with the following one for non-empty
auxiliary derivations: if ΦTC[[[α]t]] � Γ  TC[[[α]t]] : J | α : 〈I` → V`〉`∈L; ∆ and J 6= [ ],
then ∃L1,∃L2, ∃Γ1

u,∃Γ2
u, ∃∆1

u, ∃∆2
u, ∃ΦTC[[[al′]tu]] s.t.

• L = L1 ] L2, where L1 6= ∅.

• Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u,

• Θ1
u � Γ1

u  u : ∧`∈L1I∗` | ∆1
u,

• Θ2
u � Γ2

u  u : ∧`∈L2I∗` | ∆2
u,

• ΦTC[[[α′]tu]]�Γ∧Γ1
u  TC[[[α′]tu]] : J | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V` ∨∆∨∆1

u, and

• sz(ΦTC[[[α′]tu]]) = sz(ΦTC[[[α]t]]) + sz(Θ1
u).

Notice that L 6= ∅ by Lemma 8.3, since α ∈ fn(OC[[[α]t]]) (resp. α ∈ fn(TC[[[α]t]])). We
only show the case OC = � since all the other ones are straightforward.

So assume OC = �. Then the derivation Φ[α]t has the following form, where K 6= ∅
holds by Lemma 7.1:

Φt � Γ ` t : 〈Ik → Vk〉k∈K | α : 〈I` → V`〉`∈L\K ; ∆

Γ ` [α]t : # | α : 〈I` → V`〉`∈L; ∆

Thus, sz(Φ[α]t) = sz(Φt) + ar(〈Ik → Vk〉k∈K) = sz(Φt) + |K| + ar(∨k∈KVk). We
set L1 = K and L2 = L \K and we write ∧`∈LI∗` as (∧`∈L1I∗` ) ∧ (∧`∈L2I∗` ). Then by
Lemma 7.3 there are Θ1

u � Γ1
u  u : ∧`∈L1I∗` | ∆1

u, Θ2
u � Γ2

u  u : ∧`∈L2I∗` | ∆2
u s.t.
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Γ1
u ∧ Γ2

u = Γu, ∆1
u ∨ ∆2

u = ∆u. We set V = ∨`∈L1V` and then construct the following
derivation Φ[α′]tu:

Φt Θ1
u

Γ ∧ Γ1
u ` tu : ∨`∈L1V` | α : 〈I` → V`〉`∈L2 ; ∆ ∨∆1

u

Γ ∧ Γ1
u ` [α′]tu : # | α : 〈I` → V`〉`∈L2 ;α′ : V ∨∆ ∨∆1

u

We have:
sz(Φ[α′]tu) = sz(Φtu) + ar(∨k∈KVk)
= sz(Φt) + sz(Θ1

u) + |K|+ ar(∨k∈KVk)
= sz(Φt) + sz(Θ1

u) + ar(〈Ik → Vk〉k∈K)
= sz(Φ[α]t) + sz(Θ1

u)

Lemma 8.6 (Weighted Subject Reduction for λµr). Let Φ � Γ ` o : A | ∆. If
o→ o′ is a non-erasing step, then Φ′ � Γ ` o′ : A | ∆ and sz(Φ) > sz(Φ′).

Proof. By induction on the reduction relation →. We only show the main cases of
reduction at the root, the other ones being straightforward.

• If o = L[(λx.t)]u→ L[t[x/u]] = o′: we proceed by induction on L, by detailing only
the case L = 2 as the other one is straightforward.

The derivation Φ has the following form:

Φ =

Φt � Γt;x : I ` t : U | ∆t

Γt ` λx.t : 〈I → U〉 | ∆t Θu � Γu  u : I∗ | ∆
Γ ` (λx.t)u : U | ∆

where Γ = Γt ∧ Γu, ∆ = ∆t ∨ ∆u and A = U . We then construct the following
derivation Φ′:

Φt � Γt;x : I ` t : U | ∆t Θu � Γu  u : I∗ | ∆u

Γt ∧ Γu ` t[x/u] : U | ∆t ∨∆u

We have:
sz(Φ) = sz(Φt) + sz(Θu) + 2
> sz(Φt) + sz(Θu) = sz(Φ′)

• If o = L[µα.c]u → L[µα′.c〈α\\α′.u〉] = o′: we proceed by induction on L, by
detailing only the case L = 2 as the other one is straightforward. The derivation
Φ has the following form:

Φ =

Φc � Γc ` c : # | α : Vc; ∆c

Γc ` µα.c : Vc | ∆c Θu � Γu  u : Iu | ∆u

Γc ∧ Γu ` (µα.c)u : U | ∆u

where Vc = 〈I` → V`〉`∈L, Iu = ∧`∈LI∗` , U = ∨`∈LV`, Γ = Γc∧Γu and ∆ = ∆c∨∆u.

Moreover, Lemma 7.1 gives L 6= ∅, so that ∧`∈LI∗` = (∧`∈LI∗` )∗.

We then construct the following derivation Φ′:

Φc Θu

Γ′ ∧ Γu ` c〈α\\α′.u〉 : # | ∆′ ∨∆u;α′ : U
Γ′ ∧ Γu ` µα′.c〈α\\α′.u〉 : U | ∆′ ∨∆u
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We conclude since |L| ≥ 1 in the following equation:

sz(Φ′) = sz(Φc〈α\\α′.u〉) + 1

= sz(Φc) + sz(Θu) + |L| − 1
2 + 1

= sz(Φµα.c) + sz(Θu) + |L| − 1
2

< sz(Φµα.c) + sz(Θu) + |L| = sz(Φ)

• If o = TT[[x]][x/u]→ TT[[u]][x/u] = o′, with |TT[[x]]|x > 1. The derivation Φ has the
following form:

Φ′TT[[x]]�Γ′;x : I ` TT[[x]] : U | ∆′ Θu�Γu ` u : I∗ | ∆u

Γ′ ∧ Γu ` TT[[x]][x/u] : U | ∆′ ∨∆u

Moreover, |TT[[x]]|x > 1 so that Lemma 8.3 applied to ΦTT[[x]] gives I 6= [ ] and thus
I∗ = I. We can then apply Lemma 8.4 which gives a derivation

ΦTT[[u]] � Γ′ ∧ Γ1
u;x : I2 ` TT[[u]] : U | ∆′ ∨∆1

u

where I = I1 ∧ I2 and I1 6= [ ] and Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u. Moreover
Θ1
u � Γ1

u  u : I1 | ∆1
u, Θ2

u � Γ2
u  u : I2 | ∆2

u, and sz(ΦTT[[u]]) = sz(ΦTT[[x]]) +
sz(Θ1

u)− |I1|.
The hypothesis |T[[x]]|x > 1 implies |T[[u]]|x > 0, then I2 6= [ ] by Lemma 8.3 applied
to ΦTT[[u]] so that I∗2 = I2. We can then construct the derivation Φ′ as follows:

ΦTT[[u]] Θ2
u

Γ′ ∧ Γ ` TT[[u]][x/u] : U | ∆′ ∧∆
(exs)

We conclude since sz(Φ′) = sz(ΦTT[[u]]) + sz(Θ2
u) =L. 8.4 sz(ΦTT[[x]]) + sz(Θ1

u) −
|I1|+ sz(Θ2

u) = sz(ΦTT[[x]]) + sz(Θu)− |I1| < sz(Φ).

The step < is justified by I1 6= [ ].

• If o = T[[x]][x/u]→ T[[u]] = o′, with |T[[x]]|x = 1. The derivation Φ has the following
form:

ΦTT[[x]]�Γ′;x : I ` TT[[x]] : U | ∆′ Θu�Γu  u : I∗ | ∆u

Γ′ ∧ Γu ` TT[[x]][x/u] : U | ∆′ ∨∆u

Lemma 8.3 applied to ΦTT[[x]] gives I 6= [ ] and thus I∗ = I. We can then apply
Lemma 8.4 which gives a derivation

ΦTT[[u]] � Γ′ ∧ Γ1
u;x : I2 ` TT[[u]] : U | ∆′ ∨∆1

u

where I = I1 ∧ I2 and I1 6= [ ] and Γu = Γ1
u ∧ Γ2

u and ∆u = ∆1
u ∨∆2

u. Moreover
Θ1
u � Γ1

u  u : I1 | ∆1
u, Θ2

u � Γ2
u  u : I2 | ∆2

u, and sz(ΦTT[[u]]) = sz(ΦTT[[x]]) +
sz(Θ1

u) − |I1|. By hypothesis |TT[[x]]|x = 1 so that |TT[[u]]|x = 0, then I2 = ∅ by
Lemma 8.3 applied to ΦTT[[u]]. Thus, I = I1. We then set Φ′ = ΦTT[[u]] and conclude
since

sz(Φ′) = sz(ΦTT[[u]])

=L. 8.4 sz(ΦTT[[x]]) + sz(Θ1
u)− |I1|

= sz(ΦTT[[x]]) + sz(Θu)− |I| <
= sz(ΦTT[[x]]) + sz(Θu) = sz(Φ)

The step < is justified by I = I1 6= [ ].
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• If o = CC[[[α]t]]〈α\\α′.u〉 → CC[[[α′]tu]]〈α\\α′.u〉 = o′, with |CC[[[α]t]]]α > 1. Then Φ
has the following form

Φc�Γc`CC[[[α]t]] : # |∆c;α : V ′ Θu�Γuu : Iu |∆u

Γc ∧ Γu ` CC[[[α]t]]〈α\\α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨`∈LV`
where c = CC[[[α]t]], V ′ = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗` )∗, A = #, Γ = Γc ∧ Γu and

∆ = ∆c ∨∆u ∨α′ : ∨`∈LV`. Since |CC[[[α]t]]|α > 1 implies L 6= ∅ by Lemma 8.3, we
have that Iu = ∧`∈LI∗` . By Lemma 8.5 there are L1, L2, Γ1

u, Γ2
u, ∆1

u, ∆2
u, ΦCC[[[α′]tu]]

s.t.

– L = L1 ] L2, where L1 6= ∅.
– Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,

– Θ1
u � Γ1

u  u : ∧`∈L1I∗` | ∆1
u,

– Θ2
u � Γ2

u  u : ∧`∈L2I∗` | ∆2
u,

– ΦCC[[[α′]tu]]�Γc∧Γ1
u ` CC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V`∨∆c∨∆1

u,
and

– sz(ΦCC[[[α′]tu]]) = sz(ΦCC[[[α]t]]) + sz(Θ1
u).

Moreover, |CC[[[α]t]]|α > 1 implies |CC[[[α′]tu]]|α > 0 so that L2 6= ∅ holds by
Lemma 8.3 and thus ∧`∈L2I∗` = (∧`∈L2I∗` )∗. Then we can build the following
derivation Φ′:

ΦCC[[[α′]tu]] Θ2
u

Γ′ ` CC[[[α′]tu]]〈α\\α′.u〉 : # | ∆′

where Γ′ = (Γc ∧ Γ1
u) ∧ Γ2

u = Γ, ∆′ = (α′ : ∨`∈L1V` ∨ ∆c ∨ ∆1
u) ∨ ∆2

u ∨ (α′ :
∨`∈L2V`) = ∆.

We conclude since

sz(Φ′) = sz(ΦCC[[[α′]tu]]) + sz(Θ2
u) + |L2| − 1

2
=L. 8.5 sz(ΦCC[[[α]t]]) + sz(Θ1

u) + sz(Θ2
u) + |L2| − 1

2
= sz(ΦCC[[[α]t]]) + sz(Θu) + |L2| − 1

2
< sz(ΦCC[[[α]t]]) + sz(Θu) + |L| − 1

2 = sz(Φ)

The step < is justified because L1 6= ∅ and thus |L2| < |L|.

• If o = CC[[[α]t]]〈α\\α′.u〉 → CC[[[α′]tu]] = o′, with |CC[[[α]t]]|α = 1. The derivation Φ
has the following form

Φc�Γc`CC[[[α]t]] : # |∆c;α : V ′ Θu�Γuu : Iu |∆u

Γc ∧ Γu ` CC[[[α]t]]〈α\\α′.u〉 : # | ∆c ∨∆u ∨ α′ : ∨`∈LV`

where c = CC[[[α]t]], V ′ = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗` )∗, A = #, Γ = Γc ∧ Γu and
∆ = ∆c ∨∆u ∨α′ : ∨`∈LV`. Since |CC[[[α]t]]|α = 1 implies L 6= ∅ by Lemma 8.3, we
have that Iu = ∧`∈LI∗` . By Lemma 8.5 there are L1, L2, Γ1

u, Γ2
u, ∆1

u, ∆2
u, ΦCC[[[α′]tu]]

s.t.

– L = L1 ] L2, where L1 6= ∅.
– Γu = Γ1

u ∧ Γ2
u and ∆u = ∆1

u ∨∆2
u,
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– Θ1
u � Γ1

u  u : ∧`∈L1I∗` | ∆1
u,

– Θ2
u � Γ2

u  u : ∧`∈L2I∗` | ∆2
u,

– ΦCC[[[α′]tu]]�Γc∧Γ1
u ` CC[[[α′]tu]] : A | α : 〈I` → V`〉`∈L2 ;α′ : ∨`∈L1V`∨∆c∨∆1

u,
and

– sz(ΦCC[[[α′]tu]]) = sz(ΦCC[[[α]t]]) + sz(Θ1
u).

Moreover, |C[[[α]t]]|α = 1 implies |C[[[α′]tu]]|α = 0 so that L2 = ∅ and L = L1

holds by Lemma 8.3. Thus, Θ1
u = Θu and so on. We then set Φ′ = ΦC[[[α′]tu]] and

conclude since

sz(Φ′) = sz(ΦC[[[α′]tu]])

=L. 8.5 sz(ΦC[[[α]t]]) + sz(Θu)

< sz(ΦC[[[α]t]]) + sz(Θu) + |L| − 1
2 = sz(Φ)

The step < is justified because L 6= ∅, so that |L| > 1 implies |L| − 1
2 > 0.

8.2.2 Backward Properties

As in the implicit case (Sec. 7.3.2), subject expansion for non-erasing λµr-step relies on
(Linear) Reverse Substitution and (Linear) Reverse Replacement Lemmas: if
Φ′ � Γ ` o′ : A | ∆ and o′ has been obtained from o by substituting one occurence
of x by u (or one subcommand [α]t by [α′]tu), then, informally speaking, it is possible
to decompose Φ′ into a regular derivation Φ0 typing o and an auxiliary derivation Θu

typing u.

Lemma 8.7 (Reverse Partial Substitution). Let Φ � Γ ` OT[[u]] : A | ∆, where
x /∈ fv(u). Then, ∃Γ0, ∃∆0, ∃I0 6= [ ], ∃Γu, ∃∆u such that

• Γ = Γ0 ∧∆u,

• ∆ = ∆0 ∨∆u,

• ΦOT[[x]] � Γ0 ∧ x : I0 ` OT[[x]] : A | ∆0

• �Γu  u : I0 | ∆u.

Proof. The proof is by induction on the context OT. For this induction to work, we need
as usual to adapt the statement for auxiliary derivations. We only show the case OT = 2
since all the other ones are straightforward and rely on suitable partitions of the contexts
in the premises. So assume OT = 2, then A = U for some U . We set Γ0 = ∆0 = ∅,
I0 = [U ], Γu = Γ, ∆u = ∆ (so that �Γu  u : I0 | ∆u holds by using the (∧) rule), and

Φx =
x : [U ] ` x : U | ∅

The claimed set and context equalities trivially hold.

Lemma 8.8 (Reverse Partial Replacement). Let Γ ` OC[[[α′]tu]] : A | α′ : V; ∆,
where α, α′ /∈ fn(u). Then ∃Γ0, ∃∆0, ∃V0, ∃K 6= ∅, ∃(Ik)k∈K , ∃(Vk)k∈K , Γu, and ∆u

such that



8.2. TYPING PROPERTIES 179

• Γ = Γ0 ∧ Γu,

• ∆ = ∆0 ∨∆u,

• V = V0 ∨k∈K Vk,

• �Γ0 ` OC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0, and

• �Γu  u : ∧k∈KI∗k | ∆u

Proof. The proof is by induction on the context OC. For this induction to work, we
need as usual to adapt the statement for auxilary derivations. Notice that V 6= 〈 〉 by
Lemma 8.3, since α′ ∈ fn(OC[[[α′]tu]]). We only show the case OC = � since all the other
ones are straightforward. So assume OC = �. Then the derivation of [α′]tu has the
following form, where K 6= ∅:

Φt � Γ0 ` t : 〈Ik → Vk〉k∈K | α′ : V0; ∆0 �Γu  u : ∧k∈KI∗k | ∆u

Γ0 ∧ Γu ` tu : ∨k∈KVk | α′ : V0; ∆0 ∨∆u

Γ0 ∧ Γu ` [α′]tu : # | α′ : V0 ∨k∈K Vk; ∆0 ∨∆u

where Γ = Γ0 ∧ Γu, and ∆ = ∆0 ∨∆u and V = V0 ∨k∈K Vk.
We then construct the following derivation :

Φt

Γ ` [α]t : # | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0

Thus, we have all the claimed set and context equalities.

Lemma 8.9 (Subject Expansion for λµr). Let Φ′ � Γ ` o′ : A | ∆. If o →λµr o
′ (i.e. a

non-erasing λµr-step), then Φ� Γ ` o : A | ∆.

Proof. By induction on the non erasing reduction relation→λµr . We only show the main
cases of non-erasing reduction at the root, the other ones being straightforward.

• If o = L[[λx.t]u]→ L[t〈x\u〉] = o′, we proceed by induction on L, by detailing only
the case L = 2 as the other one is straightforward.

The derivation Φ′ has the following form :

Φt � Γt;x : I ` t : U | ∆t Θu � Γu  u : I∗ | ∆u

Γ ` t〈x\u〉 : U | ∆

We then construct the following derivation Φ:

Φt � Γt;x : I ` t : U | ∆t

Γt ` λx.t : I → U | ∆t Θu � Γu  u : I∗ | ∆u

Γ ` (λx.t)u : U | ∆

• If o = L[[µα.c]u] → L[µα′.c〈α\\α′.u〉] = o′, where α′ is fresh, then we proceed by
induction on L, by detailing only the case L = 2 as the other one is straightforward.
Then Φ′ has the following form :

Φc � Γc ` c : # | α : Vα; ∆c Θu � Γu  u : Iu | ∆u

Γc ∧ Γu ` c〈α\\α′.u〉 : # | ∆c ∨∆u;α′ : Vα′
Γc ∧ Γu ` µα′.c〈α\\α′.u〉 : (Vα′)∗ | ∆c ∨∆u



180
CHAPTER 8. A RESOURCE AWARE SEMANTICS FOR THE

LAMBDA-MU-CALCULUS

where Vα = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗` )∗, Vα′ = ∨`∈LV`, A = (Vα′)∗ =
(∨`∈LV`)∗, Γ = Γc ∧ Γu and ∆ = ∆c ∨ ∆u. Notice that the name assignment
of the judgment typing c〈α\\α′.u〉 has the form ∆c ∨∆u;α′ : Vα′ since α′ is a fresh
name by hypothesis, so that α′ /∈ dom(∆c ∨ ∆u) holds by Lemma 8.3. We now
consider two cases:

If L 6= ∅, then 〈I` → V`〉∗`∈L = 〈I` → V`〉`∈L, (∧`∈LI∗` )∗ = ∧`∈LI∗` , A =
(∨`∈LV`)∗ = ∨`∈LV`, so that we construct the following derivation Φ:

Φc � Γc ` µα.c : 〈I` → V`〉`∈L | ∆c Θu � Γu  u : ∧`∈LI∗` | ∆u

Γc ∧ Γu ` (µα.c)u : ∨`∈LV` | ∆c ∨∆u

If L = ∅, then let (∧`∈LI∗` )∗ (resp. (∨`∈LV`)∗) be of the form [U ] (resp. 〈σ〉) for
some arbitrary U (resp. σ). Then we choose 〈I` → V`〉∗`∈L to be 〈[U ]→ 〈σ〉〉. We
then construct the following derivation Φ:

Φc � Γc ` µα.c : 〈[U ]→ 〈σ〉〉 | ∆c Θu � Γu  u : [U ] | ∆u

Γc ∧ Γu ` (µα.c)u : 〈σ〉 | ∆c ∨∆u

We conclude since A = 〈σ〉.

• If o = OT[[x]][x/u]→ OT[[u]][x/u] = o′, with |OT[[x]]|x > 1. The derivation Φ′ has the
following form:

ΦOT[[u]] � Γ∗;x : I ` OT[[u]] : A | ∆∗ Θu � Γu  u : I∗ | ∆u

Γ∗ ∧ Γu ` OT[[u]][x/u] : A | ∆∗ ∨∆u

where x ∈ fv(OT[[u]]) implies I 6= [ ] by Lemma 8.3, so that I∗ = I.
By Lemma 8.7 applied to ΦOT[[u]], we have Γ′0, ∆0, I0 6= [ ], Γ′u, ∆′u such that

– Γ∗;x : I = Γ′0 ∧ Γ′u,

– ∆∗ = ∆0 ∨∆′u,

– ΦOT[[x]] � Γ′0 ∧ x : I0 ` OT[[x]] : A | ∆0

– �Γ′u  u : I0 | ∆′u.

We set I+ = I ∧ I0, Γ+
u = Γu ∧ Γ′u, ∆+

u = ∆u ∨∆′u. Thus, in particular, (I+)∗ =
I+. By Lemma 8.3, x /∈ dom(Γ′u), so that Γ′0 = Γ0;x : I for some Γ0 and thus
Γ′0∧x : I0 = Γ0;x : I+. By Lemma 7.3 there is a derivation Θ+

u �Γ+
u  u : I+ | ∆+

u

We then construct the following derivation Φ :

ΦOT[[x]] Θ+
u � Γ+

u ` u : I+ | ∆+
u

Γ0 ∧ Γ+
u ` OT[[x]][x/u] : A | ∆0 ∨∆+

u

(exs)

We conclude since Γ0 ∧ Γ+
u = Γ0 ∧ Γ′u ∧ Γu = Γ∗ ∧ Γu = Γ and ∆0 ∨ ∆+

u =
∆0 ∨∆′u ∨∆u = ∆∗ ∨∆u = ∆.

• If o = OT[[x]][x/u] → OT[[u]] = o′, with |OT[[x]]|x = 1. The derivation Φ′ ends with
Γ ` OT[[u]] : A | ∆ where x /∈ dom(Γ) by Lemma 8.3. By Lemma 8.7 applied to Φ′,
we have Γ0, ∆0, I0 6= [ ], Γu, ∆u such that

– Γ = Γ0 ∧ Γu,
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– ∆ = ∆0 ∨∆u,

– ΦOT[[x]] � Γ0 ∧ x : I0 ` OT[[x]] : A | ∆0

– �Γu  u : I0 | ∆u.

Thus, in particular, I∗0 = I0. Since x /∈ dom(Γ), x /∈ dom(Γ0), so that Γ0 ∧ x : I0 =
Γ0;x : I0. We then construct the following derivation Φ :

ΦOT[[x]] �Γu  u : I0 | ∆u

Γ0 ∧ Γu ` OT[[x]][x/u] : U | ∆0 ∨∆u

We conclude since Γ = Γ0 ∧ Γu and ∆ = ∆0 ∨∆u.

• If o = OC[[[α]t]]〈α\\α′.u〉 → OC[[[α′]tu]]〈α\\α′.u〉 = o′, with |OC[[[α]t]]]α > 1. Then Φ′

has the following form :

Φ′0 � Γ∗ ` OC[[[α′]tu]] : A | ∆∗;α′ : Vα′ ;α : Vα Θu � Γu  u : Iu | ∆u

Γ∗ ∧ Γu ` OC[[[α′]tu]]〈α\\α′.u〉 : A | (∆∗;α′ : Vα′) ∨∆u ∨ α′ : V

where Vα = 〈I` → V`〉`∈L, Iu = (∧`∈LI∗` )∗, V = ∨`∈LV`, Γ = Γ∗ ∧ Γu and
∆ = (∆∗;α

′ : Vα′) ∨ ∆u ∨ α′ : V = (∆∗ ∨ ∆u;α′ : Vα′ ∨ V) since α′ /∈ fn(u)
implies α′ /∈ dom(∆u). Since α ∈ fn(OC[[[α′]tu]]), then L 6= ∅ by Lemma 8.3, so
that Iu = ∧`∈LI∗` .
By Lemma 8.8 applied to Φ′0, we have Γ0, ∆′0,Φ0, V0, K 6= ∅, (Ik)k∈K , (Vk)k∈K , Γ′u,∆

′
u,

and Θ′u such that

– Γ∗ = Γ0 ∧ Γ′u,

– ∆∗;α : Vα = ∆′0 ∨∆′u,

– Vα′ = V0 ∨k∈K Vk,
– Φ0 � Γ0 ` OC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆′0 and

– �Γ′u  u : ∧k∈KI∗k | ∆′u

We set L+ = L ] K, Γ+
u = Γu ∧ Γ′u, ∆+

u = ∆u ∨ ∆′u and I+
u = ∧`∈L+I∗` . By

Lemma 8.3, α /∈ dom(∆′u), so that ∆′0 = ∆0;α : Vα for some ∆0 and α′ : V0;α :
〈Ik → Vk〉k∈K ∨ ∆′0 = α′ : V0;α : 〈I` → V`〉`∈L+ ; ∆0 since α′ /∈ dom(∆′0). By
Lemma 7.3, there is Θ+

u � Γ+
u  u : I+

u | ∆+
u . We then construct the following

derivation Φ:

Φ0 Θ+
u

Γ0 ∧ Γ+
u ` OC[[[α]t]]〈α\\α′.u〉 : A | α′ : V0 ∨`∈L+ V`; ∆0 ∨∆+

u

We conclude since Γ0∧Γ+
u = Γ0∧Γ′u∧Γu = Γ∗∧Γu = Γ, ∆0∨∆+

u = ∆0∨∆′u∨∆u =
∆∗ ∨∆u and V0 ∨`∈L+ V` = V0 ∨k∈K Vk ∨`∈L V` = Vα′ ∨`∈L V` = Vα′ ∨ V.

• If o = OC[[[α]t]]〈α\\α′.u〉 → OC[[[α′]tu]] = o′, with |OC[[[α]t]]|α = 1, then the derivation
Φ′ necessarily ends with the judgment Γ ` OC[[[α′]tu]] : A | ∆∗;α

′ : V, where
∆ = ∆∗;α

′ : V.
By Lemma 8.8 applied to Φ′, we have Γ0, ∆0, V0, K 6= ∅, (Ik)k∈K , (Vk)k∈K , Γu, ∆u,
and Θu such that
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– Γ = Γ0 ∧ Γu,

– ∆∗ = ∆0 ∨∆u,

– V = V0 ∨k∈K Vk,
– Φ0 � Γ0 ` OC[[[α]t]] : A | α′ : V0;α : 〈Ik → Vk〉k∈K ∨∆0 and

– Θu � Γu  u : ∧k∈KI∗k | ∆u

Notice that K 6= ∅ implies (∧k∈KI∗k)∗ = ∧k∈KI∗k . Moreover, by Lemma 8.3,
since α /∈ fn(OC[[[α′]tu]]), then α /∈ dom(∆), thus α /∈ dom(∆0) and α : 〈Ik →
Vk〉k∈K ∨∆0 = α : 〈Ik → Vk〉k∈K ; ∆0. We then construct Φ :

Φ0 Θu

Γ ` OC[[[α]t]]〈α\\α′.u〉 : A | (∆0;α′ : V0) ∨∆u ∨ α′ : ∨k∈KVk

We conclude since α′ /∈ fn(u) implies α′ /∈ dom(∆u) by Lemma 8.3 so that (∆0;α′ :
V0) ∨∆u ∨ α′ : ∨k∈KVk = ∆0 ∨∆u;α′ : V0 ∨k∈K Vk = ∆∗;α

′ : V = ∆ as desired.

8.3 Strongly Normalizing λµr-Objects

In this section we show a characterization of the set of strongly λµr-normalizing terms
by means of typability. The proof is done in several steps. The first key point is the
characterization of the set of strongly λµr-normalizing terms (instead of λµr-normalizing
terms). For that, SR and SE lemmas for the type system are used, and an inductive
characterization of the set SN(λµr) turns out to be helpful to obtain them. The second
key point is the equivalence between strongly λµr and λµr-normalizing terms. While
the inclusion SN(λµr) ⊆ SN(λµr) is straightforward, the fact that every w-reduction step
can be postponed w.r.t. any λµr-step (Lemma 8.11) turns out to be crucial to show
SN(λµr) ⊆ SN(λµr).

These technical tools are now used to prove that SN(λµr) coincides exactly with the
set of typable terms. To close the picture, i.e. to show that also SN(λµr) coincides with
the set of typable terms, we establish an equivalence between SN(λµr) and SN(λµr). This
is done constructively thanks to the use of an inductive definition for SN(λµr). Indeed,
the inductive set ISN(λµr) is the smallest subset of Oλµr that satisfies the following
properties:

(1) If t1, . . . , tn ∈ ISN(λµr) (n > 0), then xt1 . . . tn ∈ ISN(λµr).

(2) If t ∈ ISN(λµr), then λx.t ∈ ISN(λµr).

(3) If c ∈ ISN(λµr), then µα.c ∈ ISN(λµr).

(4) If t ∈ ISN(λµr), then [α]t ∈ ISN(λµr).

(5) If t, s ∈ ISN(λµr) and |t|x = 0, then t[x/s] ∈ ISN(λµr).

(6) If c, s ∈ ISN(λµr) and |c|α = 0, then c〈α\\α′.s〉 ∈ ISN(λµr).

(7) If u〈x\v〉~t ∈ ISN(λµr), then (λx.u)v~t ∈ ISN(λµr).

(8) If (µα′.c〈α\\α′.v〉)~t ∈ ISN(λµr), then (µα.c)v~t ∈ ISN(λµr).
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(9) If TT[[u]]〈x\u〉 ∈ ISN(λµr), and |TT[[x]]|x > 1 then TT[[x]]〈x\u〉 ∈ ISN(λµr).

(10) If CC[[[α′]tv]]〈α\\α′.v〉 ∈ ISN(λµr), and |CC[[[α]t]]|α > 1 then CC[[[α]t]]〈α\\α′.v〉 ∈
ISN(λµr).

(11) If TT[[u]] ∈ ISN(λµr), and |TT[[x]]|x = 1 then TT[[x]][x/u] ∈ ISN(λµr).

(12) If CC[[[α′]tv]] ∈ ISN(λµr), and |CC[[[α]t]]|α = 1 then CC[[[α]t]]〈α\\α′.v〉 ∈ ISN(λµr).

(13) If (tu)〈x\s〉 ∈ ISN(λµr) and |u|x = 0, then t〈x\s〉u ∈ ISN(λµr).

It is not surprising that ISN(λµr) turns out to be equivalent to SN(λµr), a property which
considerably simplifies the proof of Theorem 8.1.

Lemma 8.10. SN(λµr) = ISN(λµr)

Proof. Given o ∈ SN(λµr), we show o ∈ ISN(λµr) by induction on 〈ηλµr(o), |o|〉. The
converse uses induction on the definition of ISN(λµr) and the fact that ηλµr(t[x/s]u) =
ηλµr((tu)[x/s]) for the last case (so that (tu)[x/s] ∈ SN(λµr) iff t[x/s]u ∈ SN(λµr)).

In order to infer SN(λµr) ⊆ SN(λµr), the following postponement property is crucial.

Lemma 8.11 (Postponement). Let o ∈ Oλµr . If o→+
w→λµro

′ then o→λµr→+
w o
′.

Proof. We first show by cases o →w→λµr o
′ implies o →λµr→+

w o′. Then, the statement
holds by induction on the number of w-steps from o.

Lemma 8.12 (From λµr to λµr). Let o ∈ Oλµr . If o ∈ SN(λµr), then o ∈ SN(λµr).

Proof. We show that any reduction sequence ρ : o →λµr . . . is finite by induction on
the pair 〈o, n〉, where n is the maximal integer such that ρ can be decomposed as
ρ : o →n

w o
′ →λµr o

′′ → . . . (this is well-defined since →w is trivially terminating). We
compare the pair 〈o, n〉 using →λµr for the first component (this is well-founded since
o ∈ SN(λµr) by hyp.) and the standard order on natural numbers for the second one.
When the reduction sequence starts with at least one w-step we conclude by Lemma 8.11.
All the other cases are straightforward.

We conclude with the main theorem of this section:

Theorem 8.1. Let o ∈ Oλµr . Then o ∈ SN(λµr) iff o is typable. Moreover, if o is Sλµr-
typable with a derivation Π, then sz(Π) gives an upper bound to the maximal length of
a reduction sequence starting at o.

Proof. Let Φ � Γ ` o : τ | ∆. Assume o /∈ SN(λµr) so that ∃∞ sequence o = o0 →λµr

o1 →λµr o2 →λµr · · · . By Lemma 8.6 Φi � Γ ` oi : τ | ∆ for every i, and there exists
an infinite sequence sz(Φ0) > sz(Φ1) > sz(Φ2) > . . ., which leads to a contradiction
because sz(_) is a half-integer > 1. Therefore, o ∈ SN(λµr) ⊆L. 8.12 SN(λµr).

For the converse, o ∈ SN(λµr) ⊆ SN(λµr) because →λµr⊆→λµr . We then show that
o ∈ SN(λµr) implies o is typable. For that, we use the equality SN(λµr) =L. 8.10 ISN(λµr)
to reason by induction on t ∈ ISN(λµr). The cases (1)-(6) and (13) are straightforward
while the cases (7)-(12) uses Lemma 8.9 (Partial Subject Expansion).

It is worth noticing that the proof of Theorem 8.1 is self-contained: we do not use
at all the previous characterization of strongly-normalizing objects in the λµ-calculus
that we have developed in Sec. 7.4. We remark however that an alternative proof of
this theorem can be given in terms of the projection function defined in Sec. 8.1.2, an
appropriate PSN-like property [58], and Theorem 7.2.
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8.4 Conclusion

Chapter 7 provides two quantitative type assignment systems Hλµ and Sλµ for λµ, char-
acterizing, respectively, head and strongly normalizing terms. We have shown that
whenever o is typable in system Hλµ , then we can extract a measure from its type
derivation which provides an upper bounds to the length of the head-reduction strategy
starting at o. The same happens with system Sλµ with respect to the maximal length
of a reduction sequence starting at o: indeed, the system Sλµ endowed with weakening
axioms enjoys full subject reduction (on erasing and non-erasing steps), and Sλµ can be
embedded in such a system by preserving the size of derivations.

The construction of these typing systems suggests the definition of a resource aware
calculus, coming along with the corresponding extensions of the typing systems presented
in Chapter 7. This leads us to implement in Chapter 8 a small step operational semantics
for classical natural deduction. Such a calculus can be seen as an extension of the
substitution at a distance paradigm [2, 3] to the classical case. From the type-theoretic
point of view, λµr can be shown to be compatible with a natural extension of the
quantitative typing systems defined for λµ. Moreover, strong normalization in λµr can
be characterized by means of typability in the extended typing systems. In both cases (λµ
and λµr), the characterization proofs are obtained by simple arithmetical (quantitative)
arguments.

Quantitative types are a powerful tool to provide relational models for λ-calculus [4,
22]. The construction of such models for λµ should be investigated, particularly to
understand in the classical case the collapse relation between quantitative and qualitative
models [41].

We expect to be able to transfer the ideas in this paper to a classical sequent calculus
system, as was already done for focused intuitionistic logic [61].

The fact that idempotent types were already used to show observationally equivalence
between call-by-name and call-by-need [59] in intuitionistic logic suggests that our typing
system Sλµr could be used in the future to understand from a semantical point of view
the fact that classical call-by-name and classical call-by-need are not observationally
equivalent [92].

Moreover, it is possible to obtain exact bounds (as in [13]) for the lengths of the
head-reduction and the perpetual reduction sequences in the case of the λµ-caculus.
For that, it is necessary to integrate some additional typing rules being able to type
the constructors appearing in the normal forms of the terms. Although this concrete
development remains as future work, the difficult and conceptual part of the technique
stays in finding the decreasing measure for reduction. We may thus have good hove to
obtain as well exact bounds for λµ or λµr.

The inhabitation problem for λ-calculus is known to be undecidable for idempo-
tent intersection types [105], but decidable for the non-idempotent ones [18]. We may
conjecture that inhabitation is also decidable for Hλµ .
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Presentation
Böhm trees (Chapter 10 of [8]) were originally suggested by the proof of Böhm Separa-
bility Theorem. The Böhm tree of a λ-term corresponds to its whole execution w.r.t.
the Böhm reduction strategy (2nd variant). Böhm trees provide a natural semantics for
the λ-calculus, meaning that if t ≡β u, then BT(t) = BT(u). More generally, they are
deeply involved in the study of observational equivalence [76].

The Böhm tree of a term is its (possibly infinite) normal form, in which every sub-
head argument that is not head normalizing is replaced by the special constant symbol
⊥ (indicating a meaningless computation) e.g., BT(t) = ⊥ if t is not HN or BT(xΩ y) =
x⊥ y. Morever, BT(Yf ) = fω will hold, where Yf is the term from Sec. 2.1.4 satisfying
Yf →β f(Yf ) and fω is the infinite tree introduced in Sec. 2.3.3, informally written
f(f(f(. . .))).

The infinitary λ-calculi were introduced by Kennaway, Klop, and de Vries [57] in the
90s to capture several infinitary semantics of λ-calculus. They presented eight calculi,
denoted Λabc (with a, b, c ∈ {0, 1}), the variables a, b, c indicating which constructions
are allowed to build infinite terms. For instance, the normal forms of Λ001 correspond
to the Böhm trees that do not contain ⊥. Likewise, Λ111 and Λ101 respectively capture
the Berarducci trees and the Lévy-Longo trees as normal forms (also up to the rewriting
of “computationally meaningless terms” into ⊥). The calculus Λ000 is just the finite
λ-calculus Λ.

The infinitary λ-calculi have many applications [10] in relation e.g., with Berry’s
Sequentiality Theorem and relative computability. Incidentally, Klop et al. proved that
the calculi Λ111, Λ001 and Λ101 were the only infinite ones satisfying (a partial form of)
confluence (i.e. having an interesting behaviour).

Our first interest in this thesis lies in the calculus Λ001. We will just sketch the
construction of Λ111 (also denoted Λ∞) because it contains all the other infinite calculi.

Since a Böhm tree that does not contain ⊥ is a normal form of Λ001, a term t whose
Böhm tree does not contain ⊥ (i.e. the Böhm reduction strategies never ouputs from
t an argument that is not head normalizing) can be considered as weakly normalizing
w.r.t. the calculus Λ001.

Klop’s Problem is to find out whether the terms whose Böhm trees does not contain⊥
(also called the Hereditary Head Normalizing (HHN) terms) can be characterized
with an intersection type system. One of the contribution of this thesis is to provide a
positive answer to this question in the infinitary case (i.e. when resorting to an infinitary
type system) whereas it was proved impossible in the finite case (see the introduction of
Chapter 10 for more details).

Hereditary head normalization is characterized with the intersection type system S,
that we introduce in this thesis. System S uses sequences to represent intersection
types, instead of sets or multisets (compare with Sec. 3.2.2). As system R0, system S

has a non-idempotent flavour e.g., assigning a variable once or twice the same variable
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is not the same. However, system S is rigid in the sense of Sec. 2.1.1, whereas system R0

is not (remember Sec. 4.1.2). Actually, it is easy to see that coinductive type grammar
usually give birth to unsound derivations (see Sec. 10.1.3), that type for instance mute
terms (Sec. 2.3.2). We resort to a validity criterion, called approximability, to discard
the unsound derivations that could make the characterization of HHN fail. Rigidity is
a necessary feature to express this validity criterion, so that we cannot use an infinitary
version of system R0 and we need to build system S instead (for more details, see also
the introduction of Chapter 10).

Hereditary head normalization is a particular case of infinitary weak normalization
(corresponding to the first variant of the Böhm reduction strategy, Sec. 2.3.5). This stra-
tegy is known to be complete for weak normalization in the case of the finite λ-calculus
(Sec. 5.1.4). Our type-theoretic characterization of the HHN terms gives a semanti-
cal proof that the hereditary head reduction strategy is (asymptotically) complete for
infinitary weak normalization.

Contents of Part III

• Chapter 9 just gives some background on the infinitary calculus and Böhm trees.
We present the notions of infinite trees, coinductive grammars, then we formally
define the Böhm trees and the calculi Λ111 and Λ101, as well as their infinitary
operational semantics, given by the strongly converging reduction sequences.

• Chapter 10 presents our contributions to Klop’s Problem. Moreover, we intro-
duce type system S, featuring sequences as infinitary intersection types (instead
of infinite multisets). We explain how to perform infinitary subject expansion by
truncating infinitary derivations into finite ones and then taking their join. We
then show that approximability cannot be defined by means of multiset construc-
tions. We formally define the approximability criterion in system S, allowing to
discard unsound derivations. We conclude by proving all the properties necessary
to the type-theoretic characterization of infinitary weak normalization: infinitary
subject reduction and subject expansion, the typing of the infinite normal forms
and an “infinitary normalization property”, meaning that every suitably typed term
will asympotically produce an infinitary normal form.
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Chapter 9

The Infinitary Lambda-Calculus

We saw in Sec. 2.3.3 that some terms are not normalizing but nevertheless produce an
unbounded number of stable positions, suggesting infinite λ-terms and in particular,
infinite normal forms. We formalize those intuitions in this chapter:

• We introduce Böhm trees: the Böhm tree of a (normalizing or not) term cor-
responds to its whole execution w.r.t. the 2nd variant of the Böhm reduction
strategy.

• We present two infinitary extensions of the λ-calculus, namely Λ∞ and Λ001.
These calculi both feature infinite terms and an infinitary operational semantics.

• We explain how Böhm trees (almost) identify to the normal forms of Λ001.

• Before introducing Λ∞ and Λ001, we explain the mechanisms of coinductive gram-
mars.

We first give an intuitive account of Böhm trees (Sec. 9.1). As it turns out, many
usual terms have a Böhm tree that is infinite. This leads us to present the formalism
to be used in this thesis for infinite trees (Sec. 9.2.1), then we quickly describe how sets
of (possibly) infinite trees can be defined with coinductive grammars (Sec. 9.2.3), which
are a key tool of Part 10 and IV, both for defining the infinitary calculus and for defining
infinitary types (e.g., Sec. 10.2 in Chapter 10). In Sec. 9.3.1 and 9.3.2 respectively, we
define and discuss the infinitary calculi Λ∞ and Λ001. We conclude this chapter with
a formal presentation of Böhm trees as normal forms of the infinitary calculus Λ001

⊥ ,
a variant of Λ001 with an oracle deciding whether a term is head normalizing or not
(Sec. 9.3.3).

9.1 Böhm Trees

We recall from Lemma 2.5 and Sec. 2.3.5 that a Hereditarily Nested Head Normal Form
(HNHNF) of a term t is a subterm of t that is a HNF nested in a series of HNF (starting
with t itself). The positions of the HNHNF of t are said to be Böhm stable. The
second variant of the Böhm reduction strategy will output more and more Böhm stable
positions. By Remark 2.8 p. 71, the 2nd variant of the Böhm reduction strategy will
unfold from t all the possible HNHNF one after the other. This suggests the notion of
Böhm trees: the Böhm tree BT(t) of a term t is then the datum of all the HNHNF that
can be outputted from t, with the additional convention that every maximal subterm
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that is not head normalizing is replaced by the fresh constant symbol ⊥. For instance,
remembering some terms presented in Sec. 2.1.4:

• If t is weakly normalizing, then BT(t) can be identified with the normal form of t
by Proposition 3.8.

• We have BT(Ω) = BT(Ω3) = BT(Y′f ) = BT(Yλ) = ⊥ since those terms are not head
normalizing.

• If t = λx.yΩxΩ3, then BT(t) = λx.y⊥x⊥: the non-HN arguments Ω and Ω3 are
replaced by ⊥ in the Böhm tree.

• We have BT(Yf ) = fω, where fω is the infinite tree defined in Sec. 2.3.3. Indeed,
recall that Yf → f(Yf ) → . . . → fn(Yf ) → . . . Note that fn(Yf ) is a nesting1

of n head normal forms and, intuitively, one can output from Yf infinitely many
HNHNF, yielding f(f(f(. . .))) =: fω as expected.

This naive definition immediately brings up two remarks:

• Since head normalization is undecidable2, the computation of Böhm trees demands
an oracle to know when and where the constant ⊥ should pop up.

• The example of BT(Yf ) above show that a finite term can produce infinitely many
Böhm stable positions, and thus have an infinite Böhm tree.

The second point demands a formal description of infinite labelled trees, which can
be found in Sec. 9.2.1.

A Glimpse at Coinduction Alternatively, the computation of Böhm trees can be
described by a coinductive grammar:

BT(t) :=

{
⊥ if t is not HN
λx1 . . . xp.x BT(t1) . . . BT(tq) if t (head-)reduces to λx1 . . . xp.x t1 . . . tq

Roughly speaking, coinduction means that there can be infinitely many “calls” to the
grammar to compute BT(t). This will be made clearer in Sec. 9.2.3. Meanwhile, since
Yf →β f(Yf ), this definition entails that BT(Yf ) = f(BT(Yf )) and thus, BT(Yf ) =
f(BT(Yf )) = f(f(BT(Yf ))) = f(. . . f(BT(Yf ))), so that after infinity many “calls”, we
obtain BT(Yf ) = fω.

Representation of Böhm Trees There are two ways to represent e.g., the Böhm
tree λxyz.y BT1 BT2 (with BT1, BT2 Böhm trees), given in Fig. 9.1.

The one on the left-hand side is traditional and more compact. The right one repre-
sents the same Böhm tree as λ-term. We favour this second choice though, since Böhm
trees will be recovered as the normal forms of an infinitary λ-calculus (Sec. 9.3.3).

Note that the trees representing NF∞(Yλ), NF∞(Ω3) and NF∞(Y′f ) are not Böhm
trees (Fig. 2.11, p. 67), since neither Yλ, Ω3 or Y′f are head normalizing. Moreover,
as suggested in Sec. 2.3.3, Böhm trees intuitively correspond to infinite normal forms
(Sec. 9.3.3).

1We have stabB(f
n(Yf )) = {2k | k < n} ∪ {2k · 1 | k < n} (with fn(Yf )(2k) = @, fn(Yf )(2k · 1) = f

for k < n)
2The λ-calculus endowed with head-reduction is Turing complete, see for instance Chapter 2 of [68]
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BT1 BT2

λxyz.y
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BT2
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Figure 9.1: Alternative Representations of the Böhm Tree λxyz.y BT1 BT2

9.2 Induction and Coinduction

In this section, we first present the formalism to be used for the infinite labelled trees:
both the infinite λ-terms (Sec. 9.2.3, 9.3.1 and 9.3.2) and the infinitary derivations of
System S (Chapter 10) are infinite labelled trees defined by coinductive grammars. Co-
inductive grammars for trees are briefly presented in Sec. 9.2.3. Before that (Sec. 9.2.2),
the relations between induction (resp. coinduction) and smallest (resp. biggest) fixpoints
are sketched.

9.2.1 Infinite Labelled Trees

Let A be a set. We extend the notions of (rigid) labelled tree of Sec. 2.1.1 to an infinitary
framework. We recall from this section that a rigid labelled tree is a labelled tree in the
usual sense (with labels on nodes and nodes) whereas in the non-rigid case, only the
nodes are labelled.

We denote by A ω the set of the words on A that are finite or of ω-length. Thus, an
element of A ω is a family (ai)i∈κ such that κ is an ordinal 6 ω and for all i ∈ κ, ai ∈ A .
Remind that κ 6 ω means that κ = ω = N or κ = {0, . . . , n − 1} for some n ∈ N. By
identifying the natural number n to the ordinal {1, . . . , n}, we may just write i < κ
instead of i ∈ κ.

If w = (ai)i<n is a finite word of length n and w′ = (ai)i<κ′ ∈ A ω, then the
concatenation w · w′ of w and w′ is the word w′′ = (a′′i )i<κ′′ where κ

′′ = n + κ′ (i.e.
κ′′ = n + n′ if κ′ = n′ ∈ N and κ′′ = ω if κ′ = ω), a′′i = ai for all i < n and a′′i = a′i−n
for n 6 i < κ′′. Thus, concatenation on A ω extends that of A ∗. The prefix order can
be extended3 as well: for all w1, w2 ∈ A ω, w1 6 w2 if w1 = w2 or there exists w3 ∈ A ω

such that w2 = w1 ·w3. Note that in the latter case, w1 ∈ A ∗ i.e. w1 is of finite length.
When w1 6 w2, we also say that w1 is a prefix of w2 and w2 is an extension of w1.

If w ∈ A ∗, we denote by wω the infinite (if w 6= ε) word w∞ satisfying w∞ = w ·w∞
i.e. w∞ = w · w · w · . . .. A rigid ∞-tree is a subset of Nω that is non-empty and
downward-closed for the prefix order. Let Σ be a set. An infinite branch of an∞-tree

3Technically, this is only a preorder in the infinite case e.g., the w1 = (0 · 1)ω and w2 = (1 · 0)ω

satisfy w1 6 w2, w1 > w2 but w1 6= w2.
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A is a sequence b = (ak)k∈N such that every finite prefix of b is in A e.g., 2ω is an infinite
branch of the ∞-tree A = {2k | k ∈ N} ∪ {2k · 1 | b ∈ N}.

A rigid labelled ∞-tree T on the signature Σ is a function whose support (domain)
supp(T ) is a rigid ∞-tree. The terms position, occurrence, subtree rooted at w are
straightforwardly extended to ∞-trees.

9.2.2 Smallest and Biggest Invariant Subsets

In order to present inductive and coinductive grammars, we need to explain, given a
set X , how to build the smallest subset (resp. the biggest subset) of X that is invariant
under a given family of functions F (F -invariance). This is a classical tool of the
theory of partially ordered sets (posets). By the way, the power set of X is denoted
P(X ).

With these notations, the arity of a function f ∈ F is denoted ar(f) i.e. ar(f) = n
means that f is a function from X n to X . When ar(f) = 0, f is a constant function.
Given Y ⊆ X and f ∈ F such that ar(f) = n, we abusively write f(Y ) for f(Y n) (i.e.
{f(x1, . . . , xn) |x1, . . . , xn ∈ Y n}).

We then build a function FF (or just F ) from P(X ) to itself by setting, for all Y ⊆ X :

F (Y ) = ∪f∈Ff(Y )

Thus, a subset Y ⊆ X is F -stable iff F (Y ) ⊆ Y and Y is F -invariant iff Y is a fixpoint
of F (i.e. F (Y ) = Y ). Note that F -invariance entails F -stability.

The function F is monotonic i.e. for all Y, Y ′ ⊆ X , if Y ⊆ Y ′, then F (Y ) ⊆ F (Y ′).
The set X is obviously F -stable and if the (Yi)i∈I (with I finite or infinite set) are
F -stable, then ∩i∈IYi is F -stable.

• We set µY.F (Y ) = ∪n∈NFn(∅). Using the monotonicity of F , it is straightforward
to check that (1) F (µY.F (Y )) = µY.F (Y ) so that µY.F (Y ) is F -invariant and
that moreover (2) µY.F (Y ) is the smallest F -invariant subset of X (if Z ⊆ X
is F -invariant, then µY.F (Y ) ⊆ Z). Observe that µY.F (Y ) is empty iff there are
no nullary (0-ary) functions in F .

• We set νY.F (Y ) = ∩n∈NFn(X ). Using the monotonicity of F , we check that
(1) F (νY.F (Y )) = νY.F (Y ), so that νY.F (Y ) is also F -invariant and that (2)
νY.F (Y ) is the biggest F -invariant subset of X (if Z ⊆ X is F -invariant, then
νY.F (Y ) ⊇ Z).

9.2.3 Inductive vs. Coinductive Grammars

We shall not present the general framework of induction and coinduction, but just
discuss the example of the inductive grammar defining the (finite) λ-calculus and that of
its coinductive counterpart defining the infinite λ-calculus. See [34,42] for a very elegant
framework allowing to interweave induction and coinduction and define the infinitary
λ-calculus.

Inductive grammars are used to define sets of strings of characters but they can be
used as well to define sets of labelled trees. This does not make much of a difference
e.g., λ-terms can be both seen as strings of characters or as labelled trees (Sec. 2.1.2).

But note that it is a bit problematic to find a canonical formalism for infinite strings
of characters: intuitively, as a string of characters, an infinite word may be infinite on its
right-hand side (if we apply the rewriting rule S → aS infinitely many times, we obtain
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aaa. . . ) or on in left-hand side (with S → S a, we obtain . . . aaa) or both (with S →
aS a, we obtain . . . aaa. . . ). Of course, one may want to concatenate several words of
infinite length. . . This soon becomes messy and this is one of the reasons why we do not
want to define infinite λ-terms as infinite strings of characters. Note that infinite trees
(Sec. 9.2.1) seem easier to handle: they can have several infinite branches and they are
not just infinite on one side and/or the other.

Thus, although the formalisms of λ-terms-as-strings and of λ-terms as trees can
coexist in the finite case, in the infinite one, only the latter can be conveniently used.
Let Tλ be the set of rigid labelled trees on the signature Σλ = V ∪ {λx |x ∈ V } ∪ {@}.
To say that Λ is the set of trees defined by the inductive grammar below (cf. Sec. 2.1.2)
just means that Λ is the smallest subset of Tλ that is invariant under the constructors
(x)x∈V , (t 7→ λx.t)x∈V and (t, u) 7→ (t u) (Sec. 9.2.2).

t, u := x ∈ V | (λx.t) | (t u)

The fact that the metavariables t and u occur on the left-hand side of := means that
they are the inductive variables i.e. are bound in the grammar (they are the actual
variables of the constructors and not parameters).

What happens if we consider Λ′, the biggest set of Tλ that is invariant under the
same constructors? Actually nothing, and it is easy to check that Λ′ = Λ.

Now, let T ωλ , the set of the ∞-labelled trees t on the signature Σλ, so that Tλ ⊆
T ωλ such that supp(t) ⊆ {0, 1, 2}∗. The smallest subset of T ωλ that is invariant under
the above constructors is still Λ. On the other hand, the biggest invariant subset,
that we denote Λ∞, is bigger than Λ. For instance, Λ∞ contains the labelled trees
fω, NF∞(Yλ), NF∞(Ω3) and NF∞(Y′f ) presented in Fig. 9.4 and Fig. 9.2 below. Note that
those labelled trees can be respectively defined by the following coinductive grammars
t := f t (for fω), t := λx.t, t = t ω3 and t := t f (for Y′f ).

λx

λx

λx

λx

NF∞(Yλ)

@

ω3

@

ω3

@

ω3

@

ω3

NF∞(Ω3)

@

f@

f@

f@

f

NF∞(Y′f )

Figure 9.2: Infinite Normal Forms (copy of Fig. 2.11, p. 67)

The set Λ∞ is called the set of infinite λ-terms and its operational semantics will
be defined and briefly studied in Sec. 9.3.1.

Given t ∈ T ωλ , the predicate t ∈ Λ∞ can be checked node-wise:

Lemma 9.1. Let t ∈ T ωλ . Then t ∈ Λ∞ iff t satisfies the following conditions, for all
b ∈ supp(t):
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• If t(b) = x for some x ∈ V , then b is a leaf of supp(t).

• If t(b) = λx for some x ∈ V , then b · 0 ∈ supp(t) and b · 1, b · 2 /∈ supp(t).

• If t(b) = @, then b · 1, b · 2 ∈ supp(t) and b · 0 /∈ supp(t).

9.3 The Infinitary Lambda Calculi

With the help of coinductive definitions, we may now present two infinitary λ-calculi,
Λ∞ (also denoted Λ111) and Λ001. The calculus Λ001 is a restriction of the full infinitary
λ-calculus. They both come along with their infinitary operational semantics, embodied
by the strongly converging reduction sequences (s.c.r.s.), which are a special kind of
reduction sequence of (possibly) infinite length, regarded as productive: a s.c.r.s. of
infinite length will still output a term (asymptotically), to be called the limit of the
s.c.r.s.. Both calculi feature infinitary normal forms, and thus, give rise to a notion a
infinitary normalization (this last point is addressed only for weak normalization and for
Λ001). We conclude this section by explaining the relation between the normal forms of
Λ001 and Böhm trees.

9.3.1 The Full Infinitary Calculus

In this section, we study the full infinitary λ-calculus and briefly discuss it as a frame-
work.

For that, it is better to assume that the set V of term variable is uncountable (this
is explained at the end of this section, p. 198):

Definition 9.1. The set of infinitary λ-terms, denoted Λ∞, is defined by the coin-
ductive grammar (Sec. 9.2.3):

t, u := x ∈ V | (λx.t) | (t u)

Notation 9.1. We use the same notation conventions as those for the finite λ-calculus
(see Notation 2.1, p. 51).

Alpha-Equivalence and Capture-Free Substitution Let (zb)b∈{0,1,2}∗ be a family
of fresh variables (for all b ∈ {0, 1, 2}∗, zb /∈ V ) and we set V∗ = V ∪{zb | b ∈ {0, 1, 2}∗}.
We define the calculus Λ∞∗ by the coinductive grammar:

t, u := x ∈ V∗ | (λx.t) | (t u)

We denote Λ∞B the set of terms t ∈ Λ∞∗ such that no variable zb occurs in t freely.
Note that Λ∞ ⊆ Λ∞B . Let b·c be an injection from N∗ to N

Then, for all t ∈ Λ∞B , we define tB as the term obtained from t by

• replacing by zbbc any variable y ∈ V occurring at position b′ and that is bound at
position b ∈ {0, 1, 2}∗ (i.e. t(b′) = y and b is the longest prefix of b′ s.t. t(b) =
λy). . .

• . . . and replacing λy (at pos. b) by λzbbc.
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The letter B stands for “Barendregt ” and tB satisfies Barendregt convention by con-
struction. We say t and u are α-equivalent when tB = uB, and write simply t = u.

The notion of binding position and the notation λt(b) from Sec. 2.1.2 naturally extend
to infinite λ-terms, as well as α-equivalence (t and t′ are α-equivalent if

(1) supp(t) = supp(t′)

(2) a variable x occurs freely in t at position b iff it occurs freely in t′ at position b

(3) a position b is bound in t′ at position bλ iff b is bound in t′ at position bλ.

The capture free substitution t[u/x] is defined as the term v obtain from x by
replacing (in the term t) every free occurrence of x by the term u.

We write t[u/x] for the capture-free substitution of x by u inside t, meaning
that t[u/x] is the term obtained from t by replacing (in t) every free occurrence of x
by u and by α-renaming the bound variables of t so that no abstraction of t binds a
variable occurring free in u. Doing so is possible because (1) V + is uncountable, and
(2) supp(t) ⊂ {0, 1, 2}∗ implies that supp(t) is countable, so that t contains a countable
number of variables.

A redex of Λ∞ is also a term of the form (λx.r)s with r, s ∈ Λ∞ and the (root-)reduct
of (λx.r)s is r[s/x]. Pointed β-reduction t b→β t′ is defined as in for all b ∈ {0, 1, 2}∗ by
induction on b. The (pointed) relation t b→β t′ is defined by induction on b ∈ {0, 1, 2}∗

as in Sec. 2.1.3: (λx.r)s
ε→β r[s/x], λx.t 0·b→β λx.t′ if t b→β t′, t1t2

1·b→β t′1t2 if t1
b→β

t1, t1t2
2·b→β t1t′2 if t2

b→β t′2.
The full β-reduction is then defined by →β= ∪b∈{0,1,2}∗

b→β . The notion of reduction
sequence is defined as in Sec. 2.1.6.

Strong Convergence in Λ∞ A reduction sequence of infinite length can be produc-
tive: assume that t b0→β t1

b1→β . . .
bk−1→ β tk

bk→β . . . and that limk→∞ |bk| = ∞. Thus,
the depth of the positions of the reduced redexes converges towards infinity. Such a
reduction sequence is said to be strongly converging. The main intuition is the fol-
lowing: when a reduction is performed at depth n, the term is not affected below depth
n. Thus, the reduction sequence stabilizes the term at any fixed depth. It allows us
to define the limit t′ of this reduction sequence: the truncation t′ at depth n is equal
to that of any tk such that no reduction at depth 6 n is performed after rank k. For
instance, in Fig. 9.3 representing a strongly converging reduction sequence, the parts
that have been stabilized are put in gray: after 50 reduction steps, no reduction step is
performed under depth 10 (if k > 50, then |bk| > 10), so that the term of the sequence
are stabilized under depth 10: the depth 10 truncation of the limit is computed. After
109 reduction steps, the term is stabilized under depth 106 (if k > 109, then |bk| > 106):
the depth 106 truncation of the limit is computed. Asymptotically, the whole term is
stabilized, which gives the limit of the reduction sequence.

Formally, a reduction sequence rs = (bk)k<κ (with κ 6 ω) is strongly converging
if rs is of finite length (κ = n ∈ N) or if limk→∞ |bk| = ∞. In the latter case, we
can define the limit of rs as follows. First, we denote tk term of rank k in rs i.e.

t
b0→ t1

b1→ . . .
bk−1→ tk

bk→ . . .. Moreover, for all ` ∈ N, we denote by Nrs(`) the smallest
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depth

∞

106

10

0
t0 t50 t109 t∞

Figure 9.3: Stabilization in a Strongly Converging Sequence (Example)

integer N such that, for all k > N , |bk| > `. Then we define t′ as the following tree of
T ωλ :

• supp(t′) = {b ∈ {0, 1, 2}∗ | b ∈ supp(tN ) with N = Nrs(|b|)}

• For all b ∈ supp(t′), t′(b) = tN (b) with N = Nrs(|b|).

By definition of Nrs(`), we notice that (1) for all b ∈ {0, 1, 2}∗, b ∈ supp(t′) iff, for
all k > Nrs(|b|), b ∈ supp(tk) and (2) for all b ∈ supp(t′) and for all k > Nrs(|b|),
t′(b) = tk(b). From this and Lemma 9.1, we easily deduce that the labelled tree t′ is an
infinite λ-term. To conclude, we write

t→∞ t′

to mean that there is a strongly converging reduction sequence from t to t′. See [57] for
an in-depth study of strongly converging reduction sequences.

Example 9.1. With the terms of Sec. 2.3.3, Yf →∞ fω (so that Y →∞ λf.fω),
Yλ →∞ λxω, Ω3 →∞ ((. . .)ω3)ω3 and Y′f →∞ ((. . .)f)f . As counter-example, the
infinite reduction sequence Ω → Ω → . . . is not strongly converging, since reduction
occurs at depth 0 (which does converge towards infinity. . . ).

Remark 9.1 (Head Normalization in Λ∞).

• A head normal form of Λ∞ is a term t ∈ Λ∞ of the form λx1 . . . xp.x t1 . . . tq (p, q >
0) with t1, . . . , tq ∈ Λ∞. A term t ∈ Λ∞ is head reducible if it is of the form
λx1 . . . xp.(λx.r)s t1 . . . tq (p, q > 0) with r, s, t1, . . . , tq. A term is head-formed
if it is a HNF or if it is head reducible. If not, we say that it is headless. For
instance, the terms NF∞(Yλ), NF∞(Ω3) and NF∞(Ω3) (Fig. 9.2) are headless and
fω (Fig. 9.4) is an infinite head-formed term. A finite term is head-formed.

• A term t ∈ Λ∞ is head normalizing if there is a HNF t′ such that t→∞ t′. We write
t→h t

′ (head reduction) if t = λx1 . . . xp.(λx.r)s t1 . . . tq, t′ = λx1 . . . xp.r[s/x] t1 . . . tq
for some r, s, t1, . . . , tq ∈ Λ∞.

• For the finite terms t, it has been proved (Proposition 3.8) that t→∗ λx1 . . . xp.x t1 . . . tq
iff h→∗h λx1 . . . xp.x t1 . . . tq by using Type System R0. For now, nothing guaran-
tees this equivalence for infinite terms. However, we briefly explain in Sec. 10.1.2,
p. 207 why Proposition 3.8 still applies and ensure that, for all t ∈ Λ∞, t →∞
λx1 . . . xp.x t1 . . . tq iff the head reduction strategy terminates (in a finite number
of steps) on t. See also Remark 10.1 to compare with Λ001.

• Note that if t is headless, then the head reduction strategy terminates (in 0 steps!)
but t is nevertheless neither a HNF nor even HN.
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Partial Confluence in Λ∞ Neither the finite reduction nor the infinite are confluent
in Λ∞:

• If t = (λf.fω)(I x), then t→ (I x)ω =: t1 and t→ (λf.fω)x→ xω, but xω cannot
be obtained from (I x)ω in a finite number of steps, so → is not confluent.

• We have Y I → Ω and Y I →∞ Iω. Since Ω (resp. Iω) is the only reduct of Ω (resp.
Iω), Ω and Iω do not have a common reduct, so →∞ is not confluent:

However, Λ∞ satisfies a partial form of confluence. More precisely, it is confluent
when all the mute terms (Sec. 2.3.2) are equated. Formally, we define the binary relation
∼∞ on Λ∞ by coinduction:

t and u are mute
t ∼∞ u x ∼∞ x

t ∼∞ u

λx.t ∼∞ λx.u

t1 ∼∞ u1 t2 ∼∞ u2

t1 t2 ∼∞ u1 u2

Note that the premise of the leftmost rule is not decidable (the set of mute terms is not
recursively enumerable): it also depends on an oracle.

Proposition 9.1. Let t, t′, u, u′ ∈ Λ∞. If t ∼∞ u, t→∞ t′, u→∞ u′, then there exists
t′′, u′′ ∈ Λ∞ such that t′′ ∼∞ v′′, t′ →∞ t′′, u′ →∞ u′′.

Proof. This proposition is the main theorem of [34], originally a particular case of The-
orem 57 of [57].

Discussion on the Infinitary Lambda-Calculus: The role that plays Λ∞ for Λ is
similar to the role that the set of real numbers R plays for Q, the set of rational numbers.

• Λ∞ (and later Λ001) are metric completions of Λ w.r.t. some ad hoc distances
(see [57]).

• Intuitively, Λ∞ contains too many objects i.e. there are terms u ∈ Λ∞ such that
no finite term t ∈ Λ satisfies t →∞ u (i.e. u is not a limit of a finite term). For
instance:

– If x0, x1, . . . is a sequence of pairwise distinct variables, then the infinite
term u = x0(x1(x2(. . .)) is not the limit of a finite term, since (1) fv(u) is an
infinite set (2) t →∞ u implies that fv(t) ⊇ fv(u) (3) if t ∈ Λ, then fv(t) is
finite.

– If g : N is a non-computable total function, then the infinite term t =
λx.x xg(0) λx.x xg(1) λx . . . is not the limit of a finite term. If it were, we
could compute g.

Likewise, R is very useful to define number such as
√

2, π and e, but it also contain
numbers that are not even definable (since R is uncountable).

Thus, Λ∞ is a very general framework, but it provides an interesting semantics for the
finite λ-calculus with the Berarducci trees [11], that could not be studied in this thesis.

In the finite case, the confluence of the λ-calculus is a very powerful property since
it holds for any finite λ-term and has nothing to do with normalization. In particular,
it allows us to conclude that a normalizing term has exactly one normal form or that
a head normalizing term has a unique prefix λx1 . . . xp.x (modulo α-equivalence). On
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the other hand, Proposition 9.1 only guarantees confluence for the normalizing parts4 of
a term. However, this is enough to conclude with the unicity of the normal form of a
term, when it exists.

Last, observe that although an uncountable set of term variables is not needed when
studying the infinite terms that are the limits of some finite λ-terms, it is necessary for
the full calculus Λ∞. Assume ad absurdum that V is countable and that (xn)n∈N is an
(injective) enumeration of V . Let then t = λx1.x1 x0 and u = x0 x1 x2 . . .. Then there
is no way to substitute x0 with u in t without capture, since all the variables should
occur free in t[u/x].

9.3.2 The Infinitary Calculus of Böhm Trees

The calculus Λ∞ is too general for specifying Böhm trees (Sec. 9.1). For instance, it
accepts the normal forms of Yλ or Ω3 (represented in Sec. 2.3.3), which are not Böhm
trees. Indeed, Yλ and Ω3 are not HN (so that their Böhm tree is ⊥) and if we look at
NF∞(Yλ) and NF∞(Ω3), we observe that they do not have a head variable! The term
NF∞(Yλ) is a series of abstractions λx.λx. . . . that does not end with a head variable
(it is infinite) and NF∞(Ω3) has a leftward infinite branch starting from the root, which
does not end with some x either. This can be related to the facts that the positions of
NF∞(Yλ) and NF∞(Ω3) are stable but not Böhm stable (remember Remark 2.7).

Terms of Λ001 The calculus Λ001 is defined by restricting Λ∞ to those terms t such
that the paths (in the parent-to-child direction) visiting only application left-hand sides
or abstractions should always stop, so that a term t ∈ Λ∞ is in Λ001 iff all its subterms
are head-formed (see Remark 9.1), contrary to NF∞(Yλ) and NF∞(Ω3).

We extend applicative depth for infinite words. We recall (Sec. 2.3.5) that, if b ∈
supp(t), then t|b, the subterm of t rooted at b, is nested in ad(b) application arguments.
Then, if b = (bi)i∈N is a word of infinite length, we set ad(b) = #{i ∈ N | bi > 2}.

Let t ∈ Λ∞. Then, since t is a labelled tree, t can have infinite branches in the sense
of Sec. 2.1.1. If b is an infinite branch of a term t ∈ Λ∞, ad(b) = ∞ means that b visit
infinitely many times arguments of applications. We then define:

Definition 9.2. Let t ∈ Λ∞. Then t is said to be a 001-term (denoted t ∈ Λ001) if,
for all infinite branches b of t, ad(b) =∞.

Thus, for 001-terms, infinity is allowed, provided we visit arguments infinitely many
times. Thus, no subterm of a 001-term is deprived of a head redex or a head variable,
as expected above. For instance, fω is in Λ001, because 2ω is its unique infinite branch
and ad(2ω) = ∞. However, the term u = NF∞(Y′f ) ∈ Λ111, represented in Fig. 9.2 and
coinductively defined by u = u f (where f is a term variable) is not a 001-term: it also
has a unique infinite branch, 1ω but ad(1ω) = 0.

Strong Convergence in Λ001 Now, we can define strongly converging reduction se-
quences as for Λ∞ (Sec. 9.3.1), although the definition varies a bit:

Definition 9.3. Let t ∈ Λ001 and rs = (bk)k∈κ a reduction sequence starting at t. Then
the reduction sequence rs is said to be strongly converging (w.r.t. Λ001) if the length
of rs is finite (i.e. κ = n ∈ N) or, in the other case, if limk→∞ ad(bk) =∞.

4Indeed, every non-mute term t is considered as normalizing in Λ∞, even when t is not HN [57]
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Figure 9.4: Strong Convergence of Yf (copy of Fig. 2.10, p. 67)

Thus, an infinite reduction sequence is strongly converging if the applicative depth of
the reduced redexes converges toward infinity. We shorten strongly converging reduction
sequences into s.c.r.s.. As in the the case of Λ∞, we can define the limit of a s.c.r.s..
Assume that t0

b0→→ t1
b1→ . . . is an infinite s.c.r.s.. Let b ∈ {0, 1, 2}∗ and N ∈ N s.t.

∀n > N, ad(bn) > ad(b). Then, either ∀n > N, b /∈ supp(tn) or ∀n > N, b ∈ supp(tn)
and tn(b) = tN (b). Let B′ be the set of all b ∈ N∗ in the latter case and t′ the labelled
tree defined by supp(t′) = B′ and t′(b) = tN (b) for any N large enough. We notice that
t′ ∈ Λ∞. Actually, t′ is a 001-term (because under fixed applicative depth d, t′ must
be identical to a tN , for N some large enough) and we call t′ the limit of the s.c.r.s.
The notation t→∞ t′ means that there is a s.c.r.s. starting from t, whose limit is t′. In
general, along with the obvious case of the finite reduction sequences:

Lemma 9.2.

• Let t = t0
b0→→ t1

b1→ . . . be a strongly converging reduction sequence of Λ001.
Then, there is a unique term t′ ∈ Λ001 such that, for all d > 0, t′ and tn are equal
under applicative depth d, provided5 n is great enough.
The term t′ is called the limit of this s.c.r.s..

• We write t→∞ t′ to mean that there is a s.c.r.s. starting at t whose limit is t′.

For instance, fn(Yf )
2n→ fn+1(Yf ) and ad(2n) = n → ∞, so that Yf

ε→ f(Yf )
2→

f2(Yf )
22→ . . . is a s.c.r.s.. We check that its limit w.r.t. the definition above is fω

as expected, since fω was taken as an example of infinite Böhm tree in Sec. 9.1.This is
represented by Fig. 9.4. The redex occurs at applicative depth 0 in Yf , then at applicative
depth 1 in f(Yf ), then at applicative depth 2 in f(f(Yf )). Asymptotically, the redex is
“swallowed” at infinite applicative depth and we obtain the 001-normal form fω on the
right-hand side.

Remark 9.2. • The vocables “strongly converging reduction sequence” and “limit”
the notation are common to Λ∞ and Λ001, as well as the notation t →∞ t′, but
they do not have the same meaning. In fact, if t strongly converges towards t′ in
Λ001, then so does it in Λ∞, but the converse is not true e.g., Ω3 →∞ NF∞(Ω3) in

5Formally, for all d > 0, there exists N such that, for all n > N , t′ and tn induces the same labelled
tree of {b ∈ N∗ | ad(b) 6 d}.
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Λ∞, but Ω3 does not strongly converge towards NF∞(Ω3) in Λ001 (NF∞(Ω3) is not
even in Λ001).

• A compression property [57] allows us to consider only sequences of length 6 ω
without loss of generality, although a more general definition could be given.

• The whole discussion concluding Sec. 9.3.1 is still valid for Λ001: Λ001 contains
terms that are not limits of finite terms and actually, all the examples of this
discussion are 001-terms.

• Henceforth, “strong convergence”, “limit” and →∞ will only be understood w.r.t.
Λ001.

Weak Normalization in Λ001 A 001-Normal Form i.e. a normal form of Λ001 is a
term that does not have a redex. Thus, the set of 001-NF is generated by the coinductive
grammar:

t, tk ::= λx1 . . . xp.x t1 . . . tq (p, q > 0)

This is exactly the coinductive counterpart of Lemma 2.2, p. 62: we may also say that
001-NF are coinductive assemblages of head normal forms. Note that a 001-NF really
look like a Böhm tree, except for the constant ⊥, which is yet absent.

By analogy with weak normalization in the finite case (Definition 2.4):

Definition 9.4. A 001-term t is 001-weakly normalizing (001-WN) iff t can be
reduced to a NF by means of a s.c.r.s..

Thus, Yf is WN as expected, and fω is its unique normal form, according to Corol-
lary 9.1 below.

Hereditary head normalization plays a similar role for 001-WN than that the predi-
cates “The head reduction strategy terminates on t” and “The Minimal reduction strategy
terminates for t” respectively play for HN and WN in the finite case. The definition of
HHN originally held for finite λ-terms, but it naturally extends to 001-terms.

Definition 9.5. Let t ∈ Λ (or more generally, t ∈ Λ001). Then t is said to be Hered-
itary Head Normalizing (HHN) if t →∗h λx1 . . . xp.x t1 . . . tq and the t1, . . . , tq are
HHN.

Thus, a term is HHN if, coinductively, t is head normalizing and all its head argu-
ments are themselves HHN. This means that the first variant of the Böhm reduction
strategy (Sec. 2.3.5) gives6 strongly converging reduction sequences. Equivalently, t is
HHN when the Böhm tree BT(t) of t does not contain ⊥.

As a reminder, the first variant of the Böhm reduction strategy on a term t starts
with a finite number of head reductions (applicative depth = 0), stopping only in a HNF
λx1 . . . xp.x t1 . . . tq (p, q > 0) is reached. The argument t1, . . . , tq are then head-reduced
(applicative depth 1) until some HNF t′1, . . . , t

′
q are reached. If some tk is not HN,

then the strategy loops. Then head reductions are performed at applicative depth 2 till
the head arguments of the t′1, . . . , t′q reach their HNF. The strategy goes on like this.
When t is HHN, no non-HN subterm will be outputted and either the strategy ends in

6This reduction strategy is not deterministic.
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a finite number of steps or it produces a strongly converging sequence that eliminates
every redex. Thus, the 1st variant of the Böhm reduction strategy could also be referred
to as the Hereditary Head Reduction Strategy. This strategy only computes the
Böhm tree of a term when it does not contain ⊥ (whereas the 2nd variant of the Böhm
reduction strategy is never “captive” of a non-HN subterm).

Remark 9.3.

• Later on (Theorem 10.4), we will prove that that hereditary head normalization
is equivalent to 001-weak normalization i.e. that the Böhm reduction strategy is
(asymptotically) complete for 001-WN, using type-theoretic methods as for Propo-
sitions 3.8 and 5.2.

• In contrast with Proposition 5.2, the Leftmost Outermost reduction strategy (and
thus, the Minimal reduction strategy) is not complete for 001-WN e.g., applied to
Yf ((λx.x)x), it will output fω ((λx.x)x), which is not normal.

Partial Confluence and Unicity of the Normal Form The calculus Λ001 satisfies
the same form of partial confluence as Λ∞ does. This time, the subterms considered
to be matterless are not only the mute ones, but more generally, those that are not
head normalizing. Formally, we define by coinduction the binary relation ∼001 on Λ001

identifying two terms that are equal up to their non-HN subterms (occurring at the same
positions):

t and u are not HN
t ∼001 u x ∼001 x

t ∼001 u

λx.t ∼001 λx.u

t1 ∼001 u1 t2 ∼001 u2

t1 t2 ∼001 u1 u2

Proposition 9.2 is a particular case of [57], Theorem 57:

Proposition 9.2. Let t, t′, u, u′ ∈ Λ001. If t ∼001 u, t→∞ t′, u→∞ u′, then there exists
t′′, u′′ ∈ Λ001 such that t′′ ∼001 v

′′, t′ →∞ t′′, u′ →∞ u′′.

This partial confluence is also enough to guarantee the unicity of the normal form of
a term, when it exists:

Corollary 9.1. Let t ∈ Λ001 and u1, u2 be two 001-normal forms such that t →∞ u1

and t→∞ u2. Then u1 = u2.

Note that if t ∈ Λ (t is a finite term), the confluence of the finite λ-calculus easily
implies the unicity of the possible 001-NF of t.

9.3.3 Böhm Trees Revisited

Böhm trees can be recovered as the normal forms of a variant of Λ001, once again
sketching contents of [57].

First, let ⊥ be a new constant symbol (i.e. ⊥ cannot be bound). We define Λ∞⊥ by
the following coinductive grammar:

t, u := x ∈ V | ⊥| (λx.t) | (t u)

Then we define Λ001
⊥ as the set of terms t ∈ Λ∞⊥ , such that any infinite branch of b of t

satisfies ad(b) =∞. The β-reduction →β is straightforwardly defined on Λ⊥.
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We define the relation →⊥ as the contextual closure of:

t is not HN
t→⊥ ⊥

λx.⊥ →⊥ ⊥ ⊥u→⊥ ⊥

Thus, →⊥ allows us to rewrite any non-HN term into ⊥, with the additional convention
that ⊥ t and λx.⊥ are considered as non-HN. The reduction→⊥ allows us to bypass the
relation ∼001 of Sec. 9.3.2: for t, u ∈ Λ001, t ∼001 u just means that t, u→⊥ ⊥.

We then set→β⊥=→β ∪ →⊥. The set of normal forms of Λ001
⊥ i.e. the terms t ∈ Λ001

such that t→β⊥ u implies u = t is generated by the following coinductive grammar:

t, tk ::= ⊥ | λx1 . . . xp.x t1 . . . tq (p, q > 0)

A normal form of Λ001
⊥ is called a Böhm tree.

Strongly converging reductions sequences are easy to define for Λ001
⊥ , t →∞β⊥ t′ then

means that t reduces to t′ by means of a s.c.r.s. of Λ001
⊥ . Moreover, the calculus is

confluent:

Proposition 9.3. Let t1, t2, t3 ∈ Λ001
⊥ such that t1 →∞β⊥ t2, t1 →∞β⊥ t3.

Then there exists t4 ∈ Λ001
⊥ such that t2 →∞β⊥ t4, t3 →∞β⊥ t4.

Proof. This is a particular case of Theorem 61 of [57].

The calculus Λ001
⊥ is weakly normalizing: any term t ∈ Λ001

⊥ reduces to a normal form
(possibly asymptotically). Indeed, if t is not HN, them t reduces into ⊥ (in one step).
If not, t reduces to some λx1 . . . xp.x t1 . . . tq. In turn, the tk reduce either to ⊥ or to a
HNF. Asymptotically, this gives a Böhm tree.



Chapter 10

Klop’s Problem

We saw that intersection type systems enable the characterization of many classes of
normalizing terms, such as the Head Normalizing terms (Proposition 3.7) or the Weakly
Normalizing (WN) terms (Proposition 5.1). A term is WN if it can be reduced to a
normal form i.e. a term without redexes. Via the leftmost reduction strategy, Weak
normalization can be restated as follows: a term is WN if it is HN and all the ar-
guments of its head variable are WN (Corollary 2.1, which is a direct consequence of
Proposition 5.2).

Hereditary Head Normalization (HHN) (Definition 9.5) corresponds to the coinduc-
tive counterpart of this latter predicate: a λ-term t is HHN if, it is HN and, coinductively,
all the arguments of its head variable are themselves HHN. The hereditary head nor-
malization is equivalent to say that the Böhm tree [8] of the term does not hold any
occurrence of ⊥ (see Sec. 9.3.2).

According to Tatsuta [101], the question of finding out a type system characterizing
Hereditary Head Normalizing (HHN) terms was raised by Klop in a private exchange
with Dezani. This question is known as Klop’s Problem. Klop’s Problem was also
addressed in [69,95].

Tatsuta focused his study on finitary type systems and showed Klop’s problem’s
answer was negative for them, by (1) noticing that the set of typing derivations in an
inductive type system is recursively enumerable and, then proving that the set of HHN
terms was not recursively enumerable .

This leaves the question open as to whether an infinitary type system is able to
characterize HHN terms. One of the contribution of this thesis is proving that Klop’s
Problem has a positive answer with the right type system, which was published in [114].
We present this result in this chapter.

Hereditary Head Normalization vs. Infinitary Weak Normalization Before
presenting our results, let us recall that intersection types systems are also useful to
prove that a reduction strategy is complete for normalization e.g., head reduction for
head normalization (Proposition 3.8) or the minimal reduction (and thus in particu-
lar, the leftmost outermost and the Böhm reduction strategies) for weak normalization
(Proposition 5.2)

We now give a brief summary of the main elements of the preliminary chapter on
the infinitary λ-calculus (Chapter 9), along with pointers: the Böhm trees without ⊥
can be seen as the set of normal forms of the infinitary calculus Λ001, presented in
Sec. 9.3.2. The fact that the Böhm tree BT(t) does not contain ⊥ is equivalent to the
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strong convergence of first variant of the Böhm reduction strategy1 (also called the
Hereditary Head Reduction Strategy) on t. In particular, this implies that t is weakly
normalizing w.r.t. Λ001. Indeed, an infinite term is WN (Definition 9.4) if it can be
reduced to a NF by at least one strongly converging reduction sequence (Definition 9.3)
– for short, s.c.r.s.–, which constitute a special kind of reduction sequence of (possibly)
infinite length, regarded as productive (recall the discussion at the beginning of Sec. 9.3).

A very simple example of strongly converging reduction sequence, which corresponds
to a hereditary head normalization, is then following: let ∆f = λx.f(xx) and Yf =
∆f∆f . Then Yf → f(Yf ), so Yf →k fk(Yf ). Intuitively, if k tends toward ∞, the redex
disappear and we get Yf →∞ fω where fω is the (infinite) term f(f(f(. . .))), satisfying
fω = f(fω) (Fig. 10.1) and containing a rightward infinite branch. Since fω does not
contain any redex, fω can be seen as the NF of Yf and Yf as a HHN term. Equivalently,
fω is the Böhm tree of Yf .

Yf

@

f

Yf

@

f @

f

Yf

@

f @

f @

f

Yf

@

f @

f @

f @

f

Yf −→ f(Yf ) −→ f2(Yf ) −→ f3(Yf ) −→∞ fω

Figure 10.1: Strong Convergence of Yf (copy of Fig. 9.4, p. 199)

But many s.c.r.s.are not instances of the Böhm reduction strategy. In the finite case,
Böhm reduction strategy is complete for weak normalization. This is also known in the
case of Λ001 (this is a not too difficult consequence of Lemma 54 of [57]), but actually,
the type system to be presented gives a semantical proof of this fact.

Tools and Difficulties

We use a quantitative, resource-aware type system to achieve this goal, inspired by that
of Gardner and de Carvalho’s system R0 [22,43] (presented in Sec. 3.2.4). In system R0,
intersection types may be represented by multisets and typability implies normalization
by a very simple (variant of the same) argument i.e. reducing a typed redex inside a
derivation decreases some non-negative integer measure (Sec. 3.4.3), which entails that
the reduction must stop at some point (cf. proof of Proposition 3.9) This is unlikely
to be adapted in an infinitary framework. However, quantitative type derivations do
have very simple and readable combinatorial features e.g., reduction inside a derivation
almost comes down to moving parts of the initial derivation (see Fig. 3.2 and discussion
in Sec. 3.3).

1We recall from Sec. 9.3.2 that this strategies consists in keeping in reducing at applicative depth
0 (i.e. head reduction steps) then, if a head normal form λx1 . . . xp.x t1 . . . tq is reached, keeping in
reducing at a.d. 1 (i.e. head-reducing the head arguments t1, . . . , tq), then, when there is no more
redexes at a.d. 1, reducing at a.d. 2 and so son.
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However, it turns out that a direct coinductive adaptation of R0 cannot work for
two reasons :

• It would lead to the possibility of typing some non-HN terms, like Ω = ∆ ∆ (with
∆ = λx.x x). That is why a validity criterion is needed to discard irrelevant
derivations, as in other infinitary frameworks [96]. This validity criterion relies on
the idea of approximability (see Sec. 10.1.3).

• Moreover, as it turns out, multisets are not fit to formally express such a notion
(see Sec. 10.3.4), because multiset intersection is intrinsically non-rigid (Sec. 4.1.2)
meaning for instance that we cannot distinguish the two occurrences of σ in [σ, τ, σ].
This motivates the need for rigid constructions: multisets are then (coinductively)
replaced by sequences, i.e. families indexed by (non necessarily consecutive) in-
tegers called tracks (Sec. 2.1.1) .

This leads us to define a type system that we call system S, in which intersection is rep-
resented by sequences of types (intersection is said to be sequential). Tracks constitute
the main feature of system S presented here. and they allow defining pointers (called
bipositions) to any symbol nested in a derivation. With those pointers, any type can be
tracked through the rules of a whole typing derivation. Our framework is deterministic,
e.g., there is a unique way to produce a derivation from another one when reducing a
redex, contrary to system R0 (Sec. 4.1.2).

Once system S is properly defined, we can give a positive answer to Klop’s Problem:
the main result of this chapter (Theorem 10.4) provides a type-theoretical characteriza-
tion of hereditary head normalizing terms, by suitably adapting the notion of unforget-
fulness (Definition 5.2) in order to obtain an infinitary counterpart of Proposition 3.7.

Outline

We try to adapt in an infinitary framework a characterization of WN with Gardner/de
Carvalho’s system R0. This characterization, which is recalled in Sec. 10.1.1, deeply
relies upon the condition of unforgetfulness, controlling the occurrences of the empty
type so that no subpart of a normal form can be left untyped. It turns out (Sec. 10.1.3)
that coinductive typing raises the notion of approximable derivation, both for ensuring
soundness and infinitary subject expansion. System S, featuring sequential intersection,
is introduced in Sec. 10.2. By studying subject reduction in system S and comparing it
with that of system R0, we observe (Sec. 10.3.4) that multiset intersection is unfit to
express approximability, whereas it can be formally done (Sec. 10.4) in system S. We
formally define approximability in S and prove an infinitary subject reduction property
in Sec. 10.4, as well as the first part of characterization: if a term t is approximably
and unforgetfully typable, then it is hereditary head normalizing. In the last section, we
type infinite normal forms and formally prove an infinitary subject expansion property.
This allows us to give a type-theoretic characterization of infinitary WN (Theorem 10.4),
following the general proof scheme of Sec. 3.3.1. Namely, the following circular impli-
cations will be proved: «t is infinitarily WN» ⇒ «t is approximably and unforgetfully
typable» ⇒ «t is HHN» ⇒ «t is infinitarily WN».
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10.1 How to Answer Positively to Klop’s Problem

The method of system R0 are recalled in Sec. 10.1.1, in particular how weak normaliza-
tion is characterized by considering unforgetful derivations. In Sec. 10.1.2, we explain
how system R0 can still be applied to infinite terms. We meet a first use of subject
substitution i.e. replacing the subject t of a derivation Π by another u which identifies
with t in the typed parts of Π. We present the main ideas to solve Klop’s Problem
in Sec. 10.1.3: we explain (1) how infinitary subject expansion could be performed by
truncating derivations and taking the joins of directed families (2) how coinduction gives
rise unsound derivations e.g., derivations typing the non-WN term Ω and how soundness
can be retrieved with approximability. It will be proved only later (Sec. 10.2) that all
this cannot be formally done with multiset intersection.

10.1.1 The Finitary Type System R0 and Unforgetfulness

In this section, we give a summary of the methods and ideas of Chapter 3) and of Sec. 5.1
to characterize weak normalization with R0 in the finite case, so that Chapter 10 may
be read independently (we also give more precise pointers).

System R0 (Sec. 3.2.4) features non-idempotent intersection types [22,43], given by
the following inductive grammar:

σ, τ ::= o | [σi]i∈I → τ

where the constructor [ ] is used for finite multisets (I is finite), and the type variable o
ranges over a countable set O. We write [σ]n to denote the multiset containing σ with
multiplicity n. The multiset [σi]i∈I is meant to be the intersection of the types σi, taking
into account their multiplicity (Sec. 3.2.2). In idempotent intersection type systems, the
intersections A∧B ∧A and A∧B are de facto equal, whereas in R0, the multiset types
[σ, τ, σ] and [σ, τ ] are not.

In system R0, a judgment is a triple Γ ` t : σ, where Γ is a context, i.e. a total
function from the set V of term variables to the set of multiset types [σi]i∈I , t is a term
and σ is a type. The context x : [σi]i∈I is the context Γ such that Γ(x) = [σi]i∈I and
Γ(y) = [ ] for all y 6= x. The multiset union + is extended point-wise on contexts. The
set of derivations is defined inductively by the rules below:

x : [τ ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

Γ +i∈I ∆i ` t u : τ
app

We write Π � Γ ` t : τ to mean that the (finite) derivation Π concludes with the
judgment Γ ` t : τ and �Γ ` t : τ to mean that Γ ` t : τ is derivable. No weakening is
allowed (relevance) e.g., λx.x (resp. λx.y) can be typed with [τ ] → τ (resp. [ ] → τ),
but not with [τ, σ] → τ (resp. [τ ] → τ). System R0 enjoys both subject reduction
and expansion, meaning that types are invariant under (anti)reduction (if t→ t′, then
�Γ ` t : τ iff �Γ ` t′ : τ). The following result was developed and proved in Sec. 3.4:

Theorem 10.1 (Proposition 3.7). A term is HN iff it is typable in system R0.

The implication Typable ⇒ Head Normalizable is based on a simple arithmetical
argument, similar to the one we will use to prove Lemma 10.7. The converse implication
is proven by first, typing the HNF in R0, then, using subject expansion.
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Let us now recall the characterization of weak normalization in system R0 (presented
throughout in Sec. 5.1). Notice that if x is assigned [ ]→ τ , then x t is typable with type
τ for any term t – which is left untyped as a subterm of x t – even if t is not HN. In
order to characterize WN, we must guarantee somehow that every subterm (that cannot
be erased during a reduction sequence i.e. not as t in (λx.y)t→ y) is typed : [ ] should
not occur at bad positions in a derivation Π. Actually, it is enough to only look at the
judgment concluding Π. We recall that [ ] occurs negatively in [ ]→ τ and that [ ] occurs
positively (resp. negatively) in [σi]i∈I → τ if [ ] occurs positively (resp. negatively) in
τ or negatively (resp. positively) in some σi. We say here that judgment Γ ` t : τ is
unforgetful when [ ] occurs neither negatively in Γ nor positively in τ (Definition 5.2).
Here is the non-idempotent counterpart of [68], Theorem 4.13:

Theorem 10.2 (Proposition 5.1). A term t is WN iff it is typable in R0 inside an
unforgetful judgment.

A straightforward induction on the structure of t shows that, if t is a NF and Π�Γ `
t : τ is unforgetful, then every subterm of t is typed in Π. Thus, no part of the normal
form of a term t is “invisible" in an unforgetful derivation. This roughly justifies why
the above theorem holds (see Sec. 5.1.2 for more explanations on unforgetfulness).

For now, it is enough to keep in mind that a sufficient condition of unforgetfulness
is to be [ ]-free: t is WN as soon as �Γ ` t : τ , where Γ and τ do not contain [ ].

Throughout this article, we will frequently invoke system R0 and this section to
illustrate or motivate our choices.

10.1.2 Finitarily Typing the Infinite Terms

In this section, we explain how system R0 can still apply to infinite terms. This is
the only section of this chapter in which infinite terms of Λ∞ (and not just Λ001) are
considered. Incidentally, we use an argument of subject Substitution, that will be a key
tool of Sec. 10.1.3 and 10.5.4.

If we allow the judgments of system R0 to have infinite subjects t ∈ Λ∞ (the types
and the derivations being still inductively defined), we obtain a variant of system R0

– let us call it R∞0 . system R∞0 is essentially finite, but infinite terms can appear as
untyped arguments of applications e.g., fω in:

Π′1 =
f : [[ ]→ o] ` f : [ ]→ o

f : [[ ]→ o] ` fω : o

Note that Π′1 is finite (it contains only two judgments, and finite types and contexts).
All the important properties of system R0 still hold for system R∞0 :

• Weighted subject reduction (Proposition 3.6), subject expansion (Proposition 3.3).
Indeed, those propositions are proven by induction on the structure of the deriva-
tions (not by induction on the terms).

• Head normal forms of Λ∞ are easily R0,w-typable: take the derivation in the upper
left corner of Fig. 3.4, p. 100.

• If a R∞0 -typed term t ∈ Λ∞ is head reducible, then its head redex is typed as in
Remark 3.13. This point is crucial to prove that if a term t is R∞0 -typed, then the
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head reduction strategy terminates on t (remember the proof of Proposition 3.9).
From Remark 9.1, some term t ∈ Λ∞ can be headless (i.e. deprived of a head
redex and of a head variable): since a headless term is not head reducible while
being not head normal, this could a priori make this argument of termination fail.
However, Lemma 10.1 entails that no headless term is R∞0 -typable (see below), so
that Proposition 3.9 still holds!

Lemma 10.1. Let Π a R∞0 -derivation typing a term t ∈ Λ∞. For all b ∈ supp(t), if
b ∈ {0, 1}∗, then b ∈ Π̂.

Proof. By induction on b, using the fact that only the argument u of a typed application
t u can be left untyped.

If t ∈ Λ∞ is headless, then it has a (unique) infinite branch b such that ad(b) = 0
(i.e. b ∈ {0, 1}ω). If t were R∞0 -typable with a derivation Π, Lemma 10.1 would entail
that contains all the finite prefixes of b i.e. Π would be infinite. This impossible. Thus,
if t is R∞0 -typable, then t is head-formed.

All the discussion above entails that, for all term t ∈ Λ∞, t is HN iff t is R∞0 -typable
iff the head reduction strategy terminates on t (in a finite number of steps). The proof of
this equivalence follows the scheme «t is R∞0 -typable» ⇒ «the head reduction strategy
Terminates on t» ⇒ «t is HN» ⇒ «t is R∞0 -typable» outlined in Sec. 3.3.1.

Let us explain now why this is still true while considering infinitary reduction →∞.
This relies upon a subject Substitution property, which means that we can freely
modify the untyped parts of the subject a derivation Π without compromising the cor-
rectness of Π. The notion of typed position (Definition 3.1) straightforwardly extends
to R∞0 -derivations:

Lemma 10.2 (Subject Substitution). Let t, u ∈ Λ∞. If Π�R∞0
Γ ` t : τ , Π̂ ⊆ supp(u)

and, for all b ∈ Π̂, u(b) = t(b), then there exists a R∞0 -derivation Ψ such that ΨΓ ` u : τ
and Ψ̂ = Π̂.

Proof. Straightforward by induction on Π.

This Lemma is illustrated in Fig. 10.2. Note that if Π types t and t and u differs
only for positions b ∈ {0, 1, 2}∗ such that |b| > sz(Π), then Lemma 10.2 can be applied
on Π.

Now, assume that t →∞ t′ = λx1 . . . xp.x t1 . . . tq (in the sense of Sec. 9.3.1) and
more precisely, that t = t0

b0→ . . . tn
bn→ . . . →∞ t′. Then, let Π′ a R∞0 -derivation typing

t′. By strong convergence, there is a rank N , such that, for all n > N , |bn| > sz(Π′).
In particular, t′ and tN do not differ for positions b ∈ {0, 1, 2}∗ such that |b| 6 sz(Π′)
and we can apply Lemma 10.2, thus obtaining a R∞0 -derivation ΠN typing tN . After N
steps of expansion, we obtain from ΠN a derivation Π typing t. Thus, if t is infinitarily
HN, then it is R0,w-typable, so that we have proven the equivalence between «t strongly
converges to a HNF», «t is R∞0 -typable» and «the head reduction strategy terminates
on t».

Remark 10.1. The equivalence «t strongly converges to a HNF iff t reduces (in a finite
number of steps) to a HNF» is obvious when considering s.c.r.s.of Λ001. Indeed:

• The head redex of a term t, when it exists, is the unique redex of null applicative
depth.
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• Moreover, if t is head reducible, t b→ t′ with ad(b) > 1, then t′ is also head reducible.

• In a s.c.r.s.of Λ001, only a finite number of steps can be head reductions (contrary
to Λ∞, cf. Ω3 → Ω3 ω3. . . ).

Actually, with Proposition 9.2, this easily entails2 that HHN is equivalent with 001-WN.
But we will give an alternative and purely semantical proof (not using confluence) in
Theorem 10.4.

10.1.3 Infinitary Subject Expansion by Means of Truncation

In order to adapt the proof of Proposition 10.2, the idea is to type NF (in this section,
fω) in unforgetful judgments, and then proceed by (possibly infinite) expansion to get
a typing derivation of the expanded term (in this section, Yf ). We try to give a few
intuitions about how this may be performed. This will allow us to present the key
notions of truncation and approximability. For that, Fig. 10.2 illustrates the main
ideas of this section.

For that, we admit temporarily that there is an infinitary version of R0, referred here
as R (system R will be presented in Sec. 13.1.3). System R allows infinite multisets (e.g.,
[o]ω is the multiset in which o occurs with an infinite multiplicity, s.t. [o]ω = [o] + [o]ω)
and proofs of infinite depth.

Let us consider the following R-derivation Π′ (presented as fixpoint). It is also
represented on top of Fig. 10.2.

Π′ =
f : [[o]→ o] ` f : [o]→ o

ax
Π′

f : [[o]→ o]ω ` fω : o

f : [[o]→ o]ω ` fω : o
app

Now, Π′ is an [ ]-free derivation (see end of Sec. 10.1.1) typing fω. This the kind
of derivation we want to expand in order to get a derivation Π typing Yf and proving
that it is WN. Since Yf →∞ fω (infinite number of reduction steps), we are stuck. But
notice that Π′ can be truncated into the derivation Π′n below for any n > 1 (we set
Γn = f : [[o]→ o]n−1 + [[ ]→ o] and write t : τ instead of x : [τ ] ` x : τ for ax-rules):

Π′n =

f : [o]→ o

f : [o]→ o

Γ1 ` f : [ ]→ o

Γ1 ` fω : o

Γ2 ` fω : o
...

Γn−1 ` fω : o

Γn ` fω : o

Derivations Π′3 and Π′4 are represented in the middle of Fig. 10.2. By truncation,
we mean that the finite derivation Π′n can be (informally) obtained from the infinite
one Π′ by erasing some elements from the infinite multisets appearing in the derivation.
Conversely, we see that Π′ is the graphical join of the Π′n: Π′ is obtained by superposing
suitably all the derivations Π′n on the same (infinite) sheet of paper.

2Indeed, if t is 001-WN and t →∗ λx1 . . . xp.x t1 . . . tq, then this proposition implies that t1, . . . , tq
are also 001-WN
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Π′ � f : [[o]→ o]ω ` fω : o

Π′ is an infinite derivation typing the infinite term fω

Every
Variable is
Typed

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Π′ can be truncated into e.g.,. . .
Π′3 � f : [[o]→ o]2 + [[ ]→ o] ` fω : o

Both Π′3 and Π′4 are finite derivations typing the infinite term fω

[ ]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

or Π′4 � f : [[o]→ o]3 + [[ ]→ o] ` fω : o

[ ]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

The untyped parts of the subject can be substituted
e.g., fω can be replaced by f4(Yf ) in Π′3 and Π′4, yielding respectively. . .

Π4
3 � f : [[o]→ o]2 + [[ ]→ o] ` f4(Yf ) : o

Both Π4
3 and Π4

4 are finite derivations typing the finite term f4(Yf )

[ ]→ o

o

[o]→ o

o

[o]→ o

o

Yf

f

@f

@f

@f

@

Π4
4 � f : [[o]→ o]3 + [[ ]→ o] ` f4(Yf ) : o

[ ]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

Yf

f

@f

@f

@f

@

Figure 10.2: Truncation and Subject Substitution
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Π

o

o

→
o′

→

o

o′′

→

o′′ fΠ

• Π is an infinite approximable derivation.

• A finite number of symbols (arrows or
type variables) have been selected in the
derivation, in various judgments.

• By approximability, there is a finite
derivation fΠ, that is a truncation of Π
and contains all the selected symbols.

Figure 10.3: Approximability

However, we are still stuck: we do not know how to expand Π′n because, although
being finite, it still types the ∞-reduced term fω. But notice that we can replace fω by
fk(Yf ) inside Π′k whenever k > n, because those two terms do not differ in the typed
parts of Π′ (notion of subject substitution, Sec. 10.1.2). This yields a derivation
Πk
n � Γn ` fk(Yf ) : o. We have represented Π4

3 and Π4
4 at the bottom of Fig. 10.2. This

time, Πk
n is a derivation typing fk(Yf ), the rank k reduct of Yf , so we can expand it

k times, yielding a derivation Πn (Πn does not depend on k). Then, we can rebuild a
derivation Π such that each Πn is a truncation of Π the same way Π′n is of Π′ (Π can be
seen as the “graphical” join of the Πn).

Thus, the ideas of truncation, subject substitution and join guides us about how to
perform ∞-subject expansion (Sec. 10.5.4). The particular form of Πn and Π does not
matter (but they are given in Appendix A.1 for the curious reader). Let us just say here
that the Πn involve a family of types (ρ)n>1 inductively defined by ρ1 = [ ] → o and
ρn+1 = [ρk]16k6n → o and Π involves an infinite type ρ satisfying ρ = [ρ]ω → o: if t and
u are typed with ρ, then t u may be typed with o.

Unfortunately, it is not difficult to see that the type ρ also allows the non HN term
∆∆ to be typed. Indeed, x : [ρ]ω ` xx : o is derivable, so ` ∆ : ρ and ` ∆∆ : o also
are.

This last observation shows that the naive extension of the standard non-idempotent
type system to infinite terms is unsound as non HN terms can be typed (actually, every
term is typable in system R, which is the main contribution of Chapter 12). Therefore,
we need to discriminate between sound derivations (like Π typing Yf ) and unsound ones.
For that, we define an infinitary derivation Π to be valid or approximable when Π
admits finite truncations, generally denoted by fΠ – that are finite derivations of R0 –, so
that any fixed finite part of Π is contained in some truncation fΠ (for now, a finite part
of Π informally denotes a finite selection of graphical symbols of Π, a formal definition
is given in Sec. 10.4.1). This informal definition is illustrated by Fig. 10.3.

10.2 Intersection by means of Sequences

We recall from Sec. 4.1.2 that derivations of system R are not rigid labelled trees. The
whole point of system S is to define a rigid counterpart of system R. This section
is dedicated to the presentation of system S. We first explain why we should want a
rigid type system (Sec. 10.2.1) and a few directions to construct system S, including



212 CHAPTER 10. KLOP’S PROBLEM

the way positions of system S will naturally collapse onto positions of λ-terms. We also
define (labelled or not) forests. In Sec. 10.2.2, we define the types of system S as (rigid)
labelled trees and develop the formalism of the sequences i.e. families of objects indexed
by families on integers. The derivations of system S are finally defined in Sec. 10.2.3,
also as rigid labelled trees, along with pointers called bipositions, that allow pointing to
the type symbols nested in a derivation.

10.2.1 Towards System S

In this section, we recall the notions of rigid labelled trees and that of track, from
Sec. 2.1.1. We reuse the notations of this section. We also define (labelled or not) forests,
that were not needed until now. Tracks are a key tool to later define a “deterministic"
intersection type system.

First, remember that “λ-terms can be seen as labelled trees following this pattern”
(Figure 2.4):

Variable x

x

Abstraction λx.u

u

0
λx

Application u v

2

v

1

u

@

Nodes are labelled by x, λx (x ranging over V , a countable set of term variables) or
@. The integers that label edges are called tracks e.g., 0 is dedicated to abstractions, 1
to application left-hand sides, 2 to application arguments.

As it will turn out, we will need to define a rigid intersection type system (ITS). This
will be system S (Sec. 10.2.3). Rigidity will allow defining pointers called bipositions. It
is easier to explain why multiset intersection (as in system R0) is unfit to characterize
WN in the infinitary case after having studied Subject Reduction in system S. We will
see to that in Sec. 10.3.4.

In system S, derivations and types will also be rigid trees i.e. trees with labelled
edges (i.e. edges labelled with tracks). In ITS, the argument u of an application t u
may be typed several times and so, an app-rule may have several argument derivations.
Thus, more than one track must be dedicated to arguments derivations (not only track
2). We allow then an argument derivation to be placed on any track > 2. A track > 2
is then called argument track.

For instance, a subderivation on track 9 will be a subderivation typing the argument
u of the underlying λ-term t u. As a subterm, u is on track 2. Thus, the subderivation
on track 9 will type the subterm on track 2. This motivates the notion of collapse
(written k) of a track k, setting k = min(k, 2).

A position of t ∈ Λ001 is concatenation of tracks i.e. a word b on the alphabet {0, 1, 2}
(b ∈ {0, 1, 2}∗). A position of S will be a word a ∈ N∗ i.e. a word on the alphabet N. The
notion of collapse can be extended letter-wise on N∗ e.g., 0 · 5 · 1 · 3 · 2 = 0 · 2 · 1 · 2 · 2.
The applicative depth ad(a) of a is the number of argument tracks it holds e.g.,
ad(0 · 3 · 2 · 1 · 1) = 2 and ad(0 · 1 · 0 · 0 · 1) = 0.

We recall that tree A of N∗ is a non-empty subset of N∗ that is downward-closed for
the prefix order (a 6 a′ ∈ A implies a ∈ A). A forest is a set of the form A \ {ε} for
some tree A such that 0, 1 /∈ A. Formally, a labelled tree T (resp. labelled forest
F ) is a function to a set Σ, whose domain, called its support supp(T ) (resp. supp(F )),
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is a tree (resp. a forest). If U = T or U = F , then U |a is the function defined on
{a0 ∈ N∗ | a · a0 ∈ supp(U)} and U |a(a0) = U(a · a0). If U is a labelled tree (resp. a
labelled forest and a 6= ε), then U |a is a tree.

10.2.2 Rigid Types

We start now to implement the ideas of Sec. 10.2.1 by defining rigid types. Every edge
inside a type or a derivation of system S must receive a track for label.

Let A be a set. A (partial) sequence over A is a family F = (ak)k∈K s.t.
K ⊆ N \ {0, 1} and ak ∈ A for all k ∈ K. We say ak is placed on track k inside
F = (ak)k∈K and K is the set of roots of F : we write K = Rt(F ). If a, b ∈ A,
then (3 · a, 5 · b, 8 · a) is the sequence F = (ak)k∈{3,5,8} s.t. a3 = a, a5 = b, a8 = a.
We define the disjoint union of two sequences when their roots are disjoint. For in-
stance, (2 · a, 3 · b, 8 · a) ] (4 · a, 9 · c) = (2 · a, 3 · b, 4 · a, 8 · a, 9 · c). But notice that
(2·a, 3·b, 8·a)](3·b, 9·c) is not defined, because track 3 is in the roots of both sequences
(track conflict). Thus, ] is not a total operator, but it is associative and commutative.

Let O be a countable set of types variables (metavariable o). The sets of (rigid)
types Typ111 (metavariables T , Si, . . . ) is coinductively defined by:

T, Sk ::= o ‖ (Sk)k∈K → T

Remark 10.2. The sequence type F = (Sk)k∈K is a sequence of types in the above
meaning and is seen as an intersection of the types Sk.

The equality between two types (resp. sequence types) may be defined by mutual
coinduction: F → T = F ′ → T ′ if F = F ′ and T = T ′ and (Tk)k∈K = (T ′k)k∈K′ if
K = K ′ and for all k ∈ K, Tk = T ′k. It is a syntactic equality (unlike multiset
equality). Intuitively, S-type can only be written in one way.

The support of a type (resp. a sequence type), which is a tree of N∗ (resp. a forest),
is defined by mutual coinduction: supp(o) = {ε}, supp(F → T ) = {ε} ∪ supp(F ) ∪ 1 ·
supp(T ) and supp((Tk)k∈K) = ∪k∈Kk · supp(Tk).
For instance, (7 · o1, 3 · o2, 2 · o1)→ o is represented by:

→

o

1

o1

2

o2

3

o1

7

Thus, for types, track 1 is dedicated to the target of arrows and S-types really are rigid
labelled trees in the sense of Sec. 2.1.1 i.e. trees whose nodes and edges are both labelled,
contrary to system R0.

Example 10.1.

• Let S = (8 · o, 3 · o′, 2 · o)→ o′. Then supp(S) = {ε, 1, 2, 3, 8}. We have S(ε) =→,
S(1) = o′ (since S(1) is the target of the arrow), S(2) = o, S(3) = o′ and S(8) = o.

• Let F = (2 · o′, 4 · S, ). Then F is a sequence type such that Rt(F ) = {2, 4},
F |2 = o′ and F |4 = S. Thus, supp(F ) = 2 · supp(o′) ∪ 4 · supp(S), so that
supp(F ) = {2, 4, 4 · 1, 4 · 2, 4 · 3, 4 · 8}. We have F (2) = o′, F (4) = S(ε) =→
, F (4 · 1) = S(1) = o′, F (4 · 2) = S(2) = o, F (4 · 3) = o′ and F (4 · 8) = o.
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A type of Typ111 is in the set Typ001 if its support does not hold an infinite branch
ending by 1ω. This restriction means that we may only have finite series of arrows in a
type. Indeed, 001-NF contain finite series of abstraction nodes only.

Henceforth, in this chapter, we just write Typ for Typ001 and consider only sequence
types which hold types from Typ. We write ( ) for the sequence type whose support is
empty and a sequence type of the form (k · T ) is called a singleton sequence type.

We say that a family of sequence types (F i)i∈I is disjoint if the Rt(F i) (i ranging over
I) are pairwise disjoint. This means that there is no overlapping of typing information
between the F i. In that case, we define the join of (F i)i∈I as the sequence type F s.t.
Rt(F ) = ]i∈I Rt(F i) and, for all k ∈ Rt(F ), F |k = F i|k where i the unique index s.t.
k ∈ Rt(F i).

10.2.3 Rigid Derivations

A (rigid) context C is a total function from V to the set of sequence types. The
domain of C is dom(C) = {x ∈ V |C(x) 6= ( )}. We define the join of contexts pointwise.
If dom(C) ∩ dom(D) = ∅, we may write C;D instead of C ]D. A judgment is a triple
of the form C ` t : T , where C is a context, t a 001-term and T ∈ Typ. A sequence
judgment is a sequence of judgments (Ck ` t : Tk)k∈K . For instance, if 5 ∈ K, then
the judgment on track 5 is C5 ` t : S5.

The set Deriv of (rigid) derivations (metavariable P ) is defined coinductively by
the following rules:

x : (k · T ) ` x : T
ax

C;x : (Sk)k∈K ` t : T

C ` λx.t : (Sk)k∈K → T
abs

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K

C ]k∈K Dk ` t u : T
app

In the axiom rule, k is called an axiom track. In the app-rule, the contexts must be
disjoint, so that no track conflict occurs. Otherwise, app-rule cannot be applied. It is
not difficult to find an equivalent of Lemma 9.1 for derivations of system S, that describe
them “node-wise”.

System S is very low-level. Indeed, the app rule can be restated as follows:

C ` t : (Sk)k∈K → T (Dk ` u : S′k)k∈K′ (Sk)k∈K = (S′k)k∈K′

C ]k∈K Dk ` t u : T
app

We notice that the domain (Sk)k∈K of the type of t must be equal to the sequence of the
types given to the argument u. The equality between sequence types is syntactic and
is far more constraining than multiset equality used for system R, which works modulo
“nested permutation" e.g., [o, o′, [o′, o′′, o0]→ o] = [[o′′, o′, o0]→ o, o′, o] (this observation
is formalized in Sec. 13.1.1).

Example 10.2.

• In order to gain space, we do not write right-hand sides of axiom rules. We indicate
the track of argument derivations between brackets e.g., x : (2 · o′) [3] means that
judgment x : (2 · o′) ` x : o′ is on track 3.
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(4) (8·o, 3·o′, 2·o)→o′

x

1

(9) o

x

2

(2) o′

x

3

(5) o

x

8
@

o′ 0
λx

(2·o′, 4·(8·o, 3·o′, 2·o)→o′, 5·o, 9·o)→o′

Figure 10.4: The Derivation Pex

Pex =

x : (4 · (8 · o, 3 · o′, 2 · o)→ o′) x : (9 · o) [2] x : (2 · o′) [3] x : (5 · o) [8]

x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o) ` xx : o′

` λx.xx : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

In the ax-rule concluding with x : (5 · o) ` x : o, the axiom track is 5.

• The derivation Pex is also represented in Fig. 10.4 (in the style of Fig. 4.1, p. 106).
Axiom tracks (of ax-rules) are indicated before the assigned type e.g., (9) o on x
represents the ax-rule concluding with x : (9 · o) ` x : o (the axiom track is 9).
The edges between nodes correspond to edges between judgment e.g., the black
track 8 indicates that the app-rule has an argument premise on track 8 (which is
x : (5 · o) ` x : o).

We can define the support of a derivation P � C ` t : T : supp(P ) = ε if P is an
axiom rule, supp(P ) = {ε}∪ 0 · supp(P0) if t = λx.t0 and P0 is the subderivation typing
t0, supp(P ) = {ε}∪1 ·supp(P1)∪k∈K k ·supp(Pk) if t = t1 t2, P1 is the left subderivation
typing t1 and Pk the subderivation typing t2 on track k. The Pk (k ∈ K) are called
argument derivations.

In Example 10.2 (and Fig. 10.4), supp(Pex) = {ε, 0, 0 · 1, 0 · 2, 0 · 3, 0 · 8} and we have
Pex(0 · 8) = x : (5 · o) ` x : o. We say that this judgment is on the argument track 8
of the app-rule at position 0.

When we forget about tracks, a sequence naturally collapses on a multiset e.g.,
(3 · a, 5 · b, 8 · a) collapses on [a, b, a].

If we perform this collapse coinductively, then the types of S will collapse on types of
R and the derivations of S will collapse on derivations of R. For instance, the derivation
Pex above collapses on the derivation of Sec. 4.1.1:

Πex =

x : [o, o′, o]→ o′ x : [o] x : [o′] x : [o]

x : [o′, [o, o′, o]→ o′, o, o] ` xx : o′

` λx.xx : [o′, [o, o′, o]→ o′, o, o]→ o′

As noticed above, the app-rule of system S is far more constraining than that of system
R. For this reason, one may think that system S is less expressive than system R.
However, it may be shown that any derivation of system R can be represented by a
derivation of system S (Theorem 13.1 in Chapter 13).
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For the proofs of Sec. 10.5, it will be useful to have the following notations:

Notation 10.1. Assume a ∈ P and a = a∗ ·1n. Then t|a∗ is of the form t|a t1 . . . tn. Let
then ArgTri(a) (for 1 6 i 6 n) be the set of the tracks of argument derivations typing the
i-th argument ti below a and ArgPos(a) is the set of positions of those subderivations.
For instance, in Pex, ArgTr1(01) = {2, 3, 8} and ArgPos1(01) = {02, 03, 08} (with a0 =
0). Formally, we set 1 6 i 6 n, ArgTri(a) = {k > 2 | a∗ · 1n−i · k ∈ P} and ArgPosi(a) =
a∗ · 1n−i · ArgTri(a) = {a∗ · 1n−i · k ∈ P | k > 2}.

10.3 Statics and Dynamics

10.3.1 Bipositions and Bisupport

Thanks to rigidity, we can identify and point to every part of a derivation (as suggested
in Sec. 2.1.1), thus allowing to formulate many useful notions.

If a ∈ supp(P ), then a points to a judgment inside P typing t|a. We write this
judgment C(a) ` t|a : T(a): we say a is an (outer) position of P . The context C(a)
and the type T(a) should be written CP (a) and TP (a) but we often omit P . From now
on, we shall also write t|a and t(a) instead of t|a and t(a).

Example 10.3. Let us have a second look at Example 10.2, in which the right-hand
sides of ax-rules were not written:

Pex =

x : (4 · (8 · o, 3 · o′, 2 · o)→ o′) x : (9 · o) [2] x : (2 · o′) [3] x : (5 · o) [8]

x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o) ` xx : o′

` λx.xx : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

We write C and T instead of CPex and TPex respectively, and 01 instead of 0·1, etc. Example
10.1 may be of some use, since it also features the type S = (8 ·o, 3 ·o′, 2 ·o)→ o, present
in Pex.

• Pex(01) = x : (4 · (8 · o, 3 · o′, 2 · o) → o) ` x : (8 · o, 3 · o′, 2 · o) → o, so that
C(01) = x : (4 · (8 · o, 3 · o′, 2 · o)→ o) i.e. C(01)(x) = (4 · (8 · o, 3 · o′, 2 · o)→ o).
So, for instance, C(01)(x)(4) =→, C(01)(x)(43) = o′, T(01)(ε) =→, T(01)(1) = o′.

• Likewise, Pex(03) = x : (2 · o′) ` o′, so that C(03) = x : (2 · o′) and T(03) = o′.
Thus, C(03)(x)(2) = o′ and T(03)(ε) = o′.

• We also have C(0)(x) = (2·o′, 4·(8·o, 3·o′, 2·o)→ o′, 5·o, 9·o). Thus, C(0)(x)(2) = o′

and C(0)(x)(42) = o.

This example motivates the notion of bipositions: a biposition (metavariable p)
is a pointer into a type nested in a judgment of a derivation. A pair (a, c) is a right
biposition of P if a ∈ supp(P ) and c ∈ supp(T(a)). A triple (a, x, k·c) is a left
biposition if a ∈ supp(P ), x ∈ V and k·c ∈ supp(C(a)(x)).

Definition 10.1. The bisupport of a derivation P , written bisupp(P ), is the set of
its (right or left) bipositions.

We consider a derivation as a function from its bisupport to the set O ∪ {→} and
write now P (a, c) for TP (a)(c) and P (a, x, k · c) for CP (a)(x)(k · c) e.g., with Pex from
Example 10.3, Pex(01, ε) =→, Pex(01, 1) = o′, Pex(01, x, 43) = o′, Pex(03, x, 2) = o′.
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10.3.2 Quantitativity and Coinduction

If a ∈ A := supp(P ) and x ∈ V , we set3 AxPa (x) = {a0 ∈ A | a 6 a0, t(a) = x,@a′0, a 6
a′0 6 a0, t(a

′
0) = λx} (positions of ax-rules in P above a typing occurrences of x that

are not bound w.r.t. a). If a0 ∈ A is an axiom, we write trP (a0) for its associated axiom
track e.g., trP (08) = 5 in the example above. Usually, P is implicit and we just write
Axa(x) and tr(a).

The presence of an infinite branch inside a derivation makes it possible that a type
in a context is not created in an axiom rule. For instance, we set, for all k > 2, jk = f :
(i · (2 · o) → o)i>k, x : (8 · o′) ` fω : o and we coinductively define a family (Pk)k>2 of
S-derivations by:

Pk =
f : (k · (2 · o)→ o) ` f : (2 · o)→ o

Pk+1�
f : (i · (2 · o)→ o)i>k+1, x : (8 · o′) ` fω : o

f : (i · (2 · o)→ o)i>k, x : (8 · o′) ` fω : o

We observe that the Pk are indeed correct derivations of S. However, notice that x is
typed (using track 8) whereas x does not appear in the typed term fω and the part of the
context assigned to x cannot be traced back to any axiom rule typing x with o′ (using
axiom track 8). Intuitively, we have used an infinite branch to perform a weakening.
This yields the notion of quantitative derivation, in which this does not happen:

Definition 10.2. A derivation P is quantitative when, for all a ∈ A and x ∈ V ,
CP (a)(x) = ]a′∈AxPa (x)(tr

P (a′) · TP (a′)).

Now, assume P is quantitative. Then Rt(C(a)(x)) = {tr(a0) | a0 ∈ Axa(x)} and for
all a ∈ A, x ∈ V and k ∈ Rt(C(a)(x)), we write posP (a, x, k) or simply pos(a, x, k) for
the unique position a′ ∈ Axa(x) such that tr(a′) = k.

Actually, pos(a, x, k) can be defined by a downward induction on a as follows:

• If a ∈ Ax, then actually a ∈ Ax(x) and tr(a) = k and we set pos(a, x, k) = a.

• If a : 1 ∈ A, we set pos(a, x, k) = pos(a : `, x, k), where ` is the necessarily
unique (by typing constraint) positive integer s.t. k ∈ Rt(C(a · `)(x)).

• If a : 0 ∈ A, we set pos(a, x, k) = pos(a : 0, x, k)

10.3.3 One Step Subject Reduction and Expansion

System S enjoys both subject reduction and expansion, meaning that types are invariant
under (anti)reduction. Indeed, if t→∗ t′, then �C ` t : T iff �C ` t′ : T :

Proposition 10.1 (One Step Subject Reduction). Assume t →β t′ and P � C ` t : T .
Then there exists a derivation P ′ s.t. P ′ � C ` t′ : T .

Proposition 10.2 (One Step Subject Expansion). Assume t→β t′ and P ′�C ` t′ : T .
Then there exists a derivation P s.t. P � C ` t : T .

3An alternative definition of this notation is the following: as in Sec. 2.1.2, a bound occurrence of a
variable x ∈ V in a trivial derivation P is a position a ∈ supp(P ) such that t(a) = x and there exists
a∗ < a with t(a∗) = λx. If a is a bound occurrence of variable x in P , the binding position of this
occurrence is the maximal a∗ 6 a such that t(a∗) = λx. We then say that a is bound by position a∗ in
P and we write a∗ = λP (a). Then we set AxPa (x) = {a0 ∈ supp(P ) |λP (a0) = a}.
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C;x : (Sk)k∈K ` t :T
0

C`λx.r : (Sk)k∈K→T

1
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Figure 10.5: Subject Reduction and Residuals

Those propositions may be proven using coinduction. We give an alternative proof
using residuals (that are quickly presented below p. 219) and defining directly derivation
P ′ in Sec. 10.3.5. We explain now why subject reduction may be seen as a deterministic
process in system S. Subject expansion is not deterministic, but it may be processed
uniformly.

All this is illustrated by Fig. 10.5 (compare with Fig. 3.2, p. 91 representing subject
reduction in system R0): we assume that t|b = (λx.r)s and t b→ t′, P is a quantitative
derivation concluding with C` t :T . We also assume that a ∈ P is such that a = b (thus,
a is the position of a judgment typing the redex to be fired) and that there are exactly
3 ax-rules typing x above a, using axiom tracks 2, 3 and 7. Notice that ax-rule typing
x on track 7 must be above a · 10, so that its position is of the form a · 10 · a7. Likewise,
for the two other axioms.

Now, let us have a look at how reduction is performed inside P . We omit ax-rules
right-hand sides. As in Sec. 2.1.5, we also indicate the position of a judgment between
angle brackets e.g., 〈a · 10 · a3〉 means that judgment x : (3 · S3) ` x : S3 is at position
a·10·a3.

Notice how this transformation is deterministic: for instance, assume 7 ∈ K. There
must be an axiom rule typing x using axiom track 7 e.g. x : (7 ·S7) ` x : S7 at position
a · 10 · a7 and also a subderivation at argument track 7, namely, P7 concluded by s : S7

at position a · 7. Then, when we fire the redex at position b, the subderivation P7 must
replace the axiom rule on track 7, even if there may be several k 6= 7 such that Sk = S7,
in contrast to system R (see Sec. 10.3.4).

Thus, Proposition 10.1 implicitly yields only one derivation P ′ typing t′, so that we
may also write P b→ P ′.

Now, we observe that subject expansion cannot be deterministic in the same sense.
When we pass from a derivation typing r[s/x] to a derivation typing (λx.r)s, we create
new axiom rules that will type x. Those axiom rules must be assigned axiom tracks.
But if for instance, 3 axioms rules are created above position a, there is no more reason
to choose tracks 2, 3 and 7 than the tracks 8, 4, 38: the axiom tracks may be chosen
arbitrarily, as long as they do not raise track conflicts.
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However, as it will turn out in Sec. 10.5.4, we will need to expand simultaneously
families of derivations — and this, infinitely many times. For that, we should find a
way to perform subject expansion uniformly. Let then b·c be any injection from N∗ to
N \ {0, 1}. We write Expb(P

′, b·c, t) for the unique expansion of P ′ such that P b→ P ′

and, for all a0 ∈ N∗, if there is an ax-rule typing x created at position a0, then the axiom
track that has been assigned is ba0c. Since b·c is injective, no track conflict may occur.
The term t must be indicated in the expression, because, for one t′ and one b, there may
be several t s.t. t b→ t′.

Remark 10.3. If P is quantitative, then Redb(P ) is quantitative. If P ′ is quantitative,
then any Expb(P

′, b·c, t) is quantitative.

With the above notations, we also write P b→ P ′. The subject-expansion property
hold for quantitative derivations. Namely, we build a derivation P � C ` t : T from
a derivation P ′ � C ` t′ : T , so that P b→ P ′ by using a converse method. There are
several possibilities to build such a P , because we have to choose an axiom track k for
each occurrence of x inside P (in that case, x is quantitatively typed). For instance, we
can fix an injection b·c from N∗ to N−{0, 1} and to choose the track bαc for any axiom
rule created at position α.

Proposition 10.3 (Subject Expansion). If t b→ t′ and C ` t′ : T is derivable, then so
is C ` t : T .

A Glimpse at Residuals

Deterministic subject reduction allows us to define the residuals of positions and right
bipositions after reduction, extending the notion of residuals for position in λ-terms
(presented in Sec. 2.1.5). In particular, Fig. 10.5 can be compared with Fig. 2.8, in
which the symbols ♥ and ♣ play a similar role, to be explained below in the case of
system S.

In Fig. 10.5, ♥ represents a judgment nested in Pr. Thus, its position must be of
the form a · 10 · α♥. After reduction, the app-rule and abs-rule at positions a and a · 0
have been destroyed and the position of this judgment ♥ will be a · α♥. We set then
Resb(a·10·α♥) = a·α♥.

Likewise, ♣ represents a judgment nested in the argument derivation P7 on track 7
w.r.t. a. Thus, its position must be of the form a·7·α♣ where a·7 is the root of P7. After
reduction, P7 will replace the ax-rule typing x on track 7, so its root will be at a·a7 (by
definition of a7). Thus, after reduction, the position of judgment ♣ will be a·a7·α♣. We
set then Resb(a·7·α♣) = a·a7·α♣.

We can thus define the residuals of most positions, but not all e.g., a·1, that corre-
sponds to the abstraction of the redex, is destroyed during reduction and does not have
a residual. For right bipositions, when (a, c) ∈ bisupp(P ) and a′ = Resb(a) is defined,
we set Resb(a, c) = (a′, c).

Note that defining residuals in system R would be impossible: system R lacks
pointers and is not deterministic (Sec. 4.1.2). Residuals (as well as quasi-residuals) are
defined in Sec. 10.3.5.



220 CHAPTER 10. KLOP’S PROBLEM

10.3.4 Safe Truncations of Typing Derivations

We can explain now why system R and multiset intersection are unfit to express the
notion of approximability, informally introduced at the end of Sec. 10.1.3.

Let us consider a redex t = (λx.r)s and its reduct t′ = r[s/x]. If a R-derivation
Π types t then r has been given some type τ in some context Γ; x : [σi]i∈I through
a subderivation Πr. Also, for each i ∈ I, s has been given the type σi through some
subderivation Πi. We can obtain a derivation Π′ typing the term t′ by replacing the
axiom rule yielding x : [σi] ` x : σi by the derivation Πi. The construction of such a Π′

from Π relies generally on a result referred as the “substitution lemma” (e.g., Lemma 7.4,
p. 154 in the case of λµ). We then call Π′ a derivation reduct.

If a type σ occurs several times in [σi]i∈I – say n times – there must be n axiom
leaves in Π typing x with type σ, but also n argument derivations Πi concluding with
s : σ. When an axiom rule typing x and an argument derivation Πi are concluded
with the same type σ, we shall informally say that we can associate them (see also
Remark 4.1). It means that this axiom rule can be substituted with that argument
derivation Πi when we reduce t to produce a reduct derivation Π′ typing t′. There is
not only one way to associate the Πi to the axiom leaves typing x (there can be as
many as n!) and possibly many different derivation reducts. This is to be related to the
possibility of reduction choices in system R0, which is addressed in Sec. 4.1.2, and the
non-rigidity of this system.

This makes a sharp difference with (the rigid) system S: assume that S2 = S3 =
S7 =: S so that argument derivation P2, P3, P7 type s with the same type S. Then each
Pk (k ∈ K) will replace axiom rule at position a · 10 · ak (see Fig. 10.5) without other
choice. In system S, there is a unique derivation reduct.

Observe the following independent situations in system R:

• Assume Π1 and Π2 (typing s), both concluded with the same type σ = σ1 = σ2.
Thus, we also have two axiom leaves #1 and #2 concluded by x : [σ] ` x : σ,
where #1 can be associated with Π1 or Π2. When we truncate Π into a finite
fΠ, the subderivations Π1 and Π2 are also cut into two derivations fΠ1 and fΠ2.
In each fΠi, σ can be cut into a type fσi. When Π1 and Π2 are different, it is
possible that fσ2 6= fσ1 for every finite truncation of Π. Thus, it is possible that,
for every truncation fΠ, the axiom leaf #1 cannot be associated to fΠ2: indeed,
an association that is possible in Π could be impossible for any of its truncations.

• Assume this time σ1 6= σ2. When we truncate Π into a finite fΠ, both σ1 and σ2

can be truncated into the same finite type fσ. In that case, we can associate fΠ1

with axiom #2 and fΠ2 with axiom #1 inside fΠ in fΠ (which is impossible in Π),
thus producing a reduct derivation fΠ′ typing t′, which has no meaning w.r.t. Π
(fΠ′ would not be a truncation of any derivation reduct of Π).

That is why we need the deterministic association between the argument derivations
and the axiom rules typing each in system S (thanks to tracks), so that the associations
between them are preserved even when we truncate derivations. System R does not
makes it possible to formulate a well-fit notion of approximability for derivations that
would be stable under (anti)reduction and hereditary for subterms. Actually, there exists
a R-derivation Π and two S-derivations P1 and P2 that both collapse on Π such that P1

is approximable (Def. 10.4 to come) and P2 is not. This counter-example can be found
in Appendix A.6.2.
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10.3.5 A Proof of the Subject Reduction Property

Fig. 10.5 rather represents a quantitative case but the following construction does not
assume P to be quantitative. We formalize now the notion of residuals and use them to
give a proof of the subject reduction property for system S.

We assume again that t|b = (λx.r)s and t b→ t′ and we consider a derivation P s.t.
P � C ` t : T . The letter a will stand for a representative of b and the letter α for
other positions. We set Axλ(a) = Axa·10(x) and Trλ(a) = {tr(α0) |α0 ∈ Axλ(a)}. Thus,
Axλ(a) is the set of positions of the redex variable (to be substituted) above a and Trλ(a)
is the set of the axiom tracks that have been used for them. For instance, in the Figure,
Axλ(a) = {a·10·a2, a·10·a3, a·10·a7} and Trλ(a) = {2, 3, 7}.

Since P is quantitative, C(a·10)(x) must be of the form (Sk)k∈K where K = Trλ(a).
For k ∈ Trλ(a), we write ak for the unique ak ∈ N∗ such that pos(a · 10, x, k) =

a · 10 · ak: thus, a·10·ak is the position of the axiom rule typing x above a using axiom
track k

Assume α ∈ A, α 6= a, a ·1, a ·10 ·ak for no a ∈ A such that a = b and k ∈ RedTr(a).

• If α > a · k · α0 with a = b and k > 2 (paradigm ♣), then Resb(α) = a · ak · α0

• If α = a · 10 · α0 with a = b and α0 6= ak (paradigm ♥), then Resb(α) = a · α0

• If a � b, Resb(α) = a.

The residual position of α, written Resb(α) , is defined as follows:

• Out of the redex: If α � a, then α is not in the redex. We set Resb(α) = α.

• Inside r: Position a·10·α ∈ B (paradigm ♥) has a residual (except when α = ak
for some k) and should become a·α after reduction: we set Resb(a·10·α) = a·α for
α 6= ak.

• Inside some argument derivations: Assume k ∈ Trλ(a). Argument derivation at
a·k will replace ax-rule typing at position a·10·ak (which is destroyed). So its
position after reduction will be a·ak. More generally, the a·k·α ∈ B (paradigm ♣)
will be found at a·ak·α after reduction. We set then Resb(a·k·α) = a·ak·α when
k ∈ Trλ(a).

In the next chapter (Sec. 12.4.1), an extension of the notion of quasi-residuation (Sec. 2.1.5)
to system S will be needed.

Remark 10.4.

• In the case of the pure λ-calculus (Sec. 2.1.5), residuation gives a binary relation
between the positions of a λ-term t and those of some reduct t′ of t.

• For system S, residuation gives a (partial) function from the position of a S-
derivation P and those of some reduct derivation P ′ of t.

• Due to the possible duplication of the argument in the pure λ-calculus, residuation
cannot be functional (a position can have several residuals w.r.t. the same reduction
step) whereas system S is a linearization of λ-calculs and forbids duplication, so
that a position a ∈ supp(P ) can have at most one residual w.r.t. a reduction
sequence. This is the reason why Resb is defined as a function in this section.
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By case analysis, we notice that residuation for positions preserves labelling, as it
did for pure λ-calculus (first point of Lemma 2.1):

Lemma 10.3. Assume that P types t, t b→ and P
b→ P ′. t′(Resb(α)) = t(α) for all

α ∈ dom(Resb).

We set A′ = codom(Resb) (residual support). Now, whenever α′ := Resb(α) is
defined, the residual biposition of p := (α, c) ∈ bisupp(P ) is Resb(p) = (α′, c).

We notice that Resb is a partial injective function both for positions and right bipo-
sitions (compare with the second point of Lemma 2.1). In particular, Resb is a bijection
from dom(Resb) to A′ and we write Res−1

b for its inverse.
For any α′ ∈ A′, let C′(α′) be the context defined by C′(α′) = (C(α)−x)](]k∈K(α)C(α·

k)), where α = Res−1
b (α′) and K(a) = Rt(C(a)(x)).

Notice that C′(α) = C(α) for any α ∈ A s.t. α ≯ b, e.g., C′(ε) = C(ε).

Now, let P ′ be the labelled tree such that supp(P ′) = A′ and P ′(α′) is C′(α′) `
t′|α′ : T′(α′) with α′ = Resb(α). We claim that P ′ is a correct derivation concluded by
C ` t′ : T : indeed, A′ ⊂ supp(t′) stems from A ⊂ supp(t). Then, for any α′ ∈ A′ and
α = Res−1

b (α), t′(α′) = t(α) and the rule at position α′ is correct in P ′ because the rule
at position α in P is correct (for the abstraction case, we notice that t′(α′) = λy implies
C′(α′)(y) = C(α)(y)).

Thus, P ′ is a derivation concluding with C ` t′ : T . This concludes the proof of the
subject reduction property for S.

10.4 Approximable Derivations and Unforgetfulness

In Sec. 10.1.3, we saw that Klop’s Problem demands to consider “joins” of derivations and
an approximability criterion. In this section, we exhibit a lattices structures underlying
set of S-derivations (Sec. 10.4.1). This allows us to formally define directed sets of deriva-
tions, as well as their join. In Sec. 10.4.2, we formally define approximability using the
notion of bipositions and that of bisupport. Then, in Sec. 10.4.3, we adapt the unforget-
fulness condition (Sec. 10.1.1) to S-derivation. We also prove a few dynamics properties:
approximability is stable under one step reduction/expansion. Moreover, approximable
unforgetful typing ensures hereditary head normalization (Proposition 10.4).

10.4.1 The Lattice of Approximation

From last section, we know that R is unfit to recover soundness through approximability.
Let us now work with system S only and formalize the intuitive notions seen before.

As seen in Sec. 10.1.3, we must be able to truncate derivations (notion of approxi-
mation) and define the join of some families of derivations. This can be properly defined
in system S.

Definition 10.3. • Let P and P∗ be two derivations typing a same term t. We say
P∗ is an approximation of P , and we write P∗ 6∞ P , if bisupp(P∗) ⊆ bisupp(P )
and for all p ∈ bisupp(P∗), P∗(p) = P (p).

• We write Approx∞(P ) for the set of approximations of a derivation P and Approx(P )
for the set of finite approximations of P .
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Thus, P∗ 6∞ P if P∗ is a correct restriction of P on a subset of bisupp(P ) (i.e.
a restriction that respects the typing rules of S). We usually write fP for a finite
approximation of P (i.e. bisupp(fP ) is finite) and in that case only, we write fP 6 P
instead of fP 6∞ P . Actually, 6∞ and 6 are associated to lattice structures induced
by the set-theoretic inclusion, union and intersection on bisupports :

Theorem 10.3. The set of derivations typing a same term t endowed with 6∞ is a
directed complete semi-lattice.

• If D is a directed set of derivations typing t:

– The join ∨D of D is the function P defined by dom(P ) = ∪P∗∈Dbisupp(P∗)
and P (p) = P∗(p) (for any P∗ ∈ D s.t. p ∈ bisupp(P∗)), which also is a
derivation.

– The meet ∧D of D is the function P defined by dom(P ) = ∩P∗∈Dbisupp(P∗)
and P (p) = P∗(p) (for all P∗ ∈ D), which also is a derivation.

• If P is a derivation typing t, Approx∞(P ) is a complete lattice and Approx(P ) is
a lattice.

Proof. See Appendix A.3.

Approximation is compatible with reduction:

Lemma 10.4.

• Reduction is monotonic: if P∗ 6∞ P, P∗
b→ P ′∗ and P

b→ P ′, then P ′∗ 6∞ P ′.

• Moreover, if P b→ P ′, then, for any P ′∗ 6∞ P ′, there is a unique P∗ 6∞ P s.t.
P ′∗

b→ P ′∗.

• b·c-expansion is monotonic: if P ′ types t′, t b→ t′ and P ′∗ 6∞ P ′, then P∗ 6∞ P
with P∗ = Expb(P

′
∗, b·c, t), P = Expb(P

′, b·c, t).

10.4.2 Approximability

We define here our validity condition i.e. approximability, suggested in Sec. 10.1.3 and
illustrated by Fig 10.3. Morally, a derivation P is approximable if all its bipositions are
meaningful i.e. can be part of a finite derivation fP approximating P .

Definition 10.4. A derivation P is approximable if, for all finite 0B ⊆ bisupp(P ),
there exists fP 6 P s.t. 0B ⊆ bisupp(fP ).

Remark 10.5 (Reformulating the Approximability Condition).

• Equivalently, a derivation P is approximable when it is the join of its finite ap-
proximations.

• A derivation P is approximable iff P is quantitative (Sec. 10.2) and, for all finite set
of right bipositions 0B ⊆ bisupp(P ), there exists fP 6 P s.t. 0B ⊆ bisupp(fP ).
Indeed, quantitativity is necessary for approximability (Lemma 10.5) below. More-
over, when P is quantitative, every left biposition can be tracked back to an axiom
rule. And every left biposition in the conclusion of an ax-rule is “equinecessary”
to a right biposition. See Appendix A.2 for more details.
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• Let P a quantitative S-derivation. It may be felt that every biposition in bisupp(P )
is somehow “related” (via the typing rules) to a biposition located in the root judg-
ment of P , to be called “depth 0 biposition”. In that case, approximability could
be restated as follows: “P is quantitative and, for all finite set 0B ⊆ bisupp(P )
of depth 0 bipositions, there exists fP 6 P such that 0B ⊆ bisupp(fP )”. How-
ever, this condition is not equivalent to approximability. A counterexample can be
found in Appendix A.2.3.

Lemma 10.5.

1. If P is not quantitative, then P is not approximable.

2. If P is quantitative and P b→ P ′, then P is approximable iff P ′ is approximable.

Proof sketch.

1. If P is not quantitative, then P contains some left biposition p := (a, x, k·c) that
does not come from an ax-rule: this implies that there are infinitely many a′ > a s.t.
(a′, x, k·c) ∈ bisupp(P ). An approximation P∗ 6 P that contains p has to contain
all those (a′, x, k·c) and thus, cannot be finite. So P cannot be approximable.

2. Assume P approximable. Let us show that P ′ is also approximable. Then, let
0B′ ⊆ bisupp(P ′) be a finite set of bipositions. We can find a finite set of 0B ⊆
bisupp(P ) s.t. 0B′ ⊆ Resb(

0B).

Since P is approximable, there is fP 6 P s.t. 0B ⊆ fP . We set fP ′ = Resb(
fP ).

By Lemma 10.4, fP ′ 6 P ′. This is enough to conclude.

The converse implication is proven likewise. However, Resb is not defined for every
biposition (e.g., left ones) and our argument is faulty. It is not hard to avoid this
problem (it is done in Appendix A.2), using a suitable notion of interdependencies
between bipositions.

10.4.3 Unforgetfulness

We remember from Sec. 10.1.1 that weak normalization for the finite calculus is charac-
terized in system R0 by means of unforgetful derivations. In order to characterize weak
normalizability in Λ001 (Definition 9.4), we want to adapt Theorem 10.2 to system S.
This will yield Theorem 10.4, the main result of this paper, stated as follows:

Theorem. A term t is weakly-normalizing in Λ001 if and only if t is typable by means
of an approximable unforgetful derivation.

To state and prove this theorem, we must first adapt the definition of unforgetful-
ness. We recall that the targets of arrows are regarded as positive and their sources
as negative. The following definitions are straightforward adaptations from system R0

(Definitions 5.1 and 5.2).

Definition 10.5. Inductively:

• For all type T , ( ) occurs negatively in ( )→ T .
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• ( ) occurs positively (resp. negatively) in (Sk)k∈K if there exists k ∈ K s.t. ( )
occurs positively (resp. negatively) in Sk.

• ( ) occurs positively (resp. negatively) in (Sk)k∈K → T if ( ) occurs positively
(resp. negatively) in T or negatively (resp. positively) in (Sk)k∈K .

Definition 10.6.

• A judgment C ` t : T is unforgetful when, ( ) does not occur positively in T and
for all x ∈ V , ( ) does not occur negatively in C(x).

• A derivation is unforgetful when it concludes with an unforgetful judgment.

As in Sec. 10.1.1, we can check by induction on t that if t is a NF and P �C ` t : T
is unforgetful, then every subterm of t is typed in P (the induction is performed on the
position of the considered subterm).

Lemma 10.6.

• If P �C ` t : T is an unforgetful derivation typing a HNF t = λx1 . . . xp.x t1 . . . tq,
then, there are unforgetful subderivations P1, . . . , Pq of P typing t1, t2,. . . , tq.

• Moreover, if P is approximable, so are they.

Proof.

• The arguments of Lemma 5.2 straightforwardly adapt to system S: we first observe
that the depth p subderivation P0 of P typing t0 := x t1 . . . tq is also unforgetful,
and then, that there arguments t1, . . . , tq are not left untyped (since ( ) cannot
occur negatively in the type of the head variable x). It is not difficult to check
that the subderivations typing the tk are also unforgetful, by using the typing rules
and Definition 10.6.

• Since P ′ are approximable, the subderivations Pk are themselves approximable by
Definition 10.4.

Lemma 10.7. If P � C ` t : T is a finite derivation, then t is head normalizable.
Actually, the head reduction strategy terminates at t.

Proof. The proof of Proposition 3.9 straightforwardly adapts:

• By the typing rules, the head redex – if it exists i.e. if t is not already in HNF –
must be typed.

• When we reduce a typed redex, the number of rules of the derivation must strictly
decrease (at least one app-rule and one abs-rule disappear). See Fig. 10.5.

• Since there is no infinite decreasing sequence of integers, the head-reduction stra-
tegy must halt at some point, meaning that a HNF is reached.

Proposition 10.4. If a term t is typable by an unforgetful approximable derivation,
then it is hereditary head normalizing.
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Proof. We assume that P � C ` t : T is an unforgetful and approximable derivation

• By Lemma 10.7, t head-normalizes to a HNF t′ := λx1 . . . xp.x t1 . . . tq.

• By subject reduction (Proposition 10.1), there is a derivation P ′ � C ` t1 : T .
Derivation P ′ is obviously unforgetful. Moreover, by Lemma 10.5, P ′ is approx-
imable.

• By Lemma 10.6, the t1, . . . , tq are themselves approximably and unforgetfully ty-
pable by subderivation P1, . . . , Pq of P ′.

This proves that t is hereditary head normalizing, by Definition 9.5.

10.4.4 The infinitary Subject Reduction Property

In this section, we prove subject reduction for strongly converging reduction sequences.
The initial derivation may be approximable or not.

Thus, we have to define a derivation P ′ typing t′ from a derivation typing a term
t that strongly converges towards t′. The main intuition is again the following (cf.
Sec. 9.3.1): when a reduction is performed at applicative depth n, the contexts and
types are not affected below depth n. Thus, a s.c.r.s. stabilizes contexts and types at
any fixed applicative depth. This allows us to define a derivation typing the limit t′.
Figure 9.3, p. 196 can be adapted for s.c.r.s.of Λ001 (instead of Λ∞) and S-derivations
(instead of terms) by replacing “depth” by “applicative depth”.

The following Subject Substitution Lemma (compare with Lemma 10.2) is very
useful while working with strong convergence. It states that we can freely change the
untyped parts of a term in a typing derivation, as suggested in Sec. 10.1.2 and 10.1.3.

Lemma 10.8. Assume P � C ` t : T and for all a ∈ supp(P ), t(a) = t′(a) (no
approximability condition).
Let P [t′/t] be the labelled tree obtained from P by replacing t by t′ (more precisely,
P [t′/t] is the labelled tree P ′ s.t. supp(P ′) = supp(P ) and, for all a ∈ supp(P ), P (a) =
C(a) ` t′|a : T(a)).
Then P [t′/t] is a correct derivation.

Now, let us formally prove the infinitary subject reduction property. For that, we
assume:

• t→∞ t′ is a s.c.r.s.. Say that this sequence is t = t0
b0→ t1

b1→ . . .
bn−1→ tn

bn→ tn+1
bn+1→

. . . with bn ∈ {0, 1, 2}∗ and ad(bn) −→∞.

• There is a derivation P � C ` t : T and A = supp(P ).

By performing step by step the s.c.r.s. b0, b1, . . ., we get a sequence of derivations
Pn�C ` tn : T of support An (and we write Cn, Tn for CPn and TPn). When performing
tn

bn→ tn+1, notice that Cn(a) and Tn(a) are not modified for any a such that bn 
 a i.e.
Cn(a) = Cn+1(a) and Tn(a) = Tn+1(a).

Let a ∈ N∗ and N ∈ N be such that, for all n > N, ad(bn) > ad(a). There are two
cases:

• a ∈ An for all n > N . Moreover, Cn(a) = CN (a), Tn(a) = TN (a) for all n > N ,
and t′(a) = tn(a) = tN (a).
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• a /∈ An for all n > N .

We set A′ = {a ∈ N∗ | ∃N, ∀n > N, a ∈ An}. We define a labelled tree P ′ whose
support is A′ by P ′(a) = Cn(a) ` t′|a : Tn(a) and we set C′(a) = Cn(a), T′(a) = Tn(a) for
any n > N(ad(a)) (where N(`) is the smallest rank N such that ∀n > N, ad(an) > `) .

Lemma 10.9. The labelled tree P ′ is a derivation.

Proof. Let a ∈ A′ and n > N(|a| + 1). Thus, t′(a) = tn(a) and the types and contexts
involved at node a and its premises are the same in P ′ and Pn. So the node a of P ′ is
correct, because it is correct for Pn.

Lemma 10.10. If P is approximable, so is P ′.

Proof. Let 0B ⊆ bisupp(P ′). We set ` = max{ad(p) | p ∈ 0B} (ad(p) is the applicative
depth of the underlying a ∈ supp(P )).

By strong convergence, there is N s.t., ∀n > N, ad(bn) > ` + 1, and thus, tN (a) =
tn(a) = t′(a), CN (a) = Cn(a) = C′(a) and TN (a) = Tn(a) = T′(a) for all a s.t. ad(a) 6 `
and n > N . In particular, 0B ⊆ bisupp(PN ).

Since P is approximable, by Lemma 10.5, PN is approximable. So, there is fPN 6 P
s.t. 0B ⊆ bisupp(fPN ).

We have 0B ⊆ bisupp(fPN ) = bisupp(fP ′). Thus, P ′ is approximable.

Proposition 10.5 (Infinitary Subject Reduction). Assume t→∞ t′ and P �C ` t : T .
Then there exists a derivation P ′ s.t. P ′ � C ` t′ : T .
Moreover, if P is approximable, P ′ may be chosen to be approximable.

Proof. Consequence of Lemmas 10.9 and 10.10

10.5 Typing Normal Forms and Subject Expansion

As hinted at in Sec. 10.1.1, a proof of Weakly Normalizable ⇒ Typable proceed by giving
first an (unforgetful) typing of NF, and then, using a subject expansion property (exactly
as in the proof of Proposition 5.4).

In this section, we want to prove that NF are typable in S and that all the quantitative
derivations typing a NF are approximable. We will actually describe all the quantitative
derivations typing a NF (and prove them to be approximable). Then, we will prove an
infinitary subject expansion property, what is enough to show the above implication.

Normal forms are coinductive assemblages of HNF (Sec. 9.3.2). It is then important
to understand how a HNF t = λx1 . . . λxp.x t1 . . . tq may be typed. Let us have a look at
figure 10.6 and ignore for the moment the rdeg and positions (between angle brackets)
annotations (note that this figure is the counterpart of Fig. 3.4 for system S with some
additional technical annotations): the head variable x has been assigned an arrow type
(S1
k)kk∈K(1) → . . .→ (Sqk)kk∈K(q) → T whereas the first argument t1 is typed with types

S1
k (k ranging over K(1)),. . . , the q-th argument tq is typed with types Sqk (k ranging

over K(q)).
The subterms x, x t1, x t1t2, . . . , x t1 . . . tq−1 are typed with arrow types, as well as

the subterms λxp.x t1 . . . tq, λxp−1xp.x t1 . . . tq, . . . , λx1 . . . xp.x t1 . . . tq starting with ab-
stractions. By contrast, notice that subterm x t1 . . . tq has type T and that this type T
may be any type (as in Lemma 3.5). So, we say that the type of subterm x t1 . . . tq is
unconstrained, whereas for instance:
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1

t1

@ tq−1
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1

tq
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0

λxp

λx1

Subtree of a NF t Corresponding types

(S1
k)kk∈K(1) → . . .→ (Sq

k)kk∈K(q) → T 〈̊aq〉(S1
k)kk∈K(1)

(S2
k)kk∈K(2) → . . .→ (Sq

k)kk∈K(q) → T 〈̊aq−1〉(Sq−1
k )kk∈K(q−1)

(Sq
k)kk∈K(q) → T 〈̊a1〉 (Sqk)kk∈K(q)

T 〈̊a〉

C(̊a)(xp)→ T 〈̊a−1〉

C(̊a1−p)(x1)→ . . .→ C(̊a)(xp)→ T 〈̊a−p〉

Figure 10.6: Typing Normal Forms in System S

• x t1 . . . tq−1 has type (Sqk)kk∈K(q) → T : this type depends on the types given to the
subterm tq. We say informally that it calls for the types of tq.

• λxp.x t1 . . . tq has type C(0p)(xp)→ T : this type depends on the types assigned to
xp deeper in the term. We say informally that it calls for the types of xp.

10.5.1 Support Candidates

Before using the considerations above, we must devote our attention to the possible
forms of the support A := supp(P ) of a derivation P typing a NF t. This is done by the
preorder ≺ defined below, extending the prefix order.

We write a ≺ a′ when there exists a0 such that a0 6 a, a0 6 a′, ad(a) = ad(a0)
and we observe that if P is a derivation typing t, then supp(P ) is downward closed for
≺ over supp(t), meaning by that, for all a1 s.t. a1 ∈ supp(t) and a2 ∈ supp(P ), then
a1 ≺ a2 implies a1 ∈ supp(P ).

For instance, 021031 ≺ 021037 since 02103 6 021031, 021037 and ad(02103) =
ad(021031) = 2. If 021037 ∈ supp(P ), since 7 is an argument track, t(02103) = @
(i.e. 02103 points to an app-rule in P ). Last, 02031, which is this app-rule left-hand
side, should also be in supp(P ), as well as every prefix of 021037. And we have thus
021031 ∈ supp(P ) as expected.

Conversely, a non-empty set A downward closed for ≺ over supp(t) s.t. A ⊆ supp(t).
will be called a support candidate for a derivation typing t and we prove that, for all
support candidates A associated with a NF t, there is actually a derivation P typing t
s.t. A = supp(P ). This will be Lemma 10.11.

Notation å For now, let us consider P a derivation typing the NF t and a ∈ A :=
supp(P ). We have t|a = λx1 . . . xn.u, where u is not an abstraction. The integer n is
the order (as in [15] or Definition 2.8) of t|a. We say then that a is an order n position.

• If n > 1, we say that a is a non-zero position and we set å = a · 0n (so that
t|̊a = u) and rdeg(a) = n.

• If n = 0, we distinguish two subcases, by first defining å as the shortest prefix
a0 6 a s.t. a = a0 · 1` (for some `) and setting rdeg(a) = `:
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– If ` = 0, then we set å = a and we say that a is an unconstrained position.
– If ` > 1, we say that a is a partial position.

We then extend the function a 7→ å to the set {a ∈ N∗ | a ∈ supp(t)} (note that this
function depends on t).

As it has been observed above, a is unconstrained when, intuitively, the type of the
underlying subterm does not depend on deeper parts of the derivation. If i > 0, we
write åi for å · 1i and åi for the rank i prefix of å (e.g., å = å−2 · 02 if t|̊a is of order
> 2). More generally, from the beginning of Sec.10.5, we observe that if rdeg(a) = d,
then T(a) is an arrow type F1 → . . .→ Fd → T(̊a), where T(̊a) is an unconstrained type.
More precisely, using Fig. 10.6 and Notation 10.1:

• When a is a non-zero position i.e. å = a·0d and t|a is of the form λxq−d+1 . . . λxp.x t1 . . . tq
with t|̊a = x t1 . . . tq, then F1 = C(a · 0)(xq−d+1), F2 = C(a · 02)(xq−d+2), . . . , Fd =
C(a · 0d)(xp) = C(̊a)(xp).

• When a is partial i.e. a = å·1d and t|̊a is of the form x t1 . . . tq with t|a = x t1 . . . tp−d,
then t|̊a = t|a tp−d+1 . . . tq and F1 := (k ·T(̊a ·1d−1 ·k))k∈ArgTr1(a), . . . , Fd := (k ·T(̊a ·
k))k∈ArgTrk(a) (see end of Sec. 10.2.3 for notation ArgTri): thus, Fi is the sequence
of types given to the i-th argument tp−d+i of t|a w.r.t. position a.

10.5.2 Natural Extensions

Let A be a support candidate for t and T̊ a function from Å := {̊a | a ∈ A} to the set of
types. We want to extend T̊ on A (into a function T) so that we get a correct derivation
P typing t.

As we have seen above, we must capture the way calls are made in a derivation by a
type to others located deeper. For that, to each a ∈ N∗, we attribute an indeterminate
Xa. Intuitively, Xa calls for T(a), the type given to the subterm at position a. For all
a ∈ A, x ∈ V , we set Aa(x) = {a0 ∈ A | a 6 a0, t(a) = x, @a′0, a 6 a′0 6 a0, t(a

′
0) = λx}

so that we intend to have AxPa (x) = Aa(x) (as well as trP (a0) = ba0c) when P is built.
Combining all the above intuitions, we set, for all a ∈ A, x ∈ V , E(a)(x) = (ba0c ·

Xa0)a0∈Aa(x) (thus, E(a)(x) calls for the types given to a in ax-rules). If a ∈ A is partial
or unconstrained, d = rdeg(a) (i.e. a = å · 1d) and 1 6 i 6 d, we define the sequence
Ri(a) by Ri(a) = (k · Xåd−i·k)k∈ArgTriA(a) with ArgTriA defined as for derivations (thus
Ri(a) calls for the types given to the argument of the i-th application below a).

• If a ∈ A is a non-zero position e.g., t|a is of the form λx1 . . . xd.t|̊a. We then set
Cal(a) = E(a · 0)(x1)→ . . .→ E(̊a)(xd)→ T(̊a).

• If a ∈ A is partial, we set Cal(a) = R1(a)→ . . .→ Rn(a)→ T(̊a).

• If a ∈ A is unconstrained, we set T(a) = Cal(a).

We then extend T̊ (defined on unconstrained positions) to A by the following coinductive
definition: for all a ∈ A, T(a) = Cal(a)[T(a′)/Xa′ ]a′∈N∗ . For all a ∈ A, we define the
contexts C(a) by C(a)(x) = E(a)(x)[T(a′)/Xa′ ]a′∈Aa(x).

Those definitions are well-founded, because whether a is non-zero position or a partial
one, every occurrence of an Xk is at depth > 1 and the coinduction is productive.
Eventually, let P be the labelled tree whose support is A and such that, for a ∈ A, P (a)
is C(a) ` t|a : T(a).
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Lemma 10.11. The labelled tree P defined above is a derivation.

Proof sketch. Let a ∈ A. Whether t(a) is x, λx or @, we check the associated rule has
been correctly applied. Roughly, this comes from the fact that the variable Xa′ is “on
the good track" (i.e. ba′c)in E(a)(x), as well as in Ri(a), thus allowing to retrieve correct
typing rules.

We call then the derivation P built above the natural extension of the pair (A, T̊ ).
Natural extension give all the possible quantitative derivations typing a NF. For our
purpose, they also give:

Lemma 10.12. A normal form t is unforgetfully typable.

Proof sketch. We set A = supp(t) and T̊ (a) = o for each unconstrained position (where
o is a type variable). Then, the extension P of (A, T̊ ) is an unforgetful derivation typing
t.

10.5.3 Approximability

It is enough for a derivation typing a NF to be quantitative in order to be valid.

Lemma 10.13. If P is a quantitative derivation typing a NF t, then P is approximable.

We explain here why every quantitative derivation P typing a normal form is ap-
proximable. This means that we can build, for any finite part 0B of bisupp(P ), a finite
derivation fP 6 P containing 0B. We will proceed by:

• Choosing a finite support candidate fA ⊆ A of t i.e. we will discard all positions
in A but finitely many.

• Then, choosing, for each å ∈ fA, a finite part of fT(̊a) of T(̊a).

The natural extension of (fA, fT ) will be a derivation fP 6 P typing t.

Namely, we define Pn, the depth n truncation of P as follows:

• We define An by discarding every position a ∈ A s.t. ad(a) > n or a contains a
track > n (i.e. An = {a ∈ A | ad(a) 6 n and max(a) 6 n}). Since t ∈ Λ001, A
does not have infinite branch of finite applicative depth and thus, An is a finite
set of positions.

• For each å ∈ Ån, we define T̊n(̊a) by discarding every c ∈ supp(T(̊a)) s.t. ad(c) > n
or c has a track> n (i.e. supp(T̊n(̊a)) = {c ∈ supp(Tn(̊a)) | ad(c) 6 n and max(c) 6
n| }). Since Tn(̊a) ∈ Typ (and not in Typ111 − Typ001), T̊n(̊a) is a finite type.

We define now Pn as the natural extension of (An, T̊n). Using the quantitativity of
P , we may prove then that, for all 0B ⊆ bisupp(P ), there exists a large enough n s.t.
0B ⊆ bisupp(Pn). The idea is the following: as we have seen, each biposition may p

“call" a chain of deeper bipositions, but the set of bipositions called by p is finite and we
may define the called applicative depth cad(p) of p as the maximal applicative depth
of a biposition called by p. Then, since 0B is finite, we define n as max({cad(p) | p ∈ 0B})
(modulo the maximum of tracks contained in the called bipositions) and we check that
0B ⊆ Pn (see Appendix A.4 for a complete proof). By Lemmas 10.12 and 10.13, we may
now assert:

Proposition 10.6. Every NF is approximably and unforgetfully typable in system S.
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10.5.4 The Infinitary Subject Expansion Property

In Section 10.4.4, we defined the derivation P ′ resulting from a s.c.r.s., starting at an
(approximable or not) derivation P . Things do not work so smoothly for subject ex-
pansion when we try to define a good derivation P which results from a derivation P ′

typing the limit of a s.c.r.s.. Indeed, approximability play a central role w.r.t. expansion.
Assume that:

• t →∞ t′. Say by means of the s.c.r.s. t = t0
b0→ t1

b1→ . . . tn
bn→ tn+1 → . . . with

bn ∈ {0, 1, 2}∗ and ad(bn) −→∞.

• P ′ is an approximable derivation of C ′ ` t′ : T ′.

• We dispose of an arbitrary injection a 7→ bac from N∗ to N \ {0, 1}.

We want to show that there exists a derivation P concluding with C ′ ` t : T ′. A complete
proof is given in Appendix A.3.3.

The main point is to understand how subject expansion works with a finite derivation
fP ′ 6 P ′. The techniques of Sec. 10.1.3 can now be formally performed. We give a sketch
of the proof.

Since fP ′ is finite, for a large enough n, t′ can be replaced by tn inside fP ′, according
to Lemma 10.8: we set fPn = fP ′[tn/t

′], which is a finite derivation typing tn. But when
tn is typed instead of t′, we can perform n steps of b·c-expansion (starting from fPn) to
obtain a finite derivation fP typing t.

By monotonicity of expansion (Lemma 10.4), the set D containing all the fP is a
directed set. Then, by Theorem 10.3, we define P as the join of the fP when fP ′ ranges
over Approx(P ′). This yields a derivation satisfying the desired properties.

Proposition 10.7. Assume t→∞ t′ and P ′ � C ′ ` t′ : T ′.
If P ′ is approximable, then there exists an approximable derivation P s.t. P�C ′ ` t : T ′.

Since infinitary subject reduction and expansion (in s.c.r.s) preserve unforgetful
derivations, we can now prove our main characterization theorem :

Theorem 10.4. A term t is weakly-normalizing in Λ001 if and only if t is typable by
means of an approximable unforgetful derivation and if and only if it is hereditary head
normalizing.

Proof. We use the proof scheme of 3.3.1, already used in the case of finite weak normal-
ization (cf. proof of Proposition 5.1).

• The implication «If t is typable, then t is HHN» is given by Proposition 10.4.

• The implication «If t is HHN, then t is WN» is obvious.

• The implication «If t is WN, then t is typable» is proved like this: assume t
to be WN and consider a s.c.r.s. converging to the NF t′ of t. Let P ′ be an
unforgetful and approximable derivation typing t′ (such a derivation exists by
Proposition 10.6). Then, the derivation P obtained by Proposition 10.7 above is
approximable, unforgetful and types t.
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10.6 Conclusion

We have provided an intersection type system characterizing weak normalization in
the infinitary calculus Λ001. The use of functions from the set of integers to the set
of types to represent intersection – instead of multisets or conjunctions – allows us
to express a validity condition that could only be suggested in Gardner/de Carvalho’s
type assignment system. Our type system is relatively simple and offers many ways to
describe proofs (e.g., tracking, residuals).

Interestingly, system S can be used to give a positive answer to TLCA Problem #
20: can the the so called Hereditary Permutations (HP) be characterized by means
of types? Tatsuta [102] proved that it is not possible in the inductive case. By lack of
time, this problem and its solution could not be presented in this thesis, but they are
sketched in Appendix A.7, along with the useful definitions.

It is natural to seek out whether this kind of framework could be adapted to other
infinitary calculi and if we could also characterize strong normalization in Λ001, using for
instance a memory operator [19]. Moreover, sequential intersection may be connected
to Grellois and Melliès infinitary exponential modality [51], as well as Bucciarelli and
Ehrhard indexed linear logic [16]. It is to be noticed that derivation approximations
provide affine approximations that behave linearly in Mazza’s polyadic calculus [80].

This chapter implicity raises two question:

• Question 1: We know from Sec. 10.1.3 (and Appendix A.1) that some mute terms
are typable in system R and in system S (when the latter is not endowed with
the approximability criterion). What is the set of typable terms in system S when
approximability is put aside?

• Question 2: The derivation of S-are very low-level objects. Indeed, typing an
application is very constraining since it relies on syntactic equality, whereas the
multiset constructions of system R makes it more flexible. Is system S (without
approximability) less expressive than system R is?

Part IV is dedicated to answering those two questions:

• We prove in Chapter 12 that, actually, every term is typable in system S. From the
semantic point of view, we explain how this result has interesting consequences on
a relational model of the pure λ-calculus, whose points are the derivable judgments
of system R.

• We prove in Chapter 13 that every R-derivation can be “simulated” by a S-derivation.
In particular, this implies that system S providees a complete description of the
model based on system R.
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Presentation
In the last part of this thesis, we present two independent contributions:

• Contribution 1: In Chapter 12, we prove that, when the approximability con-
dition used to ensure soundness with coinductive type grammar in Chapter 10 is
dropped, then:

– Every term is (non-trivially) typable in a relevant way, both in system S or in
system R (the coinductive version of system R0). We then said that system
S and system R are completely unsound.

– The order of λ-terms can be type-theoretically characterized.

This contribution can be seen as a linearization of λ-terms, because system S is
linear (it does not feature contraction and weakening), and since it satisfies subject
reduction and confluence, it can be understood as a deterministc calculus.

• Contribution 2: In Chapter 13, we explicit the natural collapse of system S

(coinductive grammar with sequential intersection) onto system R (coinductive
grammar with multiset intersection) by showing that:

– Every R-derivation is the collapse of an S-derivation (surjectivity of the
collapse).

– Every sequence of reduction choices (defined in Sec. 4.1.2) in R can be im-
plemented in system S.

As a consequence, the rigid syntax directed type system S does not bring any lim-
itation compared to system R (syntax directed, but non-rigid/non-deterministic)
or to (the coinductive versions of) Gardner original system (rigid but not syntax
directed, since it processes permutation explicitly).

Chapter 11 gives a user-friendly presentation of some useful techniques and notions as-
sociated to this part.

In sharp contrast with the previous chapters of this thesis, in Part IV we must study
types that do not ensure any kind of productivity/normalization. The two mentioned
contributions share a same method, which is one of the main technical contribution of
this PhD. It is referred to as the collapsing strategy. Before giving a high-level account
of those new techniques, let us first understand why the standard methods of intersection
types (and even their extensions to coinductive frameworks, as in Chapter 10) cannot
be used.
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The Productivity of Most Type Systems A pivotal element to prove that some
terms (e.g., the head normalizing, weakly normalizing, strongly normalizing terms in
the case (or 001-weakly normalizing terms) are typable, along with subject expansion,
consists in typing blocks of the form x t1 . . . tq (i.e. a zero head normal form). This is
well illustrated by Figure 3.4, p. 100 and 10.6, p. 228. More precisely, this figure shows
that intersection type systems work because they are designed (among other things) so
that the blocks of the form x t1 . . . tq are easily typable (including the case where some
tk are untyped): to type x t1 . . . tq in a standard intersection type system, we just have
to assign to x a type of the form I1 → . . .→ Ip → B, where I1, . . . , Ik are the (possibly
empty in some cases) intersection of the types given to t1, . . . , tq.

Conversely, another key feature of intersection type systems – at least, of reasonable
systems e.g., D0, R0, S, Hλµ , Sλµ or S endowed with approximability – is that they
ensure that any typed subterm will output a block of the form x t1 . . . tq – up to a series
of abstractions (or naming, in the case of λµ) – after a finite number of steps. Those
systems are productive in that aspect. It is only natural: they aim at characterizing
(some form of) normalization.

On the other hand, with a coinductive type grammar, it is not difficult to type e.g.,
Ω = ∆ ∆, which4 is a mute term (Sec. 2.3.2). No part of a mute term can stabilize. In
particular, the reduction of a mute term will never output a stable block of the form
x t1 . . . tq. So, if we want to study the derivations of system S or system R, our study
cannot reduce to typed blocks of the form x t1 . . . tq and then proceed by expansion. In
particular, this method would not work to describe the set of typable terms in system
R.

The two problems addressed by Contributions 1 and 2 above are easy to solve for
(terms that reduce to) blocks of the form x t1 . . . tq. But the example of Ω shows that
this does not encapsulate their whole generality. Contributions 1 and 2 also concern
terms that do not productively reduce.

The Collapsing Strategy and Logical Methods So, how do we handle type-
theoretic questions involving unproductive terms? The method that we describe
relies upon some of the following ideas:

1. We reduce the two problems of each chapter to a first order theory T (containing
only constants). Those constants correspond to (sets of) bipositions of system S

(Sec. 10.3.1). This is possible only because system S is rigid, contrary to system R
(Sec. 4.1.1). In all cases, the transformation of the two problems above into such
a theory demands a lot of work and cannot be described quickly, but this does not
matter for this discussion.

2. We show that, when the theory T is not contradictory, then the problems can be
positively answered: from a non-contradictory theory, we can build some deriva-
tions of a desired form. This point is reminiscent of some methods of Zermelo-
Fraenkel’s Set Theory e.g., the proof of the Theorem of Completeness (in a far
simpler case).

3. We prove that T is coherent, and this is the most difficult part of our contribution.
For that, we assume ad absurdum that T is contradictory and we consider a (first
order) proof of the contradiction of T . We call such a proof a chain (because this
consists in a series of equalities/relations). Then:

4Such a typing of Ω can be found in Sec. A.1.
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• Chains interact with redexes in an undescribable (and therefore, unhan-
dleable) way.

• One idea would be to eliminate all the redexes. But since we must also handle
some mute terms, this is not possible in general.

• This problem is escaped by defining a finite reduction strategy, that given a
chain C, eliminates only the redexes that interact wrongly with C and outputs
a new chain C′ that is said to be normal.

• Normal chains have a form that is handleable: we then prove that they do
not exist i.e. there is no normal proof of contradiction of T .

• Since any proof of contradiction of T could be normalized, we conclude that
such a proof does not exist. Thus, T is coherent.

The proof of Theorem 12.2 features a variant of this method, in which no ad absurdum
argument is needed, but some chains must still be normalized.

Threads, Syntactic Polarity and Redex Towers Let us now say a few words
about the collapsing strategy, and gives the name of the concepts and methods to be
informally presented in Chapter 11.

• As mentioned above, we will need to consider relations on sets of bipositions.
Those sets are called threads and correspond to the tracking of symbols inside a
derivation. The symbols of a thread occur either positively or negatively. Threads
and syntactic polarity are informally presented in Sec. 11.

• Threads can be consumed in app-rules, meaning that they are destroyed. It is ac-
tually not the interaction between threads and redex that is problematic/undescribable,
but the consumption of a negative occurrence of the left premise of an app-rule.
But we show that this can only occur in a redex tower i.e. a series of redexes,
which can be collapsed. This is informally explained in Sec. 11.2.

This last point implies that terms are reduced to fulfill the method. Thus, the effect
of reduction on threads must be precisely described. For that, residuation (presented in
Sec. 2.1.5 and defined in Sec. 10.3.5 for system S) plays a key role.

We claim that the method presented in this part is modular and has some canon-
icity: not only it is applied thrice in this document (once for Theorem 12.1, one for
Theorem 12.2 and once for Theorem 13.2), but many definitions varies from Chapter 12
to Chapter 13. Intuitively, Chapter 12 consider threads of (bi)positions whereas Chap-
ter 13 consider threads of edges (that are abusively denoted by bipositions or by posi-
tions) i.e. the sets of the constants considered in the theory T differ. As a consequence,
residuation of threads, which plays an important part in the collapsing technique, is not
defined in the same way in the two chapters. Many binary relations between threads,
needed in the proof of complete unsoundness, are unnecessary in Chapter 13.

In other words, the two contributions do not involve the same first order theories
(different sets of constants and different relations), which suggests that the technique
is indeed modular. In both cases, the technique relies upon threads, syntactic pola-
rity, consumption, and the collapsing of redex towers to destroy the cases of negative
consumption on the left-hand side.



The Correspondences between Chapter 12 and 13 Although the two chapters
do not have exactly the same structure, they share some common elements, summarized
with the following table:

Chapter 12 Chapter 13

If some theory T is consis-
tent, then the problem is
solved

Corol. 12.1 Prop. 13.2

Describing the theory T Sec. 12.2 Sec. 13.3, 13.4.1, 13.4.3

Defining problematic chains Def. 12.2 (brother ch.) Def. 13.13 (nihilating ch.)

Defining normal chains Def. 12.4 Def. 13.17

Defining threads Def. 12.1 Def. 13.10

Specific Lemma(s) Lem. 12.6, 12.9, 12.8, 12.11 Lem. 13.11

The collapsing strategy Sec. 12.4 Sec. 13.5

Normal chain do not exist Sec. 12.3.3 Sec.13.5.3

In each case, the specific lemmas are the properties used to prove that the normal
chains do not exist. The threads are the fundamental concepts on which the theories T
are based. Their definitions and descriptions also follow the same structure:

Chapter 12 Chapter 13

Ascendance, polar inversion Sec. 12.2.3 Sec. 13.4.1

Consumption Sec. 12.2.4 Sec. 13.4.1

Syntactic polarity Def. 12.3 Def. 13.15

Form of ascendant threads Lem. 12.2 Lem. 13.5

Form of threads Lem. 12.3 Lem. 13.6

Uniqueness of consumption Lem. 12.4 Lem. 13.7



Chapter 11

An Informal Presentation of
Threads

In this chapter, we give important intuitions to be extensively used in Chapters 12
and 13, and formalized for system S. We informally present the notions of ascendance,
polar inversion, threads, syntactic polarity and consumption. Those notions are based
on tracking type symbol in derivation. We know from Remark 4.1 that it is actually
not possible to do that in system R0. However, it is far more convenient to present
the intuitions in this system (this chapter is concluded with a short formalization in
system S, Sec. 11.3), and ascendance, polar inversion etc can very well be understood
with figures representing R0-derivations. In Sec. 11.2, we present redex towers, which
generalize redexes: a redex can be collapsed in one step of reduction. A redex tower can
be collapsed in a finite number of reduction steps. We hint at why those objects are
necessary to study and handle threads.

Throughout this chapter, we use the informal expression type symbol. In system
S, type symbols are pointed to by bipositions (Sec. 10.3.1). Thus, most identifications
and concepts that are informally presented here are formalized with bipositions in system
S.

11.1 Threads, Syntactic Polarity and Consumption

In this section, we are interested in the types of the subjects of the judgments nested in
a R0-derivation Π (not in the types in the contexts of those judgments).

11.1.1 Ascendance, Polar Inversion and Threads

Throughout this section, we consider 4 pairwise distinct type variables o, o1, o2 and o3

and terms t, u, v such that t = (λzxy.x (y z) y)(f u) v and a R0-derivation Π typing
t represented in Fig. 11.1. Very informally, we confound (the subterms of) t and (the
subderivations of) Π in our discourse.

Let us remind rules abs and app of system R0:

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

Γ +i∈I ∆i ` t u : τ
app
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Figure 11.1: Ascendance, Polar Inversion and Threads (Informal)

• In the abs-rule, the occurrence of τ in the premise and that (as a subpart of
[σi]i∈I → τ) in the conclusion can be identified. We say the former is the ascen-
dant of the latter (note that the σi do not have ascendants, but they will have
polar inverses).

• Likewise, in the app-rule, the occurrence of τ (as a subpart of [σi]i∈I → τ) in the
premise and that in the conclusion can be identified. We also say that the former
is the ascendant of the latter.

Following this idea, some types symbols can be ascendants of others: in Fig. 11.1, we
have represented the ascendance relation with dotted arrows (the two long dashed arrows
annotated with polar inversion, which we will describe later). We call a set of ascendants
an ascendant thread. For instance, in Fig. 11.1, 6 ascendant threads are outlined: one
is blue, one is red, two are green and two are purple.

• The red ascendant thread contains 2 occurrences of the type variable o (ascendance
through the app-rule typing f u).

• The blue one goes from the root of (λzxy.x(y z)y)(f u) (position 1) to the root of
λx.x(y z)y and contains 3 occurrences of the arrow→ (one ascendance through an
app-rule and two through abs-rules).

• The leftmost green ascendant thread goes from the root of t to the root of λy.x(y z)y
(below an arrow of polar inversion). It contains 5 occurrences of the type variable
o1.

• The rightmost green ascendant thread contains 2 occurrences of the type variable
o1 (ascendance through an app-rule typing y z).
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• The leftmost purple ascendant thread goes from the root of (λzxy.x(y z)y)u (pos.
1) to the root of λxy.x(y z)y (pos. 12 · 0, below an arrow of polar inversion). It
contains 3 occurrences of the type variable o.

• The rightmost purple ascendant thread contains 2 occurrences of the type variable
o (ascendance through the app-rule typing x(y z)).

Observation 11.1.

• The top occurrence of an ascendant thread is found either in an ax-rule (e.g., the
red one or the rightmost green one) or in an abs-rule (e.g., the blue one or the
leftmost green one).

• The bottom occurrence of a thread is found either at the root of the typed term
(e.g., the leftmost green one) or in a (left or right) premise of an app-rule (e.g., the
five other ascendant threads). In that case, we say that the thread is consumed in
this app-rule. Consumption is the object of the next section.

Intuitively, an abs-rule typing an abstraction λx.t “calls” the types of x in t, and
puts them as the source of the arrow type typing λx.t i.e. if λx.t is typed [σi]i∈I → τ ,
then the types σi of [σi]i∈I correspond to the types assigned to (the free occurrences of)
x. We say that each occurrence of σi (in λx.t : [σi]i∈I → τ) is the polar inverse of that
in x : σi). Following this idea, some type symbols can be the polar inverses of others.
In Fig. 11.1:

• One dashed arrow represents polar inversion from an occurrence of the type vari-
able o1 to another. The target of this arrow is the occurrence of o2 in one of the
ax-rules typing y. The source of this arrow is the occurrence of o2 when the types
of y are “called” by λy: it is located at the root of λy.x(y z)y.

• Likewise, another arrow of polar inversion relates two occurrences of the type
variable o, from a node labelled with λx (corresponding to an abs-rule) to a node
labelled x (corresponding to an ax-rule).

A thread is a set of occurrences of a same type symbol, that are identified through
ascendance or polar inversion. In Fig. 11.1, 4 threads are outlined: the red one, the blue
one, the green one and the purple one. The green thread, as well as the purple one,
is the union of two ascendant threads and features a polar inversion. The red and the
blue threads are just ascendant threads (without polar inversion): the red one originates
from f , that is not abstracted (f occurs free in t) and the blue one stops at the arrow
created by λx (it is neither in the target nor in the source of the type of λx.x(y z)y, so
that it does not have an ascendant nor a polar inverse).

11.1.2 Syntactic Polarity and Consumption

In this section, we present the notion of syntactic polarity and consumption. We will
often refer to Fig. 11.2, representing a R0 derivation typing the term t = (λxy.x y u)v w
with x, y /∈ fv(u).

Consumption is a phenomenon that occurs in app-rules. Let us recall:

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

Γ +i∈I ∆i ` t u : τ
app
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Let i0 ∈ I. We notice that the type σi0 occurs both in the left premise of the
rule and in a right premise (as a part of the type [σi]i∈I → τ of t and as a type of
the argument u), but it does not occur in the conclusion typing t u. In other words,
σi0 does have a descendant (the inverse notion of ascendant). We then say that
σi0 (and more generally, [σi]i∈I) has been consumed in the app-rule. Moreover, the
occurrence of σi0 that is in the leftmost premise can be identified with the one located
in an argument premise. We say that the former one is left-consumed and the latter
one is right-consumed. For instance, in Fig. 11.2:

• The multiset type [σ1, σ2] is consumed at the root of Π.

• The multiset type [[σ1, σ2] → [σ]τ ] is consumed at the root of (the subderivation
typing) (λxy.x y u)v.

• The multiset type [σ1, σ2] is consumed at the root of x y.

Equivalently, it will be convenient (Sec. 13.1.2) that [σi]i∈I (occurring as the source of the
arrow type [σi]i∈I → τ) is the left key of the app-rule above, whereas the occurrences
σi typing u (on the right-hand side) constitute the right key of this app-rule. Thus,
the left key corresponds to the type symbols that are left-consumed and the right-key
to the type symbols that are right-consumed.

Observation 11.2. In Observation 11.1, we remarked that the bottom end of an as-
cendant thread was located either in the root of the derivation or in the premise of
an app-rule: equivalently, in an ascendant thread, at most one occurrence can be con-
sumed. When this occurs, we also say that the ascendant thread has been consumed in
the app-rule consuming its bottom occurrence.

For instance, coming back to Fig. 11.1:

• The red ascendant thread is right-consumed in the app-rule typing the root of t
(pos. ε).

• The blue ascendant thread and the left purple ascendant threads are left-consumed
at the root of t.

• The left green ascendant thread is not consumed (its bottom occurrence is at the
root of t).

• The right green ascendant thread is right-consumed at position 12 ·O3 · 1 · 2 (cor-
responding to an app-rule typing y z).

• The right purple ascendant thread is left-consumed in the app-rule typing x(y z)y
(pos. 12 · 03)

Let us call the top ascendant of a type symbol the top occurrence of its ascendant
thread. The syntactic polarity of a type symbol s depends on the position of its top
ascendant: if the top ascendant of s is in an abs-rule (i.e. the type symbol is created by
an λx), the syntactic polarity of s is negative and if its top ascendant is in an ax-rule
(i.e. the type symbol directly ascends to a leaf of the derivation), then the syntactic
polarity of s is positive. Thus, all the occurrences of an ascendant thread have the same
syntactic polarity.

In Fig. 11.2, we have colored the parts of the types whose polarity is negative (resp.
positive, resp. unknown) in blue (resp. red, resp. purple). For instance, there is not
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Figure 11.2: Consumption and Syntactic Polarity (Informal)

enough information to know how to precisely color the types of the subterms u, v and
w (it depends on their parsing trees).

Remark 11.1. The syntactic polarity of a type symbol in a given type τ does not
depend on its position in τ , but on the position of τ inside the derivation. It actually
only depends on the parsing tree of the subject (hence the attribute syntactic).

Observation 11.3.

• Note that only the top occurrence of an ascendant thread can have a polar inverse.
Thus, a thread contains either one or two ascendant threads. For instance, in
Fig. 11.2, the red and the blue ascendant threads are actually full threads: the
red one is a positive ascendant thread whereas the blue one is a negative ascen-
dant thread. In contrast, the green thread and the purple one each contains two
ascendant threads: one is negative and the other is positive.

• By Observation 11.2, an ascendant thread is consumed at most once. Since a
full thread contains at most two ascendant threads, a full thread can be at most
consumed twice (once positively and once negatively).

For instance, in Fig. 11.1, the purple thread is consumed twice:

• It is left-consumed positively in the app-rule typing the root of x(y z)y (pos. 12·03).

• It it left-consumed negatively in the app-rule typing the root of t.
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11.1.3 Referents of Threads, Applicative Depth and Brotherhood

In Chapter 13, we will need to define the referent of a thread: when a thread θ has a
positive1 occurrence, then the referent of θ is the top positive occurrence of θ.

Remember that applicative depth (defined in Sec. 2.3.5) is the number of nestings
inside arguments of applications. For a type symbol s in a derivation Π, we define ad(s)
as the applicative depth of the rule in which ad(s) is located. Then:

Observation 11.4. We then note that all the occurrences of an ascendant thread have
the same applicative depth (since ascendance passes through abstractions or left-hand
sides of applications).

For instance, in Fig. 11.1, the applicative depth of all the occurrences of the purple,
the blue and the left green ascendant threads is equal to 0. The applicative depth of all
the occurrences of the red and the right green ascendant threads is equal to 1.

Observation 11.5. Moreover, if type symbol s2 is the polar inverse of symbol s1, then
symbol s2 is above symbol s1 in the derivation tree: indeed, s2 is located in some
ax-rule typing x and s1 in an abs-rule binding this occurrence of x. In particular, the
applicative depth of s2 is greater or equal than that of s1 i.e. if a thread has both positive
and negative occurrences, then the positive occurrences have greater applicative depth.

We then define the applicative depth of a thread θ as the maximal applicative
depth of an occurrence of θ. In particular, the applicative depth of θ is equal to the
applicative depth of the referent of θ. In Fig. 11.1, the applicative depth of the purple
thread is equal to 0 and those of the green and the red threads are equal to 1.

Observation 11.6. Assume that θL is left-consumed positively and θR is right-consumed
in the same app-rule. Then ad(θL) < ad(θR). Indeed, let us say that θL occurs at type
symbol sL in the left-premise of the app-rule and that θR occurs at type symbol sR in
some argument premise. Since, by hypothesis, sL is positive, ad(θL) = ad(sL) thanks to
Observations 11.4 and 11.5. Moreover, ad(sR) 6 ad(θR). Since ad(sR) = ad(sL) + 1, we
obtain ad(θL) 6 ad(θR).

Two type symbols are said to be brothers if

• they are nested in the same multiset types. . .

• . . . or they are the roots2 of some types located in two argument premises of a same
app-rule.

In Fig. 11.3 (we have removed some matterless parts of Fig. 11.1), the bottom purple
occurrence of o1 and the bottom green occurrence of o2 are brother symbols because
they are in the same multiset types. Likewise, the occurrences of o1 and o2 below v are
brother symbols. In the upper-right corner of the figure, two occurrences of o1 and o2

are brother symbols, because (1) they occur at the root of the type (2) they are located
in the two argument premises of the app-rule below x.

Let θ1 and θ2 be two threads. We then say that θ1 and θ2 are brother threads if
θ1 (resp. θ2) has an occurrence s1 (resp. s2) such that s1 and s2 are brother symbols.
Then, it is not difficult to see that::

1 Defining referents for threads that only have negative occurrences is a bit more complicated and
it will only be done in Chapter 13. We ignore this detail for now.

2Informally, the root of type o is o and the root of type [σi]i∈I → τ is this apparent occurrence of
→.
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Figure 11.3: Brother Threads

Observation 11.7.

• If θ1 and θ2 are brother threads, then actually, every occurrence of θ1 is brother
with an occurrence of θ2, because brotherhood between type symbols is stable
under ascendance and polar inversion.

• Thus, two brother threads have the same applicative depth.

• Moreover, two brother threads are consumed in the same places in the same way
(on the left/right-hand side, positively/negatively).

Observation 11.7 is illustrated with Fig. 11.3 in which two threads (a green one and
a purple one) are outlined: for the first point, each purple symbol is brother with a green
symbol. Moreover, the applicative depths of the two threads are equal to 1 (2nd point).
For the 3rd point:

• The two threads are left-consumed positively at the app-rule just below x.

• The two threads are both left-consumed negatively in the app-rule at the root of
the tree.

A last observation, on the “compatibility” of brotherhood with consumption:

Observation 11.8. If two brother threads are consumed in some app-rule, then there
are the counter-parts of two brother threads on the other side of the application.

In Fig. 11.3:

• W.r.t. the app-rule below x, the purple and the green threads are the left coun-
terparts of the two brother threads starting at the root y z.
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• W.r.t. the app-rule at the root, the purple and the green threads are th counter-
parts of the two brother threads whose bottom occurrences are indicated below
v.

11.2 Collapsing Redex Towers

For reasons that are difficult to understand3 now, we shall need to find a method to
eliminate any given negative thread that is left-consumed. This method, however, is
easy to present informally.

11.2.1 Negative Left-Consumption and Redex Towers

In this section, we discuss the relation between negative left-consumption and some kind
of terms to be called redex towers. Then, we explain how negative left-consumption can
be destroyed by collapsing a redex tower.

Let us call the stack st(τ) of a R0-type τ the list of the multiset types that occur
at top level in τ from the right to the left e.g., st([o] → o) = [o], st([σ] → [τ1, τ2] →
[o] → o) = [σ] · [τ1, τ2] · [o] · o and st(o) = ε. Inductively, st(o) = ε and st([σi]i∈I →
τ) = [σi]i∈I · st(τ).

An abs-rule stacks a new multiset type in the subject (t : τ gives λx.t : [σi]i∈I → τ
whereas an app-rule unstacks a multiset type (t : [σi]i∈I → τ gives t u : τ).

• A thread θ is negative when its top occurrence is in an abs-rule and more precisely,
in the source [σi]i∈I of the arrow type [σi]i∈I → τ of the subject λx.u of this app-
rule. Let us say that λx.u occurs as position bλx.

• This thread θ can be consumed only when [σi]i∈I is the first element of the stack
e.g., if t1 : [σi]i∈I → τ , an app-rule will give t1 t2 : τ , but if t1 : [σ′1, σ

′
2] →

[σi]i∈I → τ ([σi]i∈I is not the first element of the stack), then an app-rule will give
t1 t2 : [σi]i∈I → τ and [σi]i∈I has not been consumed.

• Thus, θ is consumed in an app-rule corresponding to position b@ only if

(c1) From b@ to bλx included, there is exactly the same number of abstractions
and of applications. . .

(c2) . . . and from bλ to any position b > b@ below bλ, there are more abstractions
than applications (if not, [σi]i∈I would be consumed above b@).

Those remarks are exemplified by Fig. 11.4, that represents a derivation Π typing a
term t = (λx1x2.(λx3x.r)u1)u2 u3 s. The variable x is typed twice in r (with types σ1

and σ2), so that the abs-rule typing λx.r “calls” for σ1 and σ2. We have colored the
negative threads called by λx in blue. Thus, their top occurrences are located at position
bλ = 13 ·02 ·1 ·02 rooting λx.u. Those negative threads are left-consumed in the app-rule
at position b@ = ε. Some multiset types without importance are denoted [∗]. Conditions
(c1) and (c2) are illustrated by the left-hand side of this figure.

Very interestingly for us, conditions (c1) and (c2) imply that the “spine” of appli-
cations and abstractions from b@ to bλ can be collapsed step by step (indeed, by (c2),
there is always an application below an abstraction i.e. there is at least one redex in the

3See for instance the interaction lemmas in Sec. 12.3.2 and the conclusion of this section, or
Sec. 13.4.4.
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Number of abs.

Number of app.

Rank of [σ1, σ2] Top occurrences of the
negative threads of

[σ1, σ2]

1 0 1

2 0 2

2 1 1

3 1 2

4 1 3

4 2 2

4 3 1

4 4 ∗

r

λx
[σ1, σ2]→ τ

λ3
[∗]→ [σ1, σ2]→ τ

u3

[σ1, σ2]→ τ
@

[∗]→ [σ1, σ2]→ τ
λ2

[∗]→ [∗]→ [σ1, σ2]→ τ
λ1

u1

[∗]→ [σ1, σ2]→ τ
@

u2

[σ1, σ2]→ τ
@

[σ1, σ2]

s

τ
@

Bottom occurrences of
the threads of [σ1, σ2]

This app-rule consumes
(the threads of) [σ1, σ2]

Right counterpart
of [σ1, σ2]

Figure 11.4: Negative Left-Consumption and Redex Towers (Informal)

“spine”). Thus, we say that there is a redex tower rooted at position b@, whose top
abstraction is at position bλ (i.e. it is λx). The function part of the redex tower is
the subterm rooted at position bλ ·0. The last argument is the argument of b@ i.e. the
subterm rooted at position b@ ·2. The height of the redex tower is |bλ|−|b@|. According
to the discussion above:

Observation 11.9.

• If the top occurrence of a negative thread is a position bλ and its bottom occurrence
is a position b@, then there is a redex tower rooted at b@ whose top abstraction is
at bλ.

• This negative thread can be destroyed by head reducing finitely many times the
redex tower, so that no application or abstraction of the “spine” of the tower redex
remains. We say then that the redex tower is collapsed.

The collapsing strategy on a redex tower consists in head reducing it until its
spine is destroyed. For instance, in Fig. 11.4, the term t is a height 7 redex tower whose
top abstraction is λx, whose function part is r and whose last argument is s. Fig. 11.5
presents the collapsing of the redex tower. The sizes of the negative threads (of [σ1, σ2])
decrease step by step till these threads are destroyed. We have set r1 = r[u1/x1], u1

3 =
u3[u1/x2], r2 = r2[u2/x2], u2

3 = u1
3[u2/x2], r3 = r2[u2

3/x3] and r4 = r3[s/x].
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r

λx
[σ1, σ2]→τ

λ3
[∗]→[σ1, σ2]→τ

u3

[σ1, σ2]→τ
@

[∗]→[σ1, σ2]→τ
λ2

[∗]→[∗]→[σ1, σ2]→τ
λ1

u1

[∗]→[σ1, σ2]→τ
@

u2

[σ1, σ2]→τ
@

[σ1, σ2]

s

τ
@

Initial Redex Tower

r1

λx
[σ1, σ2]→τ

λ3
[∗]→[σ1, σ2]→τ

u1
3

[σ1, σ2]→τ
@

[∗]→[σ1, σ2]→τ
λ2

u2

[σ1, σ2]→τ
@

s

τ
@

1st Head Reduct

r2

λx
[σ1, σ2]→τ

λ3
[∗]→[σ1, σ2]→τ

u2
3

@

s

τ
@

2nd Head Reduct

r3

λx
[σ1, σ2]→τ

s

τ
@

3rd Head Reduct

r4

4th Head Reduct

(the redex tower is
collapsed and the blue
threads are destroyed)

Figure 11.5: Collapsing a Redex Tower

11.2.2 Collapsing a Redex Tower Sequence

In this section, we make the following observation: if a negative thread occurs at the
root of a R0-typed term t, then this term is of order > 1 (i.e. t →∗h λx.t′0 for some
t′0. Why should we care about that? This argument using syntactic polarity is the key
point (embodied by Lemma 12.15) to prove Theorem 12.2 in Chapter 12, which states
that if a term t is typable with a type variable in system S (without approximability
condition), then t is a zero term. Indeed, syntactic polarity is an handleable feature inside
S-derivations whereas, once again, we cannot rely upon the possibility of stabilizing S-
typable terms.

Let t = (λx1x2.(λx3x4z.u)v3 v4)v1v2 be a typed term, that is represented4 in Fig. 11.6.
4We also write λ1, λ2, λ3, λ4 instead of λx1, λx2, λx3, λx4.
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u

λz
[σ1, σ2, σ1]→τ

λ4
[∗]→ [σ1, σ2, σ1]→τ

λ3
[∗]→ [∗]→ [σ1, σ2, σ1]→τ

v3

@
[∗]→ [σ1, σ2, σ1]→τ

v4

@
[σ1, σ2, σ1]→τ

λ2
[∗]→ [σ1, σ2, σ1]→τ

λ1
[∗]→ [∗]→ [σ1, σ2, σ1]→τ

v1

@
[∗]→ [σ1, σ2, σ1]→τ

v2

@
[σ1, σ2, σ1]→τ

λx4 is the top
abstraction
of the redex
tower rooted
at 02 · 12.

λx2 is the top
abstraction
of the redex
tower rooted
at ε.

λx4 is the top abstraction of the redex
tower sequence rooted at ε.

Figure 11.6: A Redex Tower Sequence whose Function Part is an Abstraction

Then t is a redex tower of height 3 and the function part of this redex tower (i.e.
(λx3x4z.u)v3 v4)) is also a redex tower of height 3: indeed, t|12·02 = (λx3x4z.u)v3 v4 and
the function part of this latter redex tower is λz.u. We say that t is a redex tower
sequence whose top abstraction is λx4, whose height is 7 (because the top abstraction
λx4 of the t.r.s. occurs at depth 7) and whose function part is λz.u

Following Obs. 11.3, such a sequence can be collapsed by collapsing the redex towers
one after another (this corresponds to a finite segment of the head reduction strategy).
Indeed, t →4

h λx.u
′ (with u′ = u[v4/x4][v3/x3][v2/x2][v1/x1]: this meta-expression cor-

responds to a reduction of the “spine” of t from top to bottom instead of bottom to
top).

Observation 11.10.

• In a derivation, a redex tower sequence and its function part have the same type,
with the same syntactic polarity e.g., the function part of the redex tower sequence
t of Fig. 11.6 and its function part λx.u have the same type [σ1, σ2, σ3]→τ : the
syntactic polarity of τ is unknown but the sources of the arrow type both occur
with a negative polarity in t and λx.u.

• If a typed term t has an arrow type whose source has a negative syntactic polarity,
then t is either an abstraction or a redex tower whose function part is an abstraction
(if not, the type of t would be only positive). In both cases, the order of t is > 1.
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(4) (8·o, 3·o′, 2·o)→o′

x

1

(9) o

x

2

(2) o′

x

3

(5) o

x

8
@

o′ 0
λx

(2·o′, 4·(8·o, 3·o′, 2·o)→o′, 5·o, 9·o)→o′

this one (at bip. (0 · 2, ε))

polar
inversion

this occurrence of o (at bip. (ε, 9)) comes from. . .

Figure 11.7: Threads and Tracking in Pex

11.3 Formalizing Ascendance and Polar Inversion in
System S

As observed in Sec. 4.1.1, and in particular in Remark 4.1, tracking is not possible in
system R0 since it could not be done in a deterministic way. This was made clear with
Fig. 4.1: it is impossible to know which occurrence of o is the polar inverse of which one
in the root of the typed term. Thus, the definitions of thread, ascendance and all the
associated notions in this chapter are informal and can work only when two equal types
do not occur in undistinguishable places. This is one of the drawbacks on non-rigid
labelled tree (see Example 2.1.1 in Sec. 2.1.1).

Of course, in system S, tracks give rise to bipositions: they ensure that there is no
ambiguity in pointing. We can thus formally define ascendance and polar inversion in a
derivation of system S.

Before formally defining ascendance and polar inversion for bipositions in system
S, we need to recall that, given a type T and a sequence type (Sk)k∈K , a position
c ∈ supp(T ) corresponds to the position 1 · c ∈ supp((Sk)k∈K → T ), since T occurs in
the target of this arrow. And if k ∈ K, the position c in Sk corresponds to position k · c
in (Sk)k∈K .

Example 11.1 (A Thread in Pex). In Fig. 11.7 (representing derivation Pex from Ex-
ample 10.2, p. 214), we have represented a thread in red and blue: the three occurrences
in red are positive (corresponding to bipositions (ε, 1), (0, 1) and (0 · 1, 1) from bottom
to top) and the one is negative (biposition (ε, 4 · 1)). Remember that a thread corre-
sponds to the moves of a same type symbol inside a derivation (here, o′) even if all the
occurrences of this type symbol are not necessarily in the thread.

11.3.1 Applications and Tracking in System S

Assume that, in a S-derivation P typing a term t:

• The judgment C ` u : (Sk)k∈K → T is the left premise of the judgment C ]
(]k∈KDk) ` u v : T .

• C ] (]k∈KDk) ` u v : T occurs at position a in P (thus, t(a) = @).

• c is a position in T (i.e. c ∈ supp(T )).
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Then:

• The judgment C ` u : (Sk)k∈K → T occurs at position a · 1.

• Position c ∈ supp(T ) corresponds to position 1 · c in supp((Sk)k∈K → T ).

Thus:

• T is the type of the judgment at position a and c is a position in T .

• (Sk)k∈K → T is the type of judgment at position a ·1 and 1 ·c is the corresponding
position in (Sk)k∈K → T .

So, the ascendant of biposition (a, c) is biposition (a · 1, 1 · c) i.e. we set, for all (a, c) ∈
bisupp(P ):

(a, c)→asc (a · 1, 1 · c) when t(a) = @

For instance, in Example 11.1, ∆(0) = @ and (0, ε)→asc (0 · 2, 1).

11.3.2 Abstractions and Tracking in System S

Assume that, in a S-derivation P typing a term t:

• The judgment C ` λx.u : (Sk)k∈K → T occurs at position a.

• c is a position in T .

Then:

• The judgment C;x : (Sk)k∈K ` u : T occurs at positions a · 0.

• Position c in T corresponds to position 1 · c in (Sk)k∈K → T .

Thus:

• T is the type of the judgment at position a · 0 and c is a position in T .

• (Sk)k∈K → T is the type of judgment at position a and 1 · c is the corresponding
position in (Sk)k∈K → T .

So, the ascendant of biposition (a, 1 · c) is biposition (a · 0, 1 · c) i.e. we set, for all
(a, c) ∈ N∗ × N∗ such that (a, 1 · c) ∈ bisupp(P ):

(a, 1 · c)→asc (a · 0, 1 · c) when t(a) = λx

For instance, in Example 11.1, ∆(ε) = λx and (ε, ε)→asc (0, 1).
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Polar Inversion (Formal) Considering the same judgment C ` λx.u : (Sk)k∈K → T
at position a, we now assume that k0 ∈ K and c ∈ supp(Sk0).
By typing constraints, there is an ax-rule at some position5a0 concluding with x :
(k0·Sk0 ` x : Sk0 (with the notation pos of Sec. 10.3.2, a0 = pos(a · 0, x, k0)). Then
position c ∈ Sk0 corresponds to position k0 · c in (Sk)k∈K → T . Thus:

• Sk0 is the type of the judgment at position a0 and c is a position in Sk0 .

• (Sk)k∈K → T is the type of judgment at position a and k0 · c is the corresponding
position in (Sk)k∈K → T .

So, the polar inverse of biposition (a, k0 · c) is biposition (a0, c) i.e. we set, for all
(a, c) ∈ N∗ and k > 2 such that (a, k · c) ∈ bisupp(P ):

(a, k · c)→pi (pos(a · 0, x, k), c) when t(a) = λx

For instance, in Example 11.1, ∆(ε) = λx, pos(0, x, 4) = 0·1, so that (ε, 4·1)→pi (0·1, 1).
Moreover, in Fig. 11.7, we have (ε, 9)→pi (0 · 2, ε) (this is represented by the dashed
arrow) since pos(0, x, 9) = 0 · 2 (the ax-rule typing x and using track 9 is at position
0 ·2). Note that, contrary to Fig. 4.1, the occurrences of o can be traced back to ax-rules.

Remark 11.2. Note that the ascendance relation→ascdepends on the structure of t and
the polar inversion relation on the structure of P (because polar inversion uses axiom
tracks).

5 In Example 11.1, the blue occurrence of o′ is at position 4 · 1 in
(2·o′, 4·(8·o, 3·o′, 2·o)→o′, 5·o, 9·o)→o′ i.e. k0 = 4 and c = 1. Then a0 = 0 · 1 since the ax-rule
typing x using axiom track k0 = 4 is at position 0 · 1.



Chapter 12

Complete Unsoundness: a
Linearization of the λ-Calculus

Let us remind (Sec. 2.2) that a term t is usually regarded as normalizing, when it can be
reduced to a normal form (NF) (i.e. a term that does not contain some kind of redexes),
meaning that the execution of t terminates. Usually, in a simple type system (e.g.,
Sec. 3.1.3), typability ensures strong normalization whereas in an ITS, it characterizes
normalization (Chapters 3 and 5).

There are many different sets of normalizing terms (weak-n, head-n, weak head-n),
but none of them contain any mute term (Sec. 2.3.2): we recall (Definition 2.7) that
a mute term is a “persisting" redex i.e. t is mute if any reduct of t can be reduced to a
redex. The reason why mute terms cannot be defined as normalizing is that no reduct
of such a term has a stable position 2.3.1. An example of mute term is Ω = ∆∆ where
∆ = λx.x x. Indeed, Ω →β Ω →β . . . (root reduction). Mute terms are regarded as the
“most undefined λ-terms" [12]. Therefore, if a type system is able to type a mute term,
we say here that it is (semantically) unsound.

Now, what happens if we use a coinductive grammar1 to generate types (roughly
meaning that types may be infinite)? It is not difficult to see why this yields an unsound
type system: we can build a type Ro satisfying Ro = Ro → o (where o is a type variable).
Thus, t u can be typed with o when t and u have been typed Ro. We can then type
Ω with o: if x is assigned Ro, then xx is typed o, so that ∆ is typed Ro → o i.e. Ro.
Thus, we can type Ω = ∆ ∆ with o. To avoid that, coinductive/recursive type or proof
systems are usually endowed with a validity criterion [7, 96] or a guard condition [84],
and we use such a criterion in Chapter 10 (see Sec. 10.1.3 and Definition 10.4)

Actually, coinduction allows us to build a reflexive type R i.e. the type R satisfies
R = R → R. With that type, in the coinductive versions of standard STS and irrele-
vant ITS, we can easily type every term (complete unsoundness). An ITS is relevant
(Sec. 3.2.1 and 3.3.5) when it forbids weakening: in a relevant ITS, if Γ ` t : A is deriv-
able, then Γ only assigns types to variables that occur freely in t e.g., λx.y will usually
have a type of the form { } → A, where { } is an empty type, because x does not occur
free in y and is thus untyped (see Example 3.2). The question of characterizing the set
of typable terms in a relevant coinductive intersection type systems (RICTS) turns out
to be far more difficult: typing rules constrain the empty type to occur in unforeseeable
places if we do not consider a NF. But here, we already know that typability does not
entail normalization or productivity (discussion p. IV). Thus, there may be a chance

1See Sec. 9.2.3, p. 192 for a short presentation of coinductive grammar.
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that some very erratic λ-terms could not be typable in an RCITS. In that case, RCITS
would be able to characterize a class of regular λ-terms, bigger than the known ones.
The contribution of this chapter is to prove that every term is typable in the standard
RCITS R that we will consider.

Types as Denotations

Let us discuss another use of typing with coinductive types. When an Intersection type
system both satisfy subject reduction and subject expansion (meaning that typing
is preserved under (anti)reduction, types may be seen as invariants of execution and
thus, as suitable denotations for λ-terms.

As invariants of execution, types may help us to discriminate between λ-terms: if t1
and t2 cannot be typed with the same types, then they are not β-equivalent. Let us give
a simple example with zero terms. A zero term is a λ-term that is not β-equivalent to
an abstraction (a term of the form λx.u). For instance, Ω is a zero term (it is equal to its
unique reduct). In the case of finite types, by typing constraints and subject reduction,
a typable non-zero term will necessarily be typed with an arrow type. Thus, if a term
is typable with a type variable (not an arrow), we can assert that it is a zero term.

Completely unsound type systems raise the question of whether they can discriminate
pure terms according to their order (the order of t is the supremal n ∈ N ∪ {∞} s.t.
t →∗β λx1 . . . λxn.t

′, Definition 2.8, p. 66). We hinted above at the fact that the zero
term Ω is typable with a type variable o when using coinductive types (see also the end
of Appendix A.1). More generally, it is a question of interest to know whether some
completely unsound ITS is able to type any zero term with a type variable. Such ITS
would be thus order-discriminating, as system R0 is , meaning that the set of types
inhabited by two terms of distinct order are distinct (Sec. 3.4.5).

Contributions

The goal of this chapter is to prove that system R, the coinductive version2 of system
R0 (Sec. 3.2.4), although seemingly more restrictive than other type systems, is also able
to type any λ-term t, and that it is also order-discriminating. We present a proof for
the set of finite λ-terms, but this can be adapted for the infinitary λ-calculus Λ∞ ( [57]
and Sec. 9) when derivations are coinductively defined.

Let us discuss informally a few difficulties of this problem: naively, when xu occurs
in t, we would like to assign to x a type of the form A → B, where A is the type
of u, and proceed by induction. However, x may be substituted in the course of a
reduction sequence, and so, typing constraints on x are not easily readable. For instance,
if t = (λx.x u)K with K = λxy.x (so that t → K u = t′ i.e. x is replaced by K), then
not only the type of x must be of the form A→ B where A is the type of u, but also of
the form A′ → B′ → C ′ because K starts with two abstractions (since x can be replaced
with K).

In the finite case, in the purpose of proving that the terms of a given set (e.g., the set
of HN terms) are typable, we escape this problem by typing normal forms (e.g., HNF)
and then proceeding by expansion. This relies upon the productivity of the involved
type system. For instance, see Corollary 3.1 and the proof of Proposition 3.10 in the

2See Sec. 13.1.3 for a formal definition of system R, although this is not needed to understand the
system.
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case of HN in system R0, and the proofs of Proposition 10.6 and Theorem 10.4 in the
case of infinitary weak normalization.

This method also works for order discrimination: in the purpose of proving that a
typable zero term is typable with a type variable, we first type the zero head normal
forms with a type variable o (see e.g., Lemma 3.5 and Fig. 3.4, p. 98), then we proceed
by expansion. This was also discussed in Sec. 3.4.5.

But, as noted above and in the discussion p. 236), with a coinductive type grammar,
no form of normalization/productivity is ensured by typability. We must then proceed
differently. We then implement the method suggested on p. 236:

• Instead of proving the complete unsoundness of system R, we prove that of sys-
tem S (Sec. 10.2) because every S-derivation collapses on a derivation. Thus, the
complete unsoundness of S entails that of D , by collapsing sequences (Proposi-
tion 12.2). Why proceed with system S instead of R? Because the rigid system S

features pointers called bipositions (Sec. 10.3.1) and the non-rigid system R does
not (Sec. 10.3.4).

• In system S, thanks to tracks and rigidity, we can characterize (Sec. 12.2) the pos-
sible forms of S-derivations (notion of bisupport candidate). Roughly speaking,
those forms are sets of (bi)positions that must be stable under some relations. This
intuition is first explained in a simpler case in Sec. 12.2.1. It is easy to see that
the methodology, deeply relying upon pointers, would be impossible to apply in a
non-rigid type system.

• Due to relevance, some (bi)positions must be empty. We ensure that if a root
position cannot be reached by a constant representing emptiness under the stability
relations above, then every term is typable (Corollary 12.1).

• To prove the complete unsoundness of S and thus that of R, we must reason about
the potential proofs of emptiness of the root (such a proof is called a nihilating
chain). Assuming ad absurdum that such a proof exists (Sec. 12.3), we reach a
contradiction (see below), allowing us to conclude (Theorem 12.1).

• We explain why this result provides us with a new non-sensible relational model
for pure λ-calculus such that two terms with different orders will have different
denotations (Theorem 12.2).

The main technical difficulties lie in the fourth point: as suggested in the presenta-
tion p. 235, emptiness propagates in a non-controllable/describable way through redexes
(Sec. 12.3.2). We resort then to a finite reduction strategy (the collapsing strategy,
Sec. 12.4.2) normalizing potential proofs of emptiness.

Normal nihilating chains (proofs of emptiness) are proved not to exist (chains become
handleable under this assumption i.e. when they do not interact with redexes). Since
the collapsing strategy could normalize any nihilating chain (if one existed), we conclude
that chains do not exist and thus, that every term is typable.

Remark 12.1.

• The second theorem has also an interesting consequence on system Dw (whose com-
plete unsoundness is almost obvious, Sec. 12.1.2), which is the coinductive version
of the irrelevant and idempotent intersection system D0,w (Sec. 3.3.5). It is easy
to prove that every term is Dw-typable, but not that Dw is order discriminating.



256
CHAPTER 12. COMPLETE UNSOUNDNESS: A LINEARIZATION OF THE

λ-CALCULUS

• All the techniques and results in this chapter hold for the infinitary λ-calculus
Λ∞ (Sec. 9.3.1), but to lighten the proofs and statements, we only consider finite
λ-terms.

12.1 Coinductive Type Systems

In this chapter, we explain why complete unsoundness is pretty straightforward to prove
in type systems that feature a coinductive grammar, provided they allow weakening i.e.
they are irrelevant.

12.1.1 A Coinductive Simple Type System

We give here a first proof of complete unsoundness for Curry, the version of Curry’s
system Curry0 (Sec. 3.1.3) with a coinductive type grammar, that we present now. We
consider the set of simple types generated by the following coinductive grammar:

A,B ::= o ∈ O ‖ A→ B

As in the inductive case, the context (metavariables Γ,∆) is a partial function from the
set of variables V to the set of simple types. If for all x ∈ dom(Γ)∩dom(∆), Γ(x) = ∆(x),
we write Γ :: ∆ for the context of domain dom(Γ) ∪ dom(∆) extending Γ and ∆. If
dom(Γ) ∩ dom(∆) = { }, we may write Γ; ∆ instead of Γ :: ∆.

The set of typing derivations of Curry is defined inductively by the following rules:

Γ;x : A ` x : A
ax

Γ;x : A ` t : B

Γ ` λx.t : A→ B
abs

Γ ` t : A→ B ∆ ` u : A

Γ :: ∆ ` t u : B
app

Notice that the app-rule can also be applied only when Γ :: ∆ is defined. The regu-
lar, inductive version of this system (i.e. system Curry0)à is known to ensure strong
normalization (Theorem 3.1). In sharp contrast:

Proposition 12.1. System Curry is completely unsound: if t is a term, then there
exists a Curry-derivation typing t.

Proof. Let R be the simple type coinductively defined by R = R→ R. Then a straight-
forward induction on the structure of t shows that Γ ` t : R is derivable for any context
Γ s.t. fv(t) ⊆ dom(Γ) and Γ(x) = R for all x ∈ dom(Γ) (see below).

x : R ` x : R

Γ;x : R ` t : R

Γ ` λx.t : R

Γ ` t : R ∆ ` u : R

Γ :: ∆ ` t u : R

12.1.2 Complete Unsoundness and Relevance

Let us now understand the difference between relevant and irrelevant intersection type
systems makes it very easy to prove complete unsoundness in the latter case whereas
there is no obvious method in the former one.
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We present the coinductive versions of system D0 and D0,w (Sec. 3.2.3 and 3.3.5).
The types of system D and system Dw are defined coinductively :

B,Ai ::= o ‖ {Ai}i∈I → B

We also call {Ai}i∈I a set type and it is assumed that I is countable. As in Sec. 3.2.3,
the set types represent intersection and the countable intersection operator ∧ is the set-
theoretic union: ∧j∈J{Aji}i∈I(j) := ∪j∈J{Aji}i∈I(j). Note that, in contrast, to systems
D0 and D0,w, set types can have an infinite cardinality in system R.

The definitions of contexts and associated notation etc are the same as in the induc-
tive case (we remind that context are total functions). The typing derivations of D and
Dw are defined inductively by the same rules as systems D0 and D0,w except that they
involve coinductive types. Typing derivations of D and Dw may be infinite because an
app-rule may have an infinite number of arguments, although they are of a finite height.
Implicitly, in the abs-rule, if x is not in the context domain, then λx.t is typed with
{ } → B, as in system D0 (Example 3.2, p. 85). Likewise, we define R, the version of R0

(Sec. 3.2.4) featuring a coinductive type grammar (also allowing multisets of countable
cardinality). Note that systems R and R0,w satisfy subject reduction and expansion.

As systems D0 and R0, systems D and R are relevant because no weakening is
allowed: roughly speaking, if Γ ` t : B is derivable and x ∈ fv(t), then Γ(x) is the
intersection of types of the free occurrences of x seen as a subterm of t i.e., as already
observed (Sec. 3.2.1), relevance ensures some resource-awareness. Recall from Exam-
ples 3.2 and 3.3, p. 85 and 87, that the type of λx.x (resp. λy.x) must be of the form
{B} → B in D0 and [τ ]→ τ in R0 (resp. { } → B in D0 and [ ]→ [τ ] in R0): there are
no other ways to type them in systems D and R, whereas, in system Dw, λx.x can be
typed with e.g., {A,B,C} → B and λy.x with e.g., {B} → B (Example 3.4, p. 95).

System Dw is irrelevant, so that its complete unsoundness is easy to prove: the proof
for the simple type system above can be straightforwardly adapted for Dw, so that every
term is easily typable in Dw, this time with R coinductively defined by R = {R} → R
in D .

But the induction fails in the abs-case with D or R: by relevance, when x /∈ fv(t),
we have λx.t : { } → R (resp. λx.t : [ ] → R) and not λx.t : {R} → R (i.e. R) (resp.
λx.t : [R]ω → R). Likewise, in Rw, the irrelevant version of R, the reflexive type R
would be defined by R = [R]ω → R. But the induction would also fail in the abs-case
e.g., when x /∈ fv(t), the type of λx.t would be [ ]→ R, which is distinct from R.

Thus, there is not easy argument to ensuring complete unsoundness in D or D . By
lack of productivity (discussion p. 236), since Ω is typable both in D and R, the stan-
dard methods of intersection types will not work. But we will only study the complete
unsoundness of system R, since, as its finite counterpart D0, system D does not satisfy
subject expansion (Sec. 3.3.4).

Remark 12.2. Systems D , Dw and R should be more rigorously defined (although this
does not much matter in this chapter): this is done only for system R in Sec. 13.1.3.

From now on, we prove that every term is typable in the relevant intersection type
system R, satisfying both subject reduction and subject expansion.

12.1.3 Typing some Notable Terms in System R

We use system R to type a few terms from Sec. 2.1.4 satisfying fixpoint equations. Some
of them are not head normalizing. Remember that ∆f = λx.f(xx), Y = λf.∆f∆f (Y
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is Curry fixpoint combinator). Moreover, if I = λx.x and K = λxy.x, then Y I →
Ω (satisfying Ω →β Ω), Y f → Yf := ∆f ∆f (satisfying Yf →β f(Yf )) and YK →β
Yλ := (λx.λy.xx)λx.λy.xx (satisfying Yλ →β λy.Yλ). Let us recall Definition 2.8 from
Sec. 2.3.2:

Definition. Let t be a λ-term. The order of t is sup{n ∈ N | ∃x1, . . . , xn, u s.t. t →∗β
λx1 . . . λxn.u}.

Iterating reduction on Yf and Yλ infinitely many times, we see that Yf (resp. Yλ)
strongly converges to the infinitary term fω := f(f(...)) (resp. λy.λy....) w.r.t. Λ∞

(Sec. 9.3.1). Thus, Ω and Yf are both zero terms (terms of order 0) and Yλ a term of
infinite order, as noted in Sec. 2.3.2. The term Ω is mute and Yf is a hereditary head
normalizing term (Definition 9.5, p. 200).

By Definition 3.3, the order of a type τ is the number of top-level arrows in τ . When
R is the reflexive type satisfying R = [R]ω → R, by unfolding the right occurrence of R
n times, we have R = [R]ω → . . . [R]ω︸ ︷︷ ︸

n

→ R for any n, so R has an infinite order.

Because of rule abs and subject reduction (that is satisfied in R), a term of order
n may only be typed with a type of order > n, as explained in Sec. 3.4.5. Since the
reflexive type is of infinite order, it does not give any information about the order of
the term it types. However, some R-derivations can capture more precisely the order of
terms. For all R-type τ , we define coinductively Rτ by Rτ = [Rτ ]ω → τ . For instance,
we consider the following typing of Y (omitting left-hand sides of ax-rules):

Π∆f
=

f : [τ ]→ τ

x : Rτ
(
x : Rτ

)
ω

x : [Rτ ]ω ` xx : τ

f : [[τ ]→ τ ];x : [Rτ ]ω ` f(xx) : τ

f : [[τ ]→ τ ] ` ∆f : Rτ (= [Rτ ]ω → τ)

ΠY =

Π∆f
� f : [[τ ]→ τ ] ` ∆f : [Rτ ]ω → τ

(
Π∆f

� f : [[τ ]→ τ ] ` ∆f : Rτ
)
ω

f : [[τ ]→ τ ]ω ` ∆f ∆f : τ

` Y : [[τ ]→ τ ]ω → τ

Thus, in system R, Y is typable with [[τ ] → τ ]ω → τ for any type τ . Notice that we
also have derived f : [[τ ]→ τ ]ω ` Yf : τ for any R-type τ .

Using suitable instances or variants of ΠY, we can build ΠΩ� ` Ω : τ (for any τ) and
Πλ� ` Yλ : [ ]→ [ ]→ . . ..

By instantiating τ with a type variable o, we get ` Ω : o and ` Yf : o. Thus, the zero
terms Ω and Yf are typed3 with types of order 0 whereas Yλ (whose order is infinite) is
typed with a type of infinite order, as it was constrained to be.

We will generalize this result (not only for terms built from fixpoint combinators like
Ω or λx.Ω) and show that, for all pure terms t of order n, there is a R-derivation (or a
Dw-derivation) typing t with a type of order n (Theorem 12.2).

12.1.4 Type System S (Sequential Intersection)

In this section, we explain why the complete unsoundness of system R can be proved by
using system S and why it is actually a better idea to proceed with this latter system.

3 Note that Yf → f(Yf ) (Yf is HN) and Yf is typable with o in the finite system R0.
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Indeed, we want to have a good control on where types are created and how argument
branches occur in an app-rule. For that, we use system S (Sec. 10.2), in which intersection
is represented by means of sequences and bipositions provide pointers inside derivations.
See Sec. 10.3.1 and 10.3.2 for examples and useful associated notions, including axiom
tracks and the notation trP (a)

In this chapter, we only need to consider right bipositions (not the left ones): by
relevance, every context in a S-derivation P is determined by supp(P ), the types given
in ax-rules and the ax-tracks that those ax-rules use. Indeed, since t is finite, we have
CP (a)(x) = ]a0∈AxPa (x)(tr

P (a0)·TP (a0)). This indicates that in a S-derivation, contexts
and types can be computed from the support supp(P ) and the types created in axiom
rules. We then change the denotation of notation bisupp(P ):

Notation 12.1. Let P be a S-derivation. In this chapter, we denote by bisupp(P ) the
set of right bipositions in P .

In this chapter, we just say “biposition” instead of “right biposition”. and some new
notations are useful to handle S-derivations: assume that P types t. We set A = supp(P )
and B = bisupp(P ). If x ∈ V , a ∈ A, we set AxPa (x) = {a0 ∈ A | a 6 a0, t(a) =
x,@a′0, a 6 a′0 6 a0, t(a

′
0) = λx} (occurrences of x in P above a, that are not bound

w.r.t. a). To adapt the results of this chapter to Λ∞, we just need to consider quantitative
derivations (Sec. 10.3.2) (so that left bipositions are not needed either) and we prove that
every term t ∈ Λ∞ is typable by means of a quantitative derivation.

4

We define coinductively a collapse π from the set of types of S to the set of types
of R by π(o) = o and π((Sk)k∈K → T ) = [π(Sk)]k∈K → π(T ). This collapse can be
straightforwardly extended to a collapse from the set of derivations of S to the set of
derivations of R, noticing that (Sk)k∈K = (S′k)k∈K′ implies π((Sk)k∈K) = π((S′k)k∈K′).
For instance, the S-derivation Pex (Example 10.2, p. 214) collapses on the R-derivation
Πex p. 105, as already observed, where:

Pex =

x : (4 · (8 · o, 3 · o′, 2 · o)→ o′) x : (9 · o) [2] x : (2 · o′) [3] x : (5 · o) [8]

x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o) ` xx : o′

` λx.xx : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

Πex =

x : [o, o′, o]→ o′ x : [o] x : [o′] x : [o]

x : [o′, [o, o′, o]→ o′, o, o] ` xx : o′

` λx.xx : [o′, [o, o′, o]→ o′, o, o]→ o′

As a consequence of the collapse:

Proposition 12.2. If a term t is S-typable, then it is R-typable.

Thus, if every term is typable in S (the proof of which takes the remainder of this chap-
ter), then every term is typable in R.

4 To adapt the results of this chapter to Λ∞, we just need to consider quantitative derivations
(Sec. 10.3.2) (so that left bipositions are not needed either) and we prove that every term t ∈ Λ∞ is
typable by means of a quantitative derivation.
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In Chapter 10, we restricted the set of S-types (i.e. we replaced Typ111 by Typ001 in
Sec. 10.2.2) by allowing only finite sequences of arrows, since the normal forms of Λ001

feature finite series of abstractions. In this chapter, we consider the set Typ111 with no
restriction, since we need to type terms whose order is infinite (e.g., Yλ in Sec. 12.1.3).

12.2 Bisupport Candidates

In this section, we characterize, for a given term t, the bisupport candidate i.e. the
(potential) forms of a derivation typing t. By “form”, we intuitively mean a set of
unlabelled positions (that must be stable under some suitable relations). We make
explicit that idea by studying first the possible forms of a S-type in Sec. 12.2.1. The
notion of unlabelled position has a meaning only because tracks of S allow us to define
suitable pointers. This would be impossible in system R.

12.2.1 A Toy Example: Support Candidates for Types

In this section, we explain how the notion of “form” of a support can be formalized by
giving a characterization of the supports of S-types in terms of stability conditions.

The definition of a particular S-type T can be understood as a two-step process:
first, we choose the support C := supp(T ), next, we choose the type labels T (c) (in the
signature O ∪ {→}) given to the positions c ∈ C. However, not all the subsets C ⊆ N∗
are fit to be the support of a type, and not all the possible decorations of a suitable set
C yield a correct type.

For instance, let us consider the two sets of positions C1 and C2 below. Do they
define the supports of some types T1 and T2?

14

138

C1 = {ε, 1, 4, 4·1, 4·3, 4·8}

14

3

C2 = {ε, 1, 4, 4·3}

As it turns out, C1 is the support of a type e.g., (4 · (8 · o3, 3 · o1) → o2) → o1 (figure
below). By contrast, no type T may satisfy supp(T ) = C2, because a non-terminal
node of a type (necessarily an arrow) should have a child on track 1 (by convention, its
right-hand side), but 4 ∈ C2 and 4 · 1 /∈ C2.

→ 1

o1

4

→ 1

o2

3

o1o3

8

Type (4·(8·o3, 3·o1)→ o2)→ o1

o
1

o1

4

→ 1

→o3

3

o3

8

Wrong decoration

This motivates the following notion: a support candidate (s-candidate) of type is
a subset C ⊆ N∗ such that there exists a type T satisfying C = supp(T ). Given an
s-candidate C, it is easy to define a correct type whose support is C:

• The non-terminal nodes of C should be decorated with arrows and . . .

• . . . the leaves of C should be decorated with type variables.
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So was done for the decoration on the left-hand side, representing the type (4 · (8 · o3, 3 ·
o1)→ o2)→ o1. As a counterexample, the decoration on the right-hand side is incorrect:
ε (non-terminal) is labelled with o ∈ O and 4 · 1 (leaf) with →.

The observations about C1 and C2 above suggest considering two relations→t1 and
→t2 defined by:

• For all c ∈ N∗, k ∈ N, c · k→t1 c.

• For all c ∈ N∗, k > 2, c · k→t2 c · 1.

A set of positions C is closed under→t1 (i.e. c1 ∈ C and c1→t1 c2 implies c2 ∈ C) iff it
is a tree. Stability under condition→t2 means that if a node c is not terminal, then it
has a child on track 1. We have:

Lemma 12.1. Let C ⊆ N∗. Then C is a type support candidate (i.e. there exists a
type T s.t. C = supp(T )) iff C is non-empty and is closed under→t1 and→t2.

Thus, relations→t1 and→t2 are enough to characterize s-candidates. We call them
stability relations e.g., C1 is stable under→t1 and→t2, whereas 4 ·3 ∈ C2, 4 ·3→t2 4 ·1
but 4 · 1 /∈ C2, so that C2 is not stable under→t2 (this example means that 4 has no
child on track 1 whereas it is not terminal and thus cannot be decorated by an arrow
nor by a type variable).

When c1→t1 c2 or c1→t2 c2, we say that c1 subjugates c2, because c1 demands c2

to ensure a correct formation of the support.

12.2.2 Toward the Characterization of Bisupport Candidates

In Sec. 12.2.2, we give some basic concepts and notations in the purpose of characterizing
the “form” of S-derivations, as suggested in the introduction of Sec. 12.2,

The form of a derivation typing a term t depends on the structure of t, but also on
a suitable choice of axiom tracks (Sec. 10.2) in the ax-rules. We explain here how it is
done, as well as how we intend to capture relevance-related emptiness.

We want to prove that every term t is S-typable i.e. typable by a derivation P
of system S. By analogy with the notion of candidate supports for types (previous
section), the idea is to characterize the bisupport candidate (b-candidate) for the
derivations typing a given term t i.e. sets B ⊆ N∗ × N∗ s.t. there exists a derivation
P typing t satisfying B = bisupp(P ) (such a characterization is eventually given by
Proposition 12.3).

This characterization requires that one captures first the way emptiness is constrained
to occur in relevant derivations. Then, we will have to ensure that emptiness does not
compromise typability i.e. emptiness must not propagate everywhere in the derivations
typing a given term t. If it did, a derivation typing t would be empty (i.e. t would not
be typable) and we want to show that this does not happen, in the purpose of proving
that every term is typable in S.

Before going on with the characterization of b-candidates, we recall that, in the pur-
pose of defining a derivation typing a term t, every time we use an axiom rule, we must
choose an axiom track such that no conflict occurs (axiom tracks may be “called” by abs-
rule). For that, it is enough to arbitrarily fix an injective function b·c : N∗ → N \ {0, 1},
whose inverse function is written pos (injectivity ensures that there is no track conflict).
Thus, let t be a term: we want to prove that there exists an S-derivation P typing t s.t., if
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a ∈ supp(P ) points to an axiom rule, then trP (a) = bac (thus, the value of bac matters
only for axioms). Actually, the notion of bisupport candidate (for a derivation typing t)
depends on b·c: we define a b·c-bisupport candidate as a ∅ 6= B ⊆ N∗×N∗ such that there
exists a b·c-derivation P typing t s.t. B = bisupp(P ) (a b·c-derivation is a derivation P
s.t. trP (a) = bac for all axiom rule a of P ). No matter b·c, we will show that there exists
a b·c-bisupport candidate and thus, a b·c-derivation typing t (implying that t is typable).

We notice now that not every position a ∈ N∗ (or biposition (a, c) ∈ N∗ × N∗)
may be in a derivation typing a given term t. For instance, we have supp(λx.x x) =
{ε, 0, 0 · 1, 0 · 2}, so, if P types λx.x x, then a ∈ supp(P ) implies a = ε, 0, 0 · 1 or 0 · 2
i.e. supp(P ) ⊆ {ε, 0, 0 · 1, 0 · 2}. For instance, supp(Pex) = {ε, 0, 0 · 1, 0 · 2, 0 · 3, 0 · 8}
(Sec. 10.2) .

Let t be a term. More generally, we set At = {a ∈ N∗ | a ∈ supp(t)} and Bt =
(At×N∗)∪{p⊥} (where p⊥ is an “empty biposition” constant), so that, if P is a derivation
typing t, then a position (resp. a biposition) of P must be in At (resp. in Bt \ {p⊥}) i.e.
supp(t) ⊆ At and bisupp(P ) ⊂ Bt \ {p⊥}. We will later define a relation→•, using the
“constant of emptiness” p⊥, such that p→• p⊥ indicates that p cannot be in supp(P ).
Thus, we will describe how emptiness propagates inside the bisupport candidates.

Not every a ∈ At may be in a derivation P typing t e.g., 2 ∈ supp(u) with
u = (λx.y)z, but if P types u, then subterm z is left untyped – λx.y must be typed with
( )→ T (relevance) – and 2 cannot be in supp(P ).

We drop P and t from most notations, in which they are implicit now. We set
Aa(x) = {a0 ∈ A | a 6 a0, t(a0) = x, @a′0, a 6 a′0 < a0, t(a

′
0) = λx}. Thus, if P is

a b·c-derivation, then, with the notation AxPa from Sec. 12.1.4, AxPa (x) ⊂ Aa(x) for all
a ∈ supp(P ), x ∈ V and Aa(x) may be considered as the set of position candidates for
ax-rules typing the free occurrences of x above a.

If t(a) = λx, we set Trλ(a) = {ba0c | a0 ∈ Aa·0(x)} (see previous section for the
choice of b·c): Trλ(a) is the set of axiom tracks dedicated to x above the abs-rule at
position a.

Notice the following fact while assuming:

• t|b = λx.u (with b ∈ supp(t)) and t(b′) 6= x with b′ ∈ supp(t), b′ > b.

• P is a b·c-derivation typing t.

For any a ∈ supp(P ) s.t. a = b (and thus, t|a = λx.u), t|a will be typed with a type of
the form (Sk)k∈K → T , but K may not contain any ba0c when a0 > b′ since no such a0

(whose dedicated axiom track is ba0c) is the position of an ax-rule typing x. In short,
when a variable x is not at some places in t, we already now that emptiness should
“occur" at some particular tracks if we perform an abstraction λx. This give us more
fine-grained information about occurrences of emptiness in a derivation typing t than
the case where λx.u : ( ) → T because x does not occur free in u: system S should be
able to provide us information about emptiness track by track.

12.2.3 Tracking a Type in a Derivation

Let us now try to express the stability conditions (as in Sec. 12.2.1) that a b·c-bisupport
candidate for a derivation typing t should satisfy. We will need to ensure six points:
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• Identification of the components (i.e. the bipositions) of a same type T in a deriva-
tion from bottom to top (see Fig. 12.1): relation of ascendance→asc.

• Identification of the components of type given in an ax-rule to a variable x (S5

in Fig. 12.1) and its occurrence called by the abstraction λx: relation of polar
inversion→pi.

• Identification of the matching components of the types of u and v in the app-rule
typing u v (types Sk in the app-rule of Fig. 12.1): relation of consumption →.

• Correct type formation, as in Sec. 12.2.1: extensions of relations→t1 and→t2.

• The type of a subterm of the form λx.u is an arrow type (and not a type variable):
relation→abs.

• For technical reasons, we also need a “big-step" stability condition, meaning that
the support of a derivation is a tree: relation→down.

The heuristics of ascendance, consumption, polar inversion (and threads) are informally
presented in Sec. 11.1.

We consider a fixed term t and an injection b·c : N∗ → N \ {0, 1}. We formalize
these ideas in the following sections. For the discussion below, let us recall again that,
given a type T and a sequence type (Sk)k∈K , a position c ∈ supp(T ) corresponds to
the position 1 · c ∈ supp((Sk)k∈K → T ), since T occurs in this arrow type right-hand
side. And if k ∈ K, position c in Sk corresponds to position k · c in (Sk)k∈K . In
Fig. 12.1, we indicate once more the position of a judgment between angle brackets e.g.,
C;x : (Sk)k∈K ` t : T 〈a · 0〉 means that judgment C;x : (Sk)k∈K ` t : T is at position a · 0.

Abstraction rule
ax

x : (5·S5) ` x : S5 〈pos(5)〉

C; x : (Sk)k∈K ` t : T 〈a·0〉
(with 5 ∈ K)abs

C ` λx.t : (Sk)k∈K → T 〈a〉

Application rule

C ` t : (Sk)k∈K→T 〈a·1〉 (Dk ` u : Sk 〈a·k〉)k∈K app
C ] (]k∈KDk) ` tu : T 〈a〉

Figure 12.1: Ascendance, Polar Inversion and Consumption

• Assume that, in a b·c-derivation P , we find an abs-rule at position a as in the figure
above: the judgment C;x : (Sk)k∈K ` t : T (pos. a · 0) yields C ` λx.t : (Sk)k∈K → T
below (pos. a). The occurrence of T in the conclusion of the rule is intuitively the
same as that in its premise: we say the former is the ascendant of the latter, since it
occurs above in the typing derivation. Likewise, in the app-rule, the occurrence of T in
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C ]k∈KDk ` t u : T stems from that of premise C ` t : (Sk)k∈K → T : the first occurrence
of T is also the ascendant of T in the conclusion of the rule.

Using the correspondence between c and 1 · c above, we defined in Sec. 11.3 the
relation of ascendance for all (a, c) ∈ Bt by:

• (a, c)→asc (a · 1, 1 · c) if t(a) = @.

• (a, 1 · c)→asc (a · 0, c) if t(a) = λx.

Relation p1→ascp2 means that p2 is the ascendant of p1 i.e. p1 and p2 are corresponding
pointers to the same type symbol in the conclusion and the (left) premise of the rule at
some position a. For instance (cf. p. 259), in Pex, (ε, ε)→asc (0, 1)→asc (0 · 1, ε): those
3 bipositions point to type symbol o′, from the judgment concluding Pex to the axiom
rule where it was created (position 0 ·1). The three occurrences of this ascendant thread
are represented in red in Fig. 12.2 (note that two axiom rules of Pex could not fit in the
figure).

x : (4·(8·o, 3·o′, 2·o)→ o′) ` x : (8·o, 3·o′, 2·o)→ o′ x : (9·o) ` x :o [2] · · · · · · · · ·
x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o) ` xx : o′

` λx.xx : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

Figure 12.2: A Thread in Pex

• Let us have another look at the abs-rule at position a (see Fig. 12.1). Assume 5 ∈ K.
Then the occurrence of S5 in (Sk)k∈K → T stems from an axiom rule concluding with
x : (5 · S5) ` x : S5 : we say that the occurrence S5 (in (Sk)k∈K → T ) is the polar
inverse of the occurrence of S5 in the axiom rule. Assume on the contrary that 8 /∈ K.
So S8 does not exist and there is no axiom rule typing x and using axiom track 8 above
a. Morally, S8 is empty.

We recall that, if t(a) = λx, then K ⊂ Trλ(a) and if k ∈ K (e.g., k = 5 above), the
axiom rule typing x above a and using axiom track k will be at position pos(k). Thus,
the relation of polar inversion for bipositions is defined for all (a, c) ∈ Bt and x ∈ V s.t.
t(a) = λx by:

• (a, k · c)→pi (pos(k), c) if k ∈ Trλ(a) (first case)

If k /∈ Trλ(a) (e.g., k = 8 above), then k /∈ K and Sk is morally empty (it does not
exist), for that we set, for all (a, c) ∈ Bt, k > and x ∈ V s.t. t(a) = λx:

• (a, k · c)→pi p⊥ if k /∈ Trλ(a) (second case)

When p2 6= p⊥, relation p1→pi p2 means that p2 is the (positive) polar inverse of p1.
For the first case, position k · c ∈ (Sk)k∈K → T corresponds indeed to position c ∈ Sk.
For the second case (when k /∈ Trλ(a)), we have seen that Sk must be empty, so (a, k · c)
cannot be in a b·c-derivation, so we relate (a, k · c) to the constant p⊥, meaning “empty
biposition”. The relation→pi depends both on t and on the choice of b·c.

For instance, in Pex (with a suitable choice of b·c), we have (ε, 9)→pi (0·2, ε) (because
the ax-rule typing x and using track 9 is at position 0 · 2): indeed, (ε, 9) and (0 · 2, ε)
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both point to the type symbol o. Likewise, (ε, 4 · 1)→pi (0 · 1, 1) and in Fig. 12.2, the
occurrence of o′ at biposition (ε, 9) is colored in blue whereas that at (0 · 1, 1) is the
top occurrence of o colored in red. Likewise, (ε, 4)→pi (0 · 1, ε) (they both point to
the type symbol →) and (ε, 4 · 3)→pi (0 · 1, 3) (they both point to the type symbol o′).
Since 3 and 8 are not used as axiom tracks for x, we should have (ε, 3)→pi p⊥ and
(ε, 8 · 3 · 2 · 1 · 0)→pi p⊥ (for a good choice of b·c).

Remark 12.3 (Polar Inversion in this Chapter). The definition of polar inversion differs
from that of Sec. 11.3.2 for three reasons.

• First, in Chapter 11, polar inversion is defined in any derivation of system S (polar
inversion in P depends on P , by Remark 11.2, p. 252) where here, polar inversion
is defined on b·c-candidate bisupports, not on a particular derivation since, for
now, nothing ensures that one exists.

• Second,the function pos uses only one argument (whereas it needs three in Sec. 11.3.2)
thanks to the function b·c, whose injectivity ensures that x and a are not necessary.

• Third, the biposition p⊥ was not needed in a particular S-derivation. This bipo-
sition is a technicality that is only useful in the purpose of describing candidate
bisupports (see Proposition 12.3 below), which is needed to obtain the main the-
orem of this chapter.

12.2.4 Type Formation, Type Destruction

In this section, we conclude the definitions of the stability relations that characterize the
form of S-derivations, yielding the notion of subjugation, as in Sec. 12.2.1.

The notion of consumption, motivated in Sec. 11.1, is associated with rule app.
Assume t(a) = @, t|a = u v with u : (Sk)k∈K → T and v : Sk for all k ∈ K as in
Fig. 12.1 so that u v can be typed with T . Each type Sk occurs in (Sk)k∈K → T and
v : Sk. However, it is absent in the type of u v: we say it has been consumed. Formally,
we set, for all (a, c) ∈ Bt, k > 2 s.t. t(a) = @:

• (a · 1, k · c) a→ (a · k, c)

Indeed, the premise concluding with u : (Sk)k∈K → T (resp. with v : Sk) is at position
a · 1 (resp. a ·k). Position c ∈ supp(Sk) corresponds to position k · c in supp((Sk)k∈K →
T ). For instance, in Pex, there is an app-rule at position 0 and (0 · 1, 8)

0→ (0 · 8, ε)
(pointing to type symbol o) and (0 · 1, 3)

0→ (0 · 3, ε) (pointing to o′).
We set →= ∪{ a→ | a ∈ A, t(a) = @} and write ← for the symmetric relation.

Let P be a b·c-derivation typing a term t. If p1→ascp2 or p1→pi p2 or p1 → p2, then
p1 ∈ bisupp(P ) iff p2 ∈ bisupp(P ) (by construction of those relations).

However, relations→asc,→pi and→ are not enough to express the stability conditions
characterizing a bisupport candidate for a derivation typing t (as we have for types with
Lem. 12.1). We need to ensure that types are correctly formed and that an abstraction is
typed with an arrow type (and not with a type variable). For that, we define additional
relations→t1,→t2, →abs and→down below.

• Relations→t1 and→t2 ensure that the types are correctly defined and are natural
extensions of those of Sec 12.2.1:
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• For all (a, c) ∈ Bt and k ∈ N, (a, c · k)→t1 (a, c).

• For all (a, c) ∈ Bt and k > 2, (a, c · 1)→t2 (a, c · k).

• Note that, for instance, if t = I = λx.x and B = {pε} = {(ε, ε)}, then B is
stable under →asc, asc←, →, ←, →t1, →t2 but obviously, there is no derivation P
typing t such that bisupp(P ) = B (indeed, t is necessarily typed with an arrow type
i.e. 1 ∈ supp(TP (ε)), which means (ε, 1) ∈ bisupp(P )). Thus, those relations are not
enough to describe a candidate bisupport.
The relation→abs ensures that, if λx.u is a typed subterm of t, then its type T is an
arrow and not a type variable. When T is an arrow, then supp(T ) must at least contain
1 (besides ε), the position of the root of right-hand side of the arrow. We set then, for
all a ∈ At s.t. t(a) = λx:

• (a, ε)→abs (a, 1)

• Relation→down is included in the reflexive transitive closure of asc← ∪ ← ∪→t1∪→abs,
but turns out to be useful (to obtain Lemma 12.13). When the biposition (a′, c) is in a
derivation P , then every position below a′ must be in P (must have a non-empty type).
We set then, for all a, a′ ∈ A and c ∈ N∗ s.t. a 6 a′:

• (a′, c)→down (a, ε)

• p⊥→down (a, ε)

The 2nd case is also useful to ensure Lemma 12.13.

• We set →•=→ ∪ ← ∪ →t1 ∪ →t2 ∪ →abs ∪ →down. If p1 →• p2, notice that, by
construction, p1 ∈ bisupp(P ) implies p2 ∈ bisupp(P ). We say then that p1 subjugates
p2, generalizing Sec. 12.2.1.

12.2.5 Threads and Minimal Bisupport Candidate

We prove now that the relations above are indeed enough to express a sufficient condition
of typability (Corollary 12.1). For that, we will formally define the notion of thread (from
Sec. 11.1).

As we have seen, if P is a b·c-derivation, then bisupp(P ) is closed under →asc,
asc←,→pi, pi←, →, ←, →,→t1,→t2,→abs and→down. Of course, p⊥, the empty bipo-
sition, cannot be in P . It turns that it is enough to characterize candidate bisupports
(Proposition 12.3). In this statement, ≡ is the reflexive, transitive, symmetric closure of
→asc∪→pi. We have:

Proposition 12.3. Let B ⊆ Bt. Then B is a b·c-candidate bisupport for a derivation
typing t (i.e. there exists a b·c-derivation s.t. B = bisupp(P )) iff (1) B is non-empty,
(2) B is closed under ≡ and→•, and (2) B does not contain p⊥.

If the closure of a set B contains p⊥, then intuitively, B needs to use a slot that is
constrained (by relevance) to be empty: thus, no derivation can contain B.
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Proof. The necessity of these conditions has been discussed in the previous subsections.
Conversely, assume that ∅ 6= B ⊂ Bt \ {p⊥} is closed under ≡ and→•. We want a

derivation P s.t. bisupp(P ) = B. For that, we need to suitably decorate the p ∈ B.
Mainly, a non-terminal biposition must be labelled with → and a terminal one with a
fixed type variable o, in order to get correct types (as in Sec. 12.2.1). Thus, we set
Lves(B) = {(a, c) ∈ B | (a, c ·1) /∈ B} and we define P on B by P (p) = o if p ∈ Lves(B)
and P (p) =→ if not. We now verify that P is a correct S-derivation using the definition
of ≡ and→•.

Let A = {a ∈ At | ∃c ∈ N∗, (a, c) ∈ B}. Thus, A ⊆ A. For all a ∈ A, we set
T(a)(c) = P (a, c) whenever (a, c) ∈ B. For all a ∈ A and x ∈ V , we set Aa(x) =
A ∩ Aa(x) and C(a)(x) = ]a0∈Aa(x)(ba0c · T(a0)). Thus, T(a) and C(a)(x) are functions
from N∗ to O ∪ {→}. By hypothesis, if thr(p) = θ⊥, then p /∈ B.

For all a ∈ A, if a ∈ A, dom(T(a)) is a tree and T(a), as a labelled tree, is a correct
type and if a /∈ A, dom(T(a)) = ∅.
Indeed, if a ∈ A, then dom(T(a)) is non-empty. The definitions of Lves(B), T(a)(c) and
Lemma 12.1 grant then that T(a) is a correct type.
We consider now a ∈ A and check that the typing rules are respected.

• Assume t(a) = x. Then, by definition of C, C(a)(y) = ( ) if y 6= x and C(a)(x) =
(bac · T(a)), so that a is a correct axiom rule.

• Assume t(a) = @.

– Since (a, c)→asc (a · 1, 1 · c), then (a, c) ∈ B iff (a · 1, 1 · c) ∈ B and even
(a, c) ∈ Lves(B) iff (a · 1, 1 · c) ∈ Lves(B), so that functions c 7→ T(a)(c) and
c 7→ T(a · 1)(1 · c) are equal.

– Moreover, by → and ←, (a · 1, k · c) ∈ B ⇐⇒ (a · k, c) ∈ B, and even
(a · 1, k · c) ∈ Lves(B) ⇐⇒ (a · k, c) ∈ Lves(B). Thus, for all k > 2, c ∈
N∗, T(a · 1, k · c) = T(a · k, c).

– Since a ∈ A, (a, ε) ∈ B, so (a · 1, 1) ∈ B, so (a · 1, ε) /∈ Lves(B), so T(a ·
1)(ε) =→, by definition of T .

Thus, T(a · 1) = (T(a · k))k>2 → T(a).

By definition of C and of Aa(x), we easily obtain C(a)(x) = ∪k>1,a·k∈AC(a · k)(x)
as expected.

Thus, a is a correct app-rule.

• Assume t(a) = λx. Then, by→abs, (a, 1) ∈ B and (a, ε) /∈ Lves(B), so that
T(a)(ε) =→. Since (a, 1 · c)→asc (a · 0, c), then (a, 1 · c) ∈ B iff (a · 0, c) ∈ B and
even (a, 1 · c) ∈ Lves(B) iff (a · 0, c) ∈ Lves(B), so that functions c 7→ T(a, 1 · c)
and (c 7→ T(a · 0, c)) are equal.
Moreover, let k > 2:

– If k /∈ Trλ(a), then (a, k · c)→pi p⊥, so thr(a, k · c) = θ⊥, so, by hypothesis,
(a, k · c) /∈ B, so k · c /∈ supp(T(a)).
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– If k ∈ Trλ(a), then (a, k · c)→pi (pos(k), c), so (a, k · c) ≡ (pos(k), c). So
(a, k · c) ∈ B iff (pos(k), c) ∈ B and even (a, k · c) ∈ Lves(B) iff (pos(k), c) ∈
L(B).

This shows that, for all k > 2, functions c 7→ T(a, k · c) and c 7→ C(a · 0)(x)(c) are
equal, by definition of C.
Thus, we have T(a) = C(a · 0)(x)→ T(a · 0) and a is a correct abs-rule.

Remark 12.4. We only use one type variable o in the above proof. A general method
(yielding every b·c-derivation whose bisupport is B) is to label p1, p2 ∈ Lves(B) with the
same type variable whenever p1 ≡@ p2, where ≡@ is the reflexive, transitive, symmetric
closure of→asc∪→pi∪ →.

From now on, it will be better to reason modulo ≡ (it may already be guessed that
≡ should commute with →,→t1, . . ., which is made explicit in Sec. 12.3.2) and to focus
on subjugation.

Definition 12.1. Let t be a term and b·c : N∗ → N \ {0, 1} an injection, and→asc,→pi

the relations of ascendance and polar inversion in Bt defined w.r.t. b·c.

• An ascendant thread is an equivalence class of relation ≡asc, the reflexive, tran-
sitive, symmetric closure of→asc.

• A thread (metavariable θ) is an equivalence class of relation ≡ (see Fig. 12.3).

• The quotient set Bt/≡ is denoted Thr.

In Fig. 12.2, the red occurrences of o′ correspond to the ascendant thread {(ε, 1), (1, ε), (0·
1, 1)} and the blue occurrence of o′ to another ascendant thread (with only one element).
The four colored occurrences of o′ correspond to a thread.

The notation Thr implicitly depends on t and b·c. The thread of (a, c) ∈ B is written
thr(a, c) and we set

θε = thr(ε, ε) θ⊥ = thr(p⊥)

Threads and ascendant threads are informally discussed in Sec. 11.1.1 (see in partic-
ular Fig. 11.1). If thr(p) = θ, we say that θ occurs at biposition p, also written θ : p
or p : θ.

We consider now the extension of every other relation modulo ≡. Namely, we write
θ1

a
→̃ θ2 if ∃p1, p2, θ1 = thr(p1), θ2 = thr(p2), p1

a→ p2. Thus, θ1

a
→̃ θ2 iff θ1 : p1

a→
p2 : θ2 for some p1, p2. In that case, we say that θ1 (resp. θ2) has been left-consumed
(resp. right-consumed) at biposition p1 (resp. p2).

We proceed likewise for→t1,→t2,→abs,→down,→•, thus defining →̃t1, →̃t2, →̃abs,
→̃down, →̃•. Notation →̃∗• denotes the reflexive transitive closure of relation →̃•.

Corollary 12.1. If θ⊥ is not in the transitive closure of {θε} by →̃•, then t is typable
in S (by means of a b·c-derivation).

Proof. Let Bmin = {p ∈ B | θε →̃∗• thr(p)} i.e. Bmin is the union of the reflexive transitive
closure of thr(ε) under →̃•. If θε→• ∗θ⊥ does not hold, then Bmin satisfies the hypotheses
of Proposition 12.3. So there exists a derivation P s.t. bisupp(P ) = Bmin and thus, t is
typable.
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Since a S-derivation contains pε, by Proposition 12.3, any b·c-derivation typing t will
satisfy Bmin ⊆ bisupp(P ) and thus, Bmin is the minimal bisupport candidate for a
b·c-derivation typing t.

Given t ∈ Λ and b·c, let T be the first order theory whose set of constants is Thr(P )
and whose axioms are θε 6= θ⊥ and (θ1 = θ2) (for all pairs (θ1, θ2) such that θ1→̃•θ2).
Then Corollary 12.1 states that there exists a b·c-derivation P typing t iff T is not
contradictory. This corresponds to the presentation p. 236.

12.3 Nihilating Chains

We begin Sec. 12.3 with a global description of the key steps leading to the final result
(complete unsoundness of S) and a presentation of the central notion of nihilating chain.

In the purpose of proving that every term is typable, we want to prove that, for all
term t and injection b·c : N∗ → N \ {0, 1}, there is a b·c-derivation typing t. According
to Corollary 12.1, we must show that θ⊥ is not in the reflexive transitive closure of θε
by →̃•. A proof of θε→̃∗•θ⊥ would involve a nihilating chain:

Definition 12.2. A (nihilating) chain is a finite sequence of the form θ0→̃•θ1→̃• . . . →̃•θm
with θ0 = θε and θm = θ⊥.

In order to apply Corollary 12.1, we must then prove that there is no nihilating chain.
In other words, this corollary implies:

Proposition 12.4. If the nihilating chains do not exist, then system S is completely
unsound.

We proceed ad absurdum and consider θ0→̃•θ1→̃• . . . →̃•θm with θ0 = θε and θm =
θ⊥. However, →̃• can be →̃, ←̃, →̃t1, →̃t2, →̃abs or →̃down. The structure of the proof
is the following:

• We define (Definition 12.3) the notion of polarity for bipositions: a biposition is
negative when it is created by an abs-rule (modulo→asc) and positive if not.

• The termination of a finite collapsing strategy (Sec. 12.4.2) guarantees that pos-
itivity can be assumed to only occur at suitable places in the chain without loss
of generality. In that case, we say that the nihilating chain is normal (Defini-
tion 12.4).

• In normal chains, the different cases of subjugation interact well (Sec. 12.3.2),
so that, from any normal chain, we may build another that begins with θε→̃•θ1

(Sec. 12.3.3). This is easily shown to be impossible, allowing us to conclude that
nihilating chains do not exist and that every term is S-typable.

12.3.1 Polarity and Threads

In this section, we describe the form of threads and ascendant threads (Definition 12.1).
Notice that→asc is functional: if p1→ascp2, we write p2 = asc(p1). Notice also that

asc is injective. Thus, p1 ≡asc p2 iff ∃i > 0, p2 = asci(p1) or p1 = asci(p2).
Given a biposition p = (a, c) ∈ B, we call a the outer and c the inner position of

p. Since asc may only add the prefix 0 or 1 to a and add/remove the prefix 1 to c, by
induction:
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Lemma 12.2. If (a1, c1) ≡asc (a2, c2) then ∃a3 ∈ {0, 1}∗, (a2 = a1·a3 or a1 = a2·a3)
and ∃i > 0, (c2 = 1i · c1 or c1 = 1i · c2).

We set, for all p ∈ B, Asc(p) = asci(p), where i is maximal (i.e. asci(p) is defined,
but not asci+1(p)). Thus, Asc(p) is the top ascendant of p e.g., in Pex, Asc(ε, 1) =
(0 · 1, 1). As noted in Observation 11.1, p. 241, a top ascendant is either located in an
ax-node or an abs-node (asc is total on app-nodes), motivating the notion of (syntactic)
polarity (see Sec. 11.1.2 for more details) for bipositions:

Definition 12.3.

• Let p ∈ Bt \ {p⊥} and (a0, c0) = Asc(p). We define the polarity of p as follows:
if t(a0) = x for some x ∈ V , then we set Pol(p) = ⊕ and if t(a0) = λx, then we
set Pol(p) = 	. We also set Pol(p⊥) = 	.

• If thr(p) = θ and Pol(p) = ⊕/	, we say that θ occurs positively/negatively at
biposition p.

• If θ is left/right-consumed at p and Pol(p) = ⊕ (resp. Pol(p) = 	), we say that
θ is left/right-consumed positively (resp. negatively) at biposition p.

Then, we write for instance θ1
⊕

a
→̃	 θ2 to mean that θ1 is left-consumed positively

and θ2 is right-consumed negatively in the app-rule at position a. In Fig. 12.2, the blue
occurrence of o′ is negative and the red ones are positive.

Since→pi also defines an injective function (out of θ⊥) and p1→pi p2 implies that p1

(in a λx) and p2 (in an axiom or p⊥) do not have ascendants:

Lemma 12.3.

• For all p1, p2 ∈ Bt, p1 ≡ p2, Pol(a1, c1) = ⊕ and Pol(a2, c2) = 	 iff Asc(a1, c1)→pi

Asc(a2, c2).

• For all p ∈ Bt, thr(p) = θ⊥ iff Asc(p) = (a0, k·c0) with t(a0) = λx and k /∈ Trλ(a0).

Lemmas 12.2 and 12.3 may be illustrated by Fig. 12.3 (see also the more detailed5

Fig. 11.1, p. 240), in which we only represent (with thick lines) the outer positions in
the occurrences of the threads.

x : (5·S5) ` x : S5
positive
occ. (red)

polar inv.

C ` λx.u : (Sk)k∈K → T

negative occ. of
the thread (blue)

Thread with +/− occ.

p⊥•polar inv.

C ′`λy.v : (S′k)k∈K′→T ′

negative occ. (blue)

Thread of emptiness θ⊥

Figure 12.3: Threads

5 Note that the thread of emptiness is absent from Fig. 11.1, since it is necessary only in this chapter.
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Thus, except the empty thread θ⊥, Lemma 12.3 means a thread can have at most
two “connex components" (a series of positive ascendants and/or a series of negative
ascendants respectively) e.g., the green or the purple threads in Fig. 11.1. All bipositions
of θ⊥ are negative.

Remark 12.5.

• If the top occurrence of an ascendant thread is in an ax-rule typing a variable x
s.t. x is not bound in t, then the thread has one (positive) “connex component"
e.g., the red thread in Fig. 11.1.

• If a series of ascendants ends at the root of an abs-rule introduction λx (i.e.
Asc(a0, c0) = (a, ε) with t(a) = λx), then the thread has one (negative) “connex
component" e.g., the blue thread in Fig. 11.1. Notice that such a thread does not
contain p⊥.

Lemma 12.3 will be refined into Lemmas 12.7 and 12.10.
Since a consumed biposition does not have a descendant, Lemma 12.2 and 12.3 imply
the following lemma (which is the formal version of Observation 11.3, p. 11.3):

Lemma 12.4 (Uniqueness of Consumption). Let ~ ∈ {⊕,	} and θ ∈ Thr, θ 6= θ⊥.
Then, there is a most one θ′ s.t. (θ~→̃θ′ or θ~←̃θ′).

In the figure above, consumption may occur at the bottom of each “connex compo-
nent".

12.3.2 Interactions in Normal Chains

In Sec. 12.3.2, we present the notion of normal chain and explicit some interesting in-
teraction properties that allow us to simplify/rewrite them.

As it has been discussed in the Introduction p. 254, the possibility for a variable x
(of a redex or of a redex to be created later) to be substituted in a reduction sequence
is problematic. We recall that a biposition is negative when it was “created" in an
abstraction λx and that left-consumption is associated to left-hand sides of application.
Thus, a negative left-consumption hints at the presence of redex (this intuition will be
made more explicit in Sec. 12.4.2). More precisely, as it was informally explained in
Sec. 11.2.1, it indicates the presence of a redex tower. This suggests the following notion
(that was alluded to p. 236):

Definition 12.4. A nihilating chain is normal if no thread is left-consumed negatively
in it (the chain does not contain a link θi	→̃θi+1 or θi←̃	 θi+1).

Some relations of subjugation may roughly be related to the negative hand side of
an arrow (e.g., left-consumption destroys (Sk)k∈K in t : (Sk)k∈K → T ) or positive hand
side (e.g., ascendance) or the root of a type (e.g.,→abs, from inner position ε to 1). On
the other hand, in a type, the track values give a concise way to indicate nesting inside
arrows i.e. an argument track means a nesting inside the source of an arrow and track
1 means nesting in its target. This will help us now to better understand the possible
forms of normal chains, yielding the series of Interaction Lemmas below.

Let p = (a, c) ∈ Bt. According to Lemma 12.2, ascendance/descendance can only
add or remove the prefix 1 to c. From that, we deduce that the only way to remove
an argument track while visiting a thread is to pass from the negative hand side to
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the positive hand side of→pi (indeed, track k is absent from the inner position of p2 in
p1 = (a, k · c)→pi (pos(k), c) = p2). Moreover, a biposition that is left-consumed must
start with an argument track (a track > 2) by definition of →. Thus, if a thread is left-
consumed positively, the inner position of all its occurrences will contain an argument
track (this is the meaning of Lemma 12.7).

By definition of→abs and→down, the target of→abs (resp. of→down) must have an
inner position equal to 1 (resp. ε). This, with the previous observation (related to
Lemma 12.7), shows that a thread that is consumed positively cannot be the target of
→̃abs or →̃down (Lemma 12.8 below).

It is easy to see that →̃t1 and →̃ commute (Lemma 12.6 below). Using a similar
reasoning as the one above (presence of an argument track in the inner position), we
may also prove that→t2 and →̃ commute when the involved thread is left-consumed
positively in →̃ (Lemma 12.9).

Formal Proofs of the Intersection Lemmas The end of Sec. 12.3.2 is technical
and is dedicated to the proof of the Interaction Lemmas described above. A summary
of these lemmas can be found at the beginning of Sec. 12.3.3.

Lemma 12.5. If (a1, c1) ≡ (a2, c2), then (a1, c1·k) ≡ (a2, c2·k) for all k.

Proof. This holds when we replace ≡ by→asc and→pi. The lemma follows by induction.

Lemma 12.5 is useful to prove Lemmas 12.6, 12.7 and 12.10.

Lemma 12.6 (Exchange of →̃ and →̃t1). If θ1→̃t1θ2 and θ2→̃θ4, then, ∃θ3, θ1 → θ3

and θ3→̃t1θ4.

Proof. Say θ1 : (a, c · `)→t1 (a, c) : θ2 and θ2 : (a′ · 1, k · c′) → (a′ · k, c′) : θ4. By
Lemma 12.5, (a, c · `) ≡ (a · 1, k · c′ · `). So we set θ3 = thr(a′ · 1, k · c′ · `), so that
θ1 : (a′ · 1, k · c′ · `)→ (a′ · 1, k · c′ · `) : θ3 and θ3 : (a′ · 1, k · c′ · `)→t1 (a′ · 1, k · c′) : θ4 as
expected.

Lemma 12.7. Assume Pol(a·1, k) = ⊕ and (a·1, k) ≡ (a2, c2).

• If Pol(a2, c2) = ⊕, then ∃i, c2 = 1i·k.
Moreover, for all c ∈ N∗, (a·1, k·c) ≡ (a2, c2·c).

• If Pol(a2, c2) = 	, let (a0, 1
j ·k·c) and ` = ba0c. Then ∃j, c2 = 1j ·`·1i k.

Moreover, for all c ∈ N∗, (a·1, k·c) ≡ (a2, c2·c).

If Pol(a·1, k·c) = ⊕ for some c, then Pol(a·1, k) = ⊕ and the lemma can be applied.

Proof. The two first points come from Lemmas 12.2, 12.3 and 12.5.
Regarding the end of the statement: by induction on i, we also prove that, for all
k > 2, a, c ∈ N, (ai, ci) := asci(a, k) is defined iff asci(a, k·c) is and in that case,
asci(a, k·c) = (ai, ci·c). Thus, if (a0, c0) = Asc(a, k), then Asc(a, k·c) = (a0, c0·c). This
implies that Pol(a, k) = Pol(a, k·c).

Lemma 12.7 is useful to prove Lemmas 12.8 and 12.9:

Lemma 12.8 (Elimination of →̃abs and →̃down). If θ⊕→̃θ′, there is no θ0 s.t. θ0→̃absθ
or θ0→̃downθ.
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Proof. Say θ : (a·1, k·c)→ (a·k, c) : θ′ (with necessarily k > 2). We assume ad absurdum
that θ0→̃absθ or θ0→̃downθ.

The first case implies that θ = thr(a′, ε) and the second one that θ = thr(a′, 1) for
some a′. But this is impossible according to Lemma 12.7.

Lemma 12.9 (Exchange of ⊕→̃ and →̃t2). If θ1→̃t2θ2 and θ2
⊕→̃θ4, then, ∃θ3, θ1

⊕→̃θ2

and θ3→̃t2θ4.

Proof. Say θ1 : (a, c · `)→t2 (a, c · 1) : θ2 and θ2 : (a′ · 1, k · c′)⊕ → (a′ · k, c′) : θ4.
By Lemma 12.7, c · 1 = 1i · k · c′ or c · 1 = 1j · `′ · 1i · k · c′ for some i, j, `′. Thus,

c′ = c′0 · 1 for some c′0.
Also by Lemma 12.7 (last statement), we have (a, c · `) ≡ (a′ · 1, k · c′0 · `).
We set then θ3 = thr(a′ · k, c′0 · `), so that θ1 : (a′ · 1, k · c′0 · `) → (a′ · k, c′0 · `) : θ3

and θ3 : (a′ · k, c′0 · `)→t2 (a′ · k, c′0 · 1) : θ4, as expected.

We recall from Lemma 12.3 that, if the thread of a biposition p = (a, c) is θ⊥, then
p is negative and was “created" in an abs-rule (thus, c must have an argument track).
In that case, it is easy to see, that when we postfix anything to the inner position c (i.e.
we use relation→t1), we get a biposition p′ = (a, c·c′) whose thread is also θ⊥. Using
the presence of an argument track k (as in the positive case discussed above), we can
also prove that θ⊥ is stable under →̃t2 and cannot be the target of →̃abs and →̃down. All
this is captured by Lemma 12.11.

Lemma 12.10. Assume (a, 1i·k) ≡ p⊥ with k > 2. Then, for all c ∈ N∗, (a, 1i·k·c) ≡ p⊥.
Moreover, if (a, 1i·k·c) ≡ p⊥ with k > 2, then (a, 1i·k) ≡ p⊥, and we can apply the
lemma.

Proof. Let (a0, 1
i0 · k) = Asc(a, 1i · k) and for all j such that it is defined, (ai, 1i(j) · k) =

ascj(a, 1i · k).
By induction on j and Lemma 12.2, for all c ∈ N∗, ascj(a, 1i · k · c) is defined iff

ascj(a, 1i · k · c) is, and in that case, ascj(a, 1i · k · c) = (aj , 1i(j) · k · c).
Thus, Asc(a, 1i · k · c) = (a0, 1

i0 · k · c).
Assume moreover that (a, 1i · k) ≡ p⊥. Then Asc(a, 1i · k)→pi p⊥. This implies that

t(a0) = λx, i0 = 0 and k /∈ Trλ(a0). Thus, Asc(a, 1i · k · c) = (a0, k · c)→pi p⊥. So
(a, 1i · k · c) ≡ p⊥.

Now, assume instead that (a, 1i · k · c) ≡ p⊥. Then Asc(a, 1i · k · c)→pi p⊥. This
implies that t(a0) = λx, i0 = 0 and k /∈ Trλ(a0). By the above induction, Asc(a, 1i ·k) =
(a0, k)→pi p⊥. So (a, 1i · k) ≡ p⊥.

Lemma 12.10 is useful to prove Lemma 12.11:

Lemma 12.11 (The Thread of Emptiness in Action).

• If thr(p) = θ⊥, then Pol(p) = 	.

• If θ→̃t1θ⊥ or θ→t2 θ⊥, then θ = θ⊥.

• We cannot have θ→̃absθ⊥ or θ→̃downθ⊥.

Proof.

• The implication thr(p) = θ⊥ ⇒ Pol(p) = 	 comes from Lemma 12.3.
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• Assume θ→̃t1θ⊥ e.g., say θ : (a, c · `)→t1 (a, c) : θ. By Lemma 12.3, we have
(a, c) ≡ (a0, k ·c0) with t(a0) = λx, k /∈ Trλ(a0), k > 2. By Lemma 12.5, (a, c ·`) ≡
(a0, k · c0 · `). But (a0, k · c0 · `)→pi p⊥. So thr(a, c · `) = p⊥ i.e. θ = θ⊥.

• Assume θ→̃t2θ⊥ e.g., say θ : (a, c · `)→t2 (a, c · 1) : θ⊥.

By Lemma 12.3, we have (a, c·1) ≡asc (a0, k ·c0) with t(a0) = λx, k /∈ Trλ(a0), k >
2.

By Lemma 12.2, c · 1 = 1i · k · c′0 · 1 for some i, c′0.

By Lemma 12.10, (a, 1i · k) ≡ p⊥ and then (a, c · `) = (a, 1i · k · c′0 · `) ≡ p⊥. Thus,
θ = θ⊥.

• If p : θ⊥, by Lemmas 12.2 and 12.3, p = (a, 1i · k · c). Thus, p→abs p
′ = (a′, 1) or

p→down p
′ = (a′, ε) is impossible.

When the considered nihilating chain is not normal, the arguments involving the
presence of argument tracks fail and it is not difficult to find counter-examples to the
commutation of →̃ and →̃t2 or to Lemma 12.8.

12.3.3 Complete Unsoundness (almost) at Hand

Now, using the Interaction Lemmas 12.6, 12.8, 12.9, 12.11, we may build (by the Claim
below), from any normal chain, a nihilating chain of the form θε = θ0

⊕→̃θ1
⊕→̃...⊕→̃θ` =

θ⊥. Then we prove that a chain of this latter form cannot exist. More concretely,
this almost proves that system S is completely unsound (by Proposition 12.4). Almost,
because only the non-existence of normal nihilating chains will be proved at the end of
this Sec. 12.3.3. The only point that will remain to be verified is that normal nihilating
chains can be considered without loss of generality (which is the object of Sec. 12.4).

The Interaction Lemmas can be summarized as follows:

• θ1→̃t1θ2→̃θ3 can be replaced by θ1→̃•θ′2→̃t1θ3 (Lemma 12.6).

• θ1→̃t1θ
′
2
⊕→̃θ3 can be replaced by .θ1

⊕→̃θ2→̃θ3 (Lemma 12.9).

• θ1→̃downθ2
⊕→̃θ3 and θ1→̃absθ2

⊕→̃θ3 is impossible (Lemma 12.8).

• θ→̃t1/2θ⊥ imply θ = θ⊥ and θ→̃abs/downθ⊥ is impossible (Lemma 12.11).

Moreover, the Consumption Lemma (Lemma 12.4) can also be seen as an interaction
lemma: it entails that θ1←̃⊕θ2

⊕→̃θ3 implies θ1 = θ3 i.e. nothing happens when ←̃⊕ is
followed by →̃. These observations are enough to prove that normal chains do not exist.

In particular, θε : (a·1, k·c)→ (a·k, c) : θ1 for some (a, c) ∈ B, k ∈ N. We prove now
that θε → . . . is impossible: by Lemma 12.2, asci(ε, ε) = (a0, 1

i0) for some a0, i0.

• Assume Pol(ε, ε) = ⊕: since Pol(a·1, k·c) = ⊕, by Lemma 12.2, (ε, ε) ≡ (a·1, k·c)
is impossible.

• Assume Pol(ε, ε) = 	: ∃p, (a0, 1
i0)→pi p is impossible by definition of→pi. Thus,

(ε, ε) ≡ p and Pol(p) = ⊕ is impossible.

So, there are no nihilating chains containing only ⊕→̃. And thus, there are no normal
nihilating chains:
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Proposition 12.5. There is no normal nihilating chain.

In the next section, we describe a method to build, from any given nihilating chain
(if such a chain existed), a normal chain. By the above proposition, it will ad absurdum
entail that there are no nihilating chains. But before that, in order to be valid, the
reasoning and the Proposition above need the following Claim to be proved.

Claim: From any normal chain, we can build a nihilating chain of the form θε =
θ0
⊕→̃θ1

⊕→̃...→̃θ` = θ⊥.

Proof. Let C be a normal nihilating chain. Thus, C is of the form θ0→̃•θ1→̃• . . . →̃•θm
with θ0 = θε and θm = θ⊥. We are going to apply the algorithm below to C.

Description of the algorithm: We first apply commutations to C. During this process,
we implicitly use Lemma 12.4 every time that some relation θi−1←̃⊕θi⊕→̃θi+1 pops up
somewhere in the chain: since this implies θi−1 = θi+1, we just remove θi from the chain.

The first stage of the algorithm consists in using Lemmas 12.6 and 12.9 as many
times as possible, so that θi−1→t1 θi

⊕→̃θi+1 or θi−1→t2 θi
⊕→̃θi+1 does not occur any-

more in the chain.

Then, we are interested in the last relation θm−1→̃•θm = θ⊥ of the chain.
By Lemma 12.11, if it is →̃t1 or →̃t2, then θm−1 = θ⊥ and we discard θm (second

stage of the algorithm).
Also by Lemma 12.11, the last relation can neither be →̃abs nor →̃down.
Since θ⊥ only occurs negatively (Lemma 12.11) and the chain is normal, then the

last relation cannot be ←̃.
So the last relation of the chain after the two stages of the algorithm is θ`−1

⊕→̃θ` =
θ⊥ (with ` > m).

Assume now ad absurdum that the chain contains a relation that is not →̃.
We investigate the maximal k such that relation θk−1→̃•θk is not →̃.
We have just proved that k < `, so that we have θk−1→̃•θk⊕→̃θk+1. By Lemma 12.8,

this relation cannot be →̃abs or →̃down.
By the first stage of the algorithm, it can neither be →̃t1 nor →̃t2. So we must have

θk−1←̃⊕θk⊕→̃θk+1.
So we must have θk−1←̃θk. Since the chain is normal, we have θk−1←̃⊕θk⊕→̃θk+1.
By the procedure described above, it is impossible (we could remove θk from C), so

when the algorithm is completed, we have a chain of the form θ0→̃•θ1→̃• . . . →̃•θ` =
θ⊥.

12.4 Normalizing Nihilating Chains

In this section, we prove that negative left-consumption in a nihilating chain can be
avoided (without loss of generality). By Proposition 12.4, this will allow us to prove the
theorem of complete unsoundness. For that, the notions of quasi-residual of a biposition
and of residuals of threads are fundamental and we present them. The main technique
to be implemented here was presented from a perspective in Sec. 11.2.
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Figure 12.4: Residuals and Quasi-Residuals (copy of Fig. 10.5, p. 218)

Remember from Sec. 10.3.3 that system S enjoys both subject reduction and expan-
sion, meaning typing is invariant under (anti)reduction in system S, and that moreover,
in system S, subject reduction is processed in a deterministic way thanks to the tracks
(contrary to system R0, Sec. 4.1.2).

The determinism of reduction allowed us to define in Sec. 10.3.5 residuation for some
positions and bipositions. Residuation (Sec. 2.1.5) is a way to describe how positions
move or are destroyed during reduction, and the residuation relation is functional for sys-
tem S (in contrast with the λ-calculus) because system S is linear and forbids duplication
(Remark 10.4).

We extend now residuation to quasi-residuation for system S, as it was done for the
λ-calculus in Sec. 2.1.5. Quasi-residuation for positions does not preserve the labelling.
For that, we reuse Fig. 10.5 which is copied into Fig. 12.4. We also refer to Sec. 10.3.5
for a description of the moves of the symbols.

12.4.1 Quasi-Residuals

In this section, we define residuation for threads and state some of its most important
properties.

From Sec. 12.3.3, we know that we only have to escape the case of negative left
consumption, to grant that nihilating chains do not exist and thus ensuring that every
term is typable (discussion beginning Sec. 12.3). To achieve this purpose, the main tool
is a normalizing reduction strategy, called the collapsing strategy, which destroys
threads that are left-consumed negatively and allows us to build a normal chain from
any nihilating chain. This reduction strategy is finite, despite the fact that no form of
normalization is not ensured in system S. But to be formulated, it needs the notion of
residual for threads, which can be ensured only if it is well-behaved for bipositions.

Residuals were defined for most positions, but not for all of them e.g., a · 1, that
corresponds to the abstraction of the redex, is destroyed during reduction and does
not have a residual. When (a, c) ∈ bisupp(P ) and a′ = Resb(a) is defined, we set
Resb(a, c) = (a′, c), thus defining the residuals of bipositions.

The partial function Resb on bipositions may be quite naturally extended to a total
function QResb (standing for quasi-residual) from Bt to B′ := Bt′ . For instance, the
abstraction of the redex, typed with a type of the form (Sk)k∈K → T , is destroyed, but
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the types Sk are still present in the typing of r[s/x] (they occur as types of subterm s).

Formal Definitions of Quasi-Residuals As in Sec. 10.3.5, or what concerns (quasi-
)residuals, metavariable a will now denote only positions in A s.t. a = b. Metavariables
α and c range over N∗. For instance, α 6= a means that a 6= b. If k ∈ Trλ(a), ak is
the unique position s.t. pos(k) = a · 10 · ak (see a2, a3, a3 in Fig. 12.4). Let us have a
look at the positions in t: positions a and a · 1 point to the root and the abstraction of
the redex, position a · 10 points to the root of r, position a · k (with k > 2) points to
the root of s, position a · 10 · ak (with k ∈ Trλ(a)) points to an occurrence of x. Then,
thoses positions a, a ·1 and a ·10 ·ak, that respectively point to the root, the abstraction
or the variable of the redex are considered to be destroyed when the redex is fired.
The associated bipositions will not have a proper residual, but we define below their
quasi-residuals. This is an adaptation of the notion of quasi-reduation for the positions
of λ-terms (Sec. 2.1.5).

First, let us remember from Sec. 10.3.5 how the proper residual for positions and
bipositions are defined:

• Out of the redex: If α � a, then α is not in the redex. We set Resb(α) = α.

• Inside r: Position a · 10 · α ∈ B (paradigm ♥) has a residual (except when α = ak
for some k) and should become a ·α after reduction: we set Resb(a · 10 ·α) = a ·α
for α 6= ak.

• Inside some argument derivations: Assume k ∈ Trλ(a). Argument derivation at
a · k will replace ax-rule typing at position a · 10 · ak (which is destroyed). So its
position after reduction will be a · ak. More generally, the a · k · α ∈ B (paradigm
♣) will be found at a · ak ·α after reduction. We set then Resb(a · k ·α) = a · ak ·α
when k ∈ Trλ(a).

• Some bipositions: We set Resb(α, c) = (Resb(α), c) when Resb(α) is defined.

Now, we define the quasi-residuals for all bipositions of B and some positions of A.

• Extension of Resb: QResb(a) = Resb(a) and QResb(a, c) = (Resb(a), c) whenever
Resb(a) is defined.

• Root of the Redex: We have T(a) = T(a·10) and, for all c ∈ N∗, (a, c) ≡asc (a·10, c),
so we set QResb(a) = QResb(a · 10) = a and QResb(a, c) = QResb(a · 10, c) = (a, c).

• Variable of the redex: Let k ∈ Trλ(a). We have T(a · 10 · ak) = T(a · k) (e.g.,
T(a ·10 ·a2) = T(a ·2) = S2 in Fig. 12.4). So we set QResb(a ·10 ·ak) = Resb(a ·k) =
a · ak

• Abstraction of the redex:

– Target of the Arrow Type: We have T(a · 1)|1 = T(a · 10) and actually, (a ·
1, c)→asc (a · 10, c) for all c ∈ N∗, so we set QResb(a · 1, c) = QResb(a · 10, c).

– Source of the Arrow type (1): If k ∈ Trλ(a), then T(a · 1)|k = T(a · k) (e.g.,
T(a · 1)|7 = T(a · 7) = S7 in Fig. 12.4) and actually, (a · 1, k · c) a→ (a · k, c) for
all c ∈ N∗. So we set QResb(a · 1, k · c) = Resb(a · k, c) = (a · ak, c).
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– Source of the Arrow type (2): If k > 2 and k /∈ Trλ(a), then (a ·1, k ·c)→pi p⊥
and there is no ax-rule > a typing x using track k. So we say that (a · 1, k · c)
is nihilated after reduction. We set QResb(a · 1, k · c) = p⊥.

– Root of the type: To ensure Lemma 12.13, it is convenient to set QResb(a ·
1, ε) = QResb(a · 1, 1) = (a, ε).

• Nihilated argument derivations: Assume k /∈ Trλ(a), k > 2, then there is no ax-
rule typing x using axiom track k. So argument Pk is not moved inside r but
nihilated after reduction. We then set QResb(a · k · α, c) = p⊥ and also say that
(a · k · α, c) has been nihilated after reduction.

Remark 12.6.

• We refer the quasi-residual of a ·10 as QResb(a ·10) and not as Resb(a ·10) because,
if t(a · 10) = x, then a · 10 has no proper residual.

• Thus, QResb is a total function on bipositions and Resb is a partial injective func-
tion. Moreover, t′(QResb(α)) = t(α) is not true in general i.e. quasi-residuation
does not preserve labelling (contrary to Resb, Lemma 10.3), as in the case of the
pure λ-calculus (Sec. 2.1.5).

We also consider the relations→asc,→pi,→•, . . . defined w.r.t. B′ (we do not distin-
guish them graphically from those of B) and b·c′, an injective function from the set of
leaves of At′ to N\{0, 1} naturally defined from b·c: we set bα′c′ = k if there is α ∈ A s.t.
t(α) = y 6= x and Resb(α) = α′. We check that α′ 7→ bα′c′ is still an injective function.
We set pos′(k) = α′ if there is α′ s.t. bα′c′ = k. Thus, pos′(k) = Resb(pos(k)). Notice
that Resb(α) ∈ A′ and QResb(p) ∈ B′. We also define asc′, Thr′ and thr′(·).

Relations→asc and→pi and thus ≡ are compatible with reduction. By case analysis
(still guided by Fig. 12.4):

• Assume p1→ascp2 or p1→pi p2 and p1 is nihilated. Then QResb(p1) = QResb(p2) =
p⊥. We assume below that p1 is not nihilated.

• Assume p1 = (α, c)→asc p2. If α 6= a, a · 1, then QResb(p1)→asc QResb(p2). If
α = a, a · 1, then QResb(p1) = QResb(p2).

• If p1 = (α, k · c)→pi p2 with p2 6= p⊥. If α 6= a · 1, then Resb(p1)→pi Resb(p2). If
α = a · 1, then QResb(p1) = QResb(p2).

• Assume p = (α, k ·c)→pi p⊥. If t(α) = λx, then QResb(p) = p⊥. If t(α) = λy 6= λx,
then QResb(p)→pi p⊥.

This entails, by induction on ≡:

Lemma 12.12. If p1 ≡ p2, then QResb(p1) ≡ QResb(p2).

This Lemma allows us to define (quasi-)residuals for threads. We set QResb(θ) =
thr′(QResb(p)) for any p : θ. By case analysis, we have:

• If p1 →• p2 and p2 is nihilated, then QResb(p1) = QResb(p2) = p⊥. We assume
below that p1 is not nihilated.

• Assume p1 = (α · 1, k · c)→ (α · k, c) = p2. If α 6= a, then QResb(p1)→ QResb(p2)
and if α = a, then QResb(p1) = QResb(p2).
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Figure 12.5: Collapsing a Redex Tower

• Assume p1 = (α · k, c)← (α · 1, k · c) = p2. If α 6= a, then QResb(p1)← QResb(p2)
and if α = a, then QResb(p1) = QResb(p2).

• Assume p1→t1 p2 = (α, c). If p2 6= (a · 1, ε), QResb(p1)→t1 QResb(p2). If p2 =
(a · 1, ε), QResb(p1) = QResb(p2) = (a, ε).

• Assume p1→t2 p2 = (α, c · 1). If p2 6= (a · 1, 1), then QResb(p1)→t2 QResb(p2). If
p2 = (a · 1, 1), then QResb(p1)→down QResb(p2) = (a, ε)

• Assume p1 = (α, ε)→abs (α, 1) = p2. If α 6= a · 1, then QResb(p1)→abs QResb(p2).
If α = a · 1, then QResb(p1) = QResb(p2) = (a, ε).

• Assume p1→down p2. Then QResb(p1)→down QResb(p2).

This yields:

Lemma 12.13. Let θ1, θ2 ∈ Thr. We set θ′i = QResb(θi).

• If θ1→̃θ2, then θ′1→̃θ2 or θ′1 = θ′2.

• If θ1→̃t1θ2, then θ′1→̃t1θ
′
2 or θ′1 = θ′2.

• If θ1→̃t2θ2, then θ′1→̃t2θ
′
2, θ

′
1→̃downθ

′
2 or θ′1 = θ′2.

• If θ1→̃absθ2, then θ′1→̃absθ
′
2 or θ′1 = θ′2.

• If θ1→̃downθ2, then θ′1→̃downθ
′
2 or θ′1 = θ′2.

Besides, Resb(θε) = θε and Resb(θ⊥) = θ⊥ as expected, so the above lemma implies
that, if there is a nihilating chain for t of length m, then there is one for t′ of length
6 m (with t→∗ t′).
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12.4.2 The Collapsing Strategy

We explain now how to normalize a chain i.e. discard negative left-consumption (which
was more informally explained in Sec. 11.2.1). This will allow us to use Proposition 12.5
to finally conclude that nihilating chains do not exist.

The idea is that if θ1 : p1
	

a
→̃ θ2, then either t|a is a redex and, by definition of

Resb, we have Resb(θ1) = Resb(θ2) (i.e. θ1 and θ2 are collapsed by the reduction step)
or there is a redex between p1 and a. When we reduce it, the relative height of p1 will
decrease. More precisely, the 2nd case is associated to the notion of redex tower (see
also Sec. 11.2.1 for a high-level presentation). In Fig. 12.5, we have represented a redex
tower of height 7, meaning that the sequence type (Sk)k∈K called by the abstraction λx is
left-consumed on its prefix of rank 7. It is very similar to that of Fig. 11.4 p. 247. The
types of some subterms are indicated on their left (except for v) e.g., subterm λx.u has
type (Sk)k∈K → T . We write λ1, λ2, λ3 for λx1, λx2, λx3 and (∗) for sequence types of
no matter.

At each step of reduction, we reduce the height of consumption by 2. Thus, in a
finite number of steps, we get a proper redex and we collapse θ1 on θ2. This is illustrated
by Fig 12.5 or Fig. 11.5. We now formalize this argument.

Formalizing the Collapsing Strategy Assume then θ1 : p1 = (α · 1, k · c)	→̃θ2.
Then Asc(θ1) = (α∗, k · c) and t(a∗) = λx for some α∗, x. We set h = |a∗| − |a| and we
call h the height of the consumption. By Lemma 12.2, for 1 6 i 6 h, we may write
pi = (αi, 1

j(i−1) · k · c) for asci−1(θ1) where αi+1 = αi · ki for a ki ∈ {0, 1}.
If h = 1, then α∗ = α · 1 and we set b = α so that t|b is a redex and QResb(p1) =

QResb(p2). Thus, Resb(θ1) = Resb(θ2).
Assume now h > 1. Then let 1 6 i0 6 h − 1 be maximal s.t. t(ai0) = @. Actually,

i0 6 h− 2 (if i0 = h− 1, t|αh−1
is a redex, so αh−1 = α i.e. h = 1).

We set b = αi0 so that t|b is a redex. We set p′i = (α′i, c
′
i) = QResb(pi) (so that

p′i0 = p′i0+1 = p′i0+2). By induction on i, if 1 6 i 6 i0, then (asc′)i−1(p1) = p′i and
|α′i| − |α| = i and if i0 < i 6 h − 2, then (asc′)i−1(p1) = p′i+2 and |α′i+2| − |α| = i.
Thus, (asc′)h−2(p1) = (α′h, k · c) and |α′h| − |α| = h− 2. Since t′(α′h−2) = t(αh) (proper
residual), Asc′(p′1) = p′h and Pol′(p′1) = 	. Thus, θ′1 = Resb(θ1)	 → θ′2 = Resb(θ2), but
the height has decreased by 2. In a finite number of steps, we equate then θ1 and θ2.

We extend the notation Resb for finite reduction sequences, so that we get this lemma
(whose informal version is Observation 11.9, p. 247):

Lemma 12.14. If θ1
	→̃θ2, then there is a reduction strategy rs such that Resrs(θ1) =

Resrs(θ2).

This Lemma, along with the observation concluding Sec. 12.4.1, yields:

Proposition 12.6. There is a reduction strategy, that we call the collapsing strategy,
producing a normal chain from any nihilating chain.

12.4.3 Redex Towers

The notion of redex tower, illustrated by Fig. 12.5 and 11.4, can be formalized. We will
use it again in the course of proving Theorem 12.2.
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First, we can easily extend the notion of ascendance to positions of A. So we set, for
all a ∈ A, asc(a) = a · 1 if t(a) = @, asc(a) = a · 0 if t(a) = λx (asc(a) is undefined
when t(a) = x). We also define Asc(a) as asci(a) where i is maximal such that this
expression is defined.

Now, let a ∈ A. We define first the consumption degree cdega(a
′) of some exten-

sions a′ of a. Intuitively, to compute cdega(a
′), we visit the ascendants of a, one after

another. The postfix 1 means that we visit an application left-hand side and we incre-
ment cdega(a′), and the postfix 0 means that we visit an abstraction and we decrement
cdega(a

′).
For instance, in Fig. 12.5, if a is the adress of the root of the redex tower, we have

cdega(a · 1) = 1, cdega(a · 12) = 2, cdega(a · 13) = 3, cdega(a · 13 · 0) = 2, cdega(a · 13 ·
02) = 1, cdega(a · 13 · 02 · 1) = 2, cdega(a · 13 · 02 · 1 · 0) = 1, cdega(a · 13 · 02 · 1 · 02) = 0
where t(a ·13 ·02 ·1 ·02) = λx. Thus, the consumption degree reaches 0 for the first time
when the abstraction of the redex tower is reached.

So, we define by induction:

• cdega(a) = 0.

• If cdega(a′) > 0, then cdega(a′·1) = cdega(a
′)+1 (resp. cdega(a′·0) = cdega(a

′)−
1) when t(a) = @ (resp. t(a) = λx).

• If cdega(a′) = −1, then cdega(a′·1) (resp. cdega(a·0)) is undefined when t(a′) = @
(resp. t(a′) = λx).

As it can also be seen with Fig. 12.5, if d = cdega(a
′) > a, then T(a′) is an arrow

type ending with T(a) and, more precisely, T(a) is preceded in T(a′) by exactly d arrows.

Definition 12.5. Let t a term and b ∈ supp(t) such that t(b) = @. We say there is a
redex tower of height h > 1 if

• cdegb(asc
h(b)) = 0

• For all 1 6 i 6 h− 1, cdegb(asci(b)) > 0.

The extension below will also be useful to prove Theorem 12.2. Inductively, a redex
tower sequence is a redex tower whose left-hand side (the part over the abstraction) is
itself a redex tower sequence. We can then collapse one redex tower after the other. See
Sec. 11.3 for a high-level presentation and in particular, Fig. 11.6.

Definition 12.6. Let t a term and b ∈ supp(t) such that t(b) = @. We say there is a
redex tower sequence of height h > 1 at position if cdegb(asch(b)) = 0.

For the proof of Theorem 12.2 (order discrimination), we need to describe the thread
θε. So, for n > 0, we write ε(n) = ascn(ε), pε(n) = ascn(ε, ε) and i(n) the naturel
number such that pε(n) = (a(n), 1i(n)) when they are defined (if pε(n) is defined, then
a(n) is defined; the form 1i(n) is justified by Lemma 12.2).
The following lemma is just the formalization of Observation 11.10, p. 249:

Lemma 12.15. Let t be a term and b·c : N∗ → N \ {0, 1} an injection and all the
associated notations (asc, Pol, →̃• etc).
If Pol(ε, ε) = 	, then there exist a ∈ A and a finite segment rs of the head reduction
strategy such that asc(ε, ε) = (a, ε), t rs→β λx.t′ and Resrs(a, ε) = (ε, ε).
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Proof. Assume Pol(ε, ε) = 	. By Lemma 12.2, Pol(ε, ε) = 	 means that θε only occurs
negatively (an ascendant of (ε, ε) is of the form (a′, 1i) so cannot be on the left-hand
side of→pi). In that case, if (a, c) = Asc(ε, ε), we then have t(a) = λx (negativity) and
c = ε (if we had c = 1i with i > 1, then (a, c) would have an ascendant).

The claim about the head reduction strategy is proved using exactly the same tech-
nique as in Sec. 12.4.2: more precisely, we destroy the highest redex tower sequence
(Definition 12.6) rooted at ε, which yields a reduct of t that is an abstraction λx.t′.

12.5 Applications

We can now prove the complete unsoundness of systems S and R, using the residuation
of threads, the collapsing strategy and the non-existence of normal threads, which is
ensured by the Interaction Lemmas. But the collapsing strategy can also be applied to
prove that systems S and R are order discriminating.

Theorem 12.1. The relevant intersection type system R, featuring coinductive types,
is completely unsound: every λ-term is typable in R.

Proof. By Propositions 12.2, 12.4, 12.5 and 12.6.

• By Proposition 12.5, there is no normal nihilating chain.

• By using the collapsing strategy (Proposition 12.2), if nihilating chains existed, so
would the normal nihilating chains. Thus, nihilating chains do not exist.

• By Proposition 12.6, the non-existence of nihilating chains entails the complete
unsoundness of system S.

• By Proposition 12.2, the complete unsoundness of system S entails that of R.

Now that we know that every term may be typed, we can study some semantical
aspects of system R (and Dw), namely, how it may be order-sensitive.

Order-Discrimination

The goal of this section is to prove:

Proposition 12.7. Let t be a zero term and o a type variable, then there is context C
such that C ` t : o is derivable in system S.

Exactly as in Sec. 3.4.5, this proposition easily entails:

Theorem 12.2. Let t be a term of order n. Then there is a context Γ and a type τ
of order n (see Sec. 12.1.3) such that Γ ` t : τ is derivable in system R (and there is a
context Γ and type B of order n s.t. Γ ` t : B is derivable in system Dw).

Proof. Let t be a term of order > n and (by Theorem 12.1) Π a R-derivation concluding
with Γ ` t : τ .

There is a term t′ = λx1 . . . λxn.t
′
0 such that t→∗β t′. By subject reduction, there is

a derivation Π′ concluding with Γ ` λx1 . . . λxn.t
′
0 : τ . By the abs-rule, τ must be of
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order > n. This implies that the statement is true for terms of infinite order.

Now, assume that t is of order n <∞. There is a term t′ = λx1 . . . λxn.t
′
0 such that

t→∗β t′ and t′0 is of order 0.
Let o ∈ O. By Propositions 12.7 and 12.2, there is a R-derivation Π′0 concluding

with Γ0 ` t′0 : o. Using n abs-rules, we get a derivation Π′ concluding with a judgment
of the form Γ ` λx1 . . . λxn.t

′
0 : B, with B of order n.

By subject expansion, there is a derivation Π concluding with Γ ` t : B. The
statement is thus proved.

Now, let us prove Proposition 12.7. For that, we consider t be a term such that
θε→̃∗•thr(ε, 1) i.e. s.t. (ε, 1) ∈ Bmin (see Corollary 12.1), which implies that the type of
t cannot be a type variable by the proof of this same corollary. We prove that t is of
order > 1, which is enough to conclude.

We then consider a λ-chain i.e. a chain of the form θε = θ0→̃• . . . →̃•θm = thr(ε, 1),
of minimal length. The notion of normal chains extends to λ-chains and by the collapsing
strategy, we can replace t by a reduct t′ such that the considered chain is normal.

Assume Pol(ε, ε) = 	. Then, by Lemma 12.15, there is a reduct of t′ of the form
λx.t′′. So t→∗β λx.t′′ and we may conclude.

We prove now ad absurdum that Pol(ε, ε) = ⊕ is impossible. So we assume Pol(ε, ε) =
⊕ for the remainder of the proof.

We need to consider B0 = {(a, c) ∈ A | θε→̃∗t1thr(a, c)}. To obtain a contradiction,
we prove that B0 is closed under normal chains but that (ε, 1) is not in B0.

We have to consider two different subcases: when θε also has some negative occur-
rences and when it does not. In both cases, we should prove that no relation allows
exiting B0 (except 	→), reaching thus a contradiction.

However, the second case may be see as a particular case of the first one and may
be skipped. So we assume now that there is p ≡ (ε, ε) such that Pol(p) = 	.

This implies, with h such that Asc(ε, ε) = asch(ε, ε), that t(ε(h)) = x and there is
0 6 hλ < h such that t(ε(hλ)) = λx.

Thus, (ε(hλ), k · 1i(h))→pi ph = Asc(ε, ε) with k = bε(h)c. For all 0 6 hλ such
that it is defined, we write p′ε(n) = (ε(n), 1j(n)·k·i(h)) for the unique p′ε(n) ∈ B such
that aschλ−n(p′ε(n)) = (ε(hλ), k · 1i(h)). The form (ε(n), 1j(n)·k·i(h)) is justified by
Lemma 12.2. We write h0 for the minimal integer such that p′ε(h0) is defined.

Notice that j(hλ) = 0 < i(hλ): if we had i(hλ) = 0), we could prove that
Pol(ε, ε) = 	, since this implies aschλε, ε) = (ε(hλ), ε). Moreover, t(ε(hλ)) = λx,
so that ascn+1(ε, ε) is not defined i.e. Asc(ε, ε) = (ε(hλ), ε) and Pol(ε, ε) = 	, which
contradicts our assumption.

From j(hλ) < i(hλ), by an easy induction, we deduce that, for all h0 6 n 6 hλ,
j(n) < i(n).

Lemma 12.16. Assume that Pol(ε, ε) = ⊕. Then B0 = {(ε(n), 1i) |n 6 h, i 6 i(n)} ∪
{(ε(n), 1j(n)·k·i |hλ 6 n 6 h, i 6 i(h)}.
Moreover, B0 is closed under→down,→abs, →t2 and B0 has an empty intersection with
dom(⊕→) ∪ codom(→)

Proof. Let B′0 = {(ε(n), 1i) |n 6 h, i 6 i} and {(ε(n), 1j(n)·k·i |hλ 6 n 6 h, i 6 i(h)}
Clearly, B′0 ∪B′′0 ⊆ B0. We study B′0 ∪B′′0 and prove that B′0 ∪B′′0 = B0.
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We notice first that if p = (a, c) ∈ B′0∪B′′0 is such that c contains an argument track,
then p ∈ B′′0 and Pol(p) = 	.

• B′0 ∪B′′0 is clearly closed under ≡ and→down.

• Closure under→t1: the only problematic case is p0 = (ε(n), 1j(n)·j ·k)→t1 (ε(n), 1j(n)·j ·
k). Since p0 ∈ B′′0 , we must show that p ∈ B′0. This is guaranteed by j(n) < i(n).

• p0 = (a0, c0)⊕ → p with p0 ∈ B′0 ∪ B′′0 , because p0 → p implies that c0 holds an
argument track, and thus, as notice above, that Pol(p0) = 	.

• p→ (ε(n), c0) ∈ B′0 ∪B′′0 is impossible, because ε(n) ∈ {0, 1}∗ (no argument track
in ε(n)).

• Closure under→t2: assume that p0 = (ε(n), 1j(n) · k)→t2 (ε(n), 1j(n)+1). Since
p0 ∈ B′′0 , we must show that p ∈ B′0. This is guaranteed by j(n) < i(n), so that
j(n) + 1 6 i(n).

• Assume p0 = (ε(n), ε)→abs (ε(n), 1) = p so that p0 in B′0. In order to have p ∈ B′0,
it is enough to prove that i(n) > 1. If we had i(n) = 0, then we could prove that
Pol(ε, ε) = 	 as is the proof of i(hλ) > 0 above.

By point 1, B′0∪B′′0 is stable under ≡. Moreover, B′0∪B′′0 contain θε and is stable under
→t1 by point 2. So B′0 ∪B′′0 ⊇ B0. Thus, B0 = B′0 ∪B′′0 and the Lemma is proven.

By the Lemma, (ε, 1) /∈ B0, so let k be minimal such that θk /∈ B0. We are now
interested in the relation θk→̃•θk+1 in the chain. According to the Lemma, this cannot
be →̃t2, →̃down,

⊕→̃, ←̃ or →̃abs. Contradiction since the chain is normal.

Thus, Pol(ε, ε) = 	, and we have proven above that this implied that t was of order
> 1. This concludes the proof of Proposition 12.7.

Conclusion We proved that every term is typable in a reasonable relevant intersection
type system (Theorem 12.1). If we take the typing rules of S coinductively, we can also
type every infinitary λ-term [34,57].

Derivations of system S collapse on system R (Sec. 12.1.4), the coinductive version
of Gardner and de Carvalho’s system R0 [22, 43]. Thanks to subject reduction and
expansion, this yields a relational model of pure λ-calculus [17] (finite or infinite) in
which, by Theorem 12.1, no term has a trivial denotation, including the mute terms. This
model is thus non-sensible [11] since it does not equate all the non-head normalizing
terms (e.g., Ω and λx.Ω of respective order 0 and 1) by Theorem 12.2.

We presented a first semantical result about this model (Theorem 12.2), but its
equational theory has yet to be studied. According to the same theorem, this model
equates all the closed zero terms. It then differs both from the non-sensible model of
Berarducci trees and that of Lévy-Longo trees, respectively related to Λ111 and Λ001

in [57] (see Sec. 9.3). This work may suggest a new notion of tree, that could shed some
light on Open Problem # 18 of TLCA (the problem of finding trees related to various
contextual equivalences).

Moreover, the implications of the complete unsoundness of system R on the semanti-
cal level remain to be understood: the tools could be of some use to compare coinductive
or recursive type systems before they are endowed with some validity or guard condition,
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or maybe to build other models of pure λ-calculus, for instance, to get some semantical
proof of the easiness [56] of sets of mute terms, as in [15].

One may also wonder whether system S satisfies infinitary subject expansion (subject
reduction is easy cf. Sec. 10.4.4). We know that it is the case with the approximability
condition (Proposition 10.7), but the proof of this property deeply relies on approxima-
tions, so that there is no obvious method to answer this question yet.





Chapter 13

The Surjectivity of the Collapse of
Sequential Intersection Types

In this chapter, we present the last contribution of this thesis: every (coinductive)
derivation based on multiset intersection can be represented by a derivation based on
sequential intersection. In other words, we prove that every derivation of system R (the
coinductive counterpart of system R0 from Sec. 3.2.4) is the collapse of a derivation sys-
tem S (Sec. 10.2). Moreover, we show that we can endow inside system S any sequence
of reduction choices (Sec. 4.1.2) of system R. In particular, this proves that working
with a syntax directed and deterministic framework does not cause1 any loss of general-
ity. This also allows studying the model suggested by Chapter 12 only through system S.

In the λ-calculus, termination is called normalization and has many definitions
(Sec. 2.2). As we saw in Chapter 3, intersection types provide nice characterizations
of normalization, along with operational properties related for instance to some reduc-
tion strategy (e.g., a term t is head normalizing iff the head reduction strategy terminates
on t). See in particular Sec. 3.3.1.

Remembering Sec. 3.1.2, the first intersection type systems (introduced by Coppo
and Dezani) featured idempotent intersection operators, but Gardner and de Carvalho
[22, 43] provided a new characterization of the set of HN terms by means of a type
system R0, which resorted to non-idempotent intersection types. This framework allows
us to replace Tait’s Realizability Argument (presented in Sec. 4.3) – used to prove the
implication “Typable⇒ Normalizing” – by a considerably simpler, arithmetical one (see
e.g., the proof of Proposition 3.8). The initial version of system R0, denoted G, represents
intersection types with lists of the form A1∧. . .∧An and features an explicit permutation
rule. However, this permutation rule, which burdens the derivations, can be discarded
by representing intersection types with multisets. We thus obtain a syntax directed
presentation of the non-idempotent system R0 (Sec. 3.2.1 and 3.2.4) e.g., an intersection
type is now represented by a multiset type [σ, τ, σ] (with [σ, τ, σ] = [σ, σ, τ ] 6= [σ, τ ]).

In Chapter 10, we have investigated a type-theoretical characterization of weak nor-
malization in Λ001, an infinitary λ-calculus (presented in Sec. 9.3.2) which was introduced
in [57]. The finitary type system R0 can be given an infinitary variant R by taking its
rules coinductively (instead of inductively) and allowing multisets to be infinite. We may
notice R allows unsound infinite derivation e.g., some non-head normalizing terms are
typable in R (e.g., Ω = ∆ ∆ can be easily typed in R, see Appendix A.1). This ob-

1See the table of Sec. 4.1.3 summarizing the principal features of various intersection type systems.
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servation suggested using a validity criterion relying on the notion of approximability to
discard unsound proofs. However, we observe in Sec. 10.3.4 that this notion of approx-
imability could not be formulated in R, roughly because it is not possible to distinguish
two occurrences of the same type in a multiset (see next section). This led us to resort
to rigid constructions.

For that, we introduced system S, which is also syntax directed but in which multisets
of types are coinductively replaced by families of types indexed by (non necessarily
consecutive) integers. Those families are called sequences and those integers tracks
(Sec. 10.2.1). Indeed, tracks allow tracking (recall p. 38).

To be equal, two S-types need to be syntactically equal – let us informally say that
the equality is tight in S e.g., (2 · S, 3 · T, 8 · S) 6= (2 · S, 3 · T, 9 · S) .

In contrast, the order of enumeration of the elements of a multiset does not matter
([σ, σ, τ ] = [σ, τ, σ]): let us say the equality between multisets is loose. Thus, in system
S, types and contexts are very low-level and, as it turns out, the application typing rule
can be used only in case of tight equality. Indeed, the app-rule of system S, given in
Sec. 10.2.3, can be restated as follows:

C ` t : (Sk)k∈K → T (Dk `u :S′k)k∈K′ (Sk)k∈K = (S′k)k∈K′

C ]k∈K Dk ` t u : T
app

On the other hand, the app-rule of system R0 (Sec. 3.2.4) corresponds to:

Γ ` t : [σi]i∈I → τ (∆i ` u : σ′i)i∈I′ [σi]i∈I = [σ′i]i∈I′

Γ + (+i∈I′∆i) ` t u : τ
app

Thus, the app-rule in system R0 is based on multiset equality.
The second use that we made of system S is proving that every term was typable

in the infinite system R (Chapter 12). This is not an obvious statement as for other
infinitary type systems, because system R is relevant (weakening is forbidden) and there
is no trivial method to type a non-head normalizing term. We could not reason directly
on system R because we needed to describe the support of a prospective derivation of a
given term t and those of the types nested in the potential derivation before we decorated
them with labels (e.g., type variables or arrows). But with multiset constructions, it is
impossible to see the support of a derivation as a set of pointers, whereas it is very natural
with sequential constructions. This work provides a new relational model [17] for pure
λ-calculus (that we also refer to as R) that is able to capture semantical information
about any non-head normalizing term, as their order by Theorem 12.2 (Definition 2.8:
the order of a term t is the supremal n such that t→∗ λx1 . . . xn.t

′ for some t′).

Reduction Choices

A type system enjoys subject reduction when typing is stable under reduction (if a
term is typable, any of its reduct will be typable with the same type and context).
Syntax directed intersection type systems are usually not deterministic regarding subject
reduction: if t → t′ and Π is a derivation typing t = (λx.r)s, then, the proof of the
subject reduction property can yield several derivations Π′ typing t′ = r[s/x]. For this
reason, we say there are different reduction choices.

For instance, the type system R is syntax directed but not deterministic (Sec. 4.1.2:
when we reduce t to t′, there are several natural ways to produce a derivation Π′. This
is possible as soon as the variable x has been assigned several times a same type σ. In
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sharp contrast, the use of tight equalities in system S ensures that there is only one built-
in way – under the same hypotheses – to produce a derivation typing t′ (Sec. 10.3.3).
Thus, system S is (dynamically) deterministic. We even say that the unique reduction
choice is trivial, because, as it will turn out (Sec. 13.2.1), it is based upon an identity
isomorphism: roughly speaking, reduction is based on the track equality e.g., if there
is an axiom leaf typing x using track 8, then it will be substituted by an argument
derivation located on track 8 and so on, even when x has been assigned several times
the type S (with S = S8).

The Question of Representability

Rigid types, sequence types and derivations of system S can be naturally collapsed into
regular types, multisets types and derivations of system R. Actually, R-types and
multisets types are easily identifiable to equivalence classes of rigid (sequence) types.
We (coinductively) collapse families indexed by integers into multisets. For instance, if
we forget about tracks, the distinct sequences (2 · S, 3 · T, 8 · S), (2 · S, 3 · T, 9 · S) and
(3 · T, 9 · S, 15 · S) all collapse on [S, S, T ].

The application rule of system R is based upon a loose equality: if, inside a rigid
derivation P of system S that uses tight equality, we collapse every sequence type into
a multiset type, we obtain an R-derivation Π. However, it is not clear that, starting
from an R-derivation Π, we can find a rigid derivation P that collapses into Π. For
instance, it would demand that we can choose a good rigid representative for every type
introduced in an axiom rule, so that we have a (tight) equality in all the applications
rules. Since Π can be infinite in depth or in width and the typing constraints propagate
in complicated ways inside the derivation, the possibility of such a good choice is not
easily ensured. The presence of redexes is very problematic (Sec. 13.1.2) and since R-
typability does not ensure any form of productivity/normalization (any term is typable
in R by Theorem 12.1), they cannot be avoided.

Note that a positive answer to this question (the representability of R-derivation by
means of S-derivations) would mean that every object of the interpretation of a term t
in R (seen as a model) is obtained from S. Thus, the model R could be studied through
S without loss of generality.

Moreover, another feature of S may seem limited: in contrast to system R, the
substitutions inside an S-derivation are performed deterministically, while we reduce the
subject. This absence of reduction choices can be seen as restrictive compared to system
R, because, even when there are several occurrences of the same type, substitution can be
processed only in one way in system S, which may be considered as a restriction compared
to system R. This raises the following question: can we built a rigid representative P
of an R-derivation Π w.r.t. any reduction choice we would have done “by-hand”? If we
perform a reduction choice at each step of a reduction sequence, we speak of reduction
choice sequence.

Contributions

The three contributions of this article are the following:

• We prove (Theorem 13.1) that any derivation Π, approximable or not, has a rigid
representative P . . .
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• . . . and that any reduction choice sequence of length 6 ω can be built-in inside
such a representative P , without assuming this reduction sequence to be sound
(i.e. strongly converging, see Sec. 9.3).

• For the first point, we implement the technique that is described in the pre-
sentation p. 235, which allows us to work when no form of productive reduc-
tion/normalization is ensured.

To obtain these resultats, we represent every quantitative R-derivation Π by means
of an hybrid derivation Ph (in a new type system Sh) in which the tight equality (in
the app-rule) is loosened and replaced by a congruence. Next, we endow those hybrid
derivations with deterministic reduction choices (to be called interfaces), yielding op-
erable derivations (in another type system Sop). We then show that every “by-hand”
reduction sequence of (possible) infinite length can be encoded in an interface. The
trivial derivations are the operable derivation (system S) in which the interface uses
only identity interfaces. Finally, we prove that every operable derivation is isomorphic
to a trivial derivation. This result concludes the proof of the Representation Theorem
(Theorem 13.1) whose meaning is that S has a “full expressive power” over R.

The most difficult point is the last one i.e. establishing that every R-derivation
has a trivial S-representative. In a finitary/productive framework (for the notion of
productivity, see e.g., [42] or the discussion p. 236), this could be possible by studying
first the derivations typing a (partial) normal form (for which representation is usually
easily ensured), and then proceeding by subject expansion. However, as already noted,
typability in system R does not imply any kind of normalization (every term can be
R-typed). To prove that, for any R-derivation Π, we consider an ad hoc first order
theory T such that Π has a trivial representative iff T is consistent. Then, we prove
that, for all Π, T is consistent. For that, we reason ad absurdum by considering a proof
of inconsistency of T (such a proof will be called a brother chain) and with the help of
a finite reduction strategy called the collapsing strategy, we prove that such a chain
could be in some sense normalized. The proof is concluded when we show that the
existence of a normal brother chain would bring a contradiction.

13.1 From Representing Types in System S to
Representing Derivations

13.1.1 Multiset Types as Collapses of Sequential Types

In this section, we formally define the set of R-types as a collapse (quotient set) the set
of S-types.

Let us first remember that, in system S (Sec. 10.2.2), tracks 0 and 1 are special,
compared to tracks > 2 (called argument tracks):

• For S-types, track 1 is dedicated to the targets of arrows (whereas tracks > 2 are
used for the types in their sources)

• For S-derivations, track 0 is dedicated to the abs-rule and track 1 to the premise
typing the left-hands sides of the app-rules (whereas tracks > 2 are used for their
argument premises).

For R0-types, the order of the types in the source of arrows does not not matter
(e.g., [σ, [o, o′] → o, σ] → o′ = [σ, σ, [o′, o] → o] → o′) and in an R0-derivation, the
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order of the argument premises of an app-rule does not either i.e., intuitively, the tracks
> 2 can be freely permuted. This suggests the following notion of (labelled or not) tree
isomorphism, that can change the value of any argument track, but preserves tracks 0
and 1:

Definition 13.1. Let U1 and U2 be two (labelled) trees or forests.
A 01-isomorphism φ from U1 to U2 is a bijection from supp(U1) to supp(U2) such
that:

• φ is monotonic for the prefix order and preserves length.

• If a · k ∈ supp(U1) with a ∈ N∗ and k = 0, 1, then φ(a · k) = φ(a) · k.

• In the labelled case: for all a ∈ supp(U1), U2(φ(a)) = U1(a).

We write U1 ≡ U2 when U1 and U2 are 01-isomorphic. Since rigid types are labelled
tree, Definition 13.1 instantiates into:

Definition 13.2. Let U1 and U2 be two (sequence) types. A (sequence) type iso-
morphism from U1 to U2 is a 01-isomorphism from U1 to U2

Example 13.1. In Fig. 13.1, we see two isomorphic labelled trees T1 and T2 w.r.t.
some isomorphism φ. We have supp(T1) = {ε, 1, 4, 4 · 1, 4 · 3, 4 · 8, 8}, supp(T2) =
{ε, 1, 3, 5, 5 ·1, 5 ·2, 5 ·7} and φ is defined by φ(ε) = ε, φ(1) = 1, φ(4) = 5, φ(4 ·1) = 5 ·1,
φ(4 · 3) = 5 · 7, φ(4 · 8) = 5 · 2, φ(8) = 3.

Remark 13.1. If φ : T1 → T2 is a 01-labelled tree isomorphism, a1 ∈ supp(T1) and
a2 = φ(a1) ∈ supp(T2), then a1 = a2 (see Sec. 10.2.1 for this notation).

If U is a (labelled or not) tree or forest and φ is a monotonic, length-preserving
injection from supp(U) to N∗ s.t., in the labelled case, φ(a · k) = φ(a) · k whenever
k = 0, 1, we write φ(U) for the unique (labelled) tree or forest s.t. supp(φ(U)) =
{φ(a) | a ∈ supp(U)} and φ(U)(a′) = U(φ−1(a′)). In that case, φ(U) ≡ U . Such a
function φ then is called a 01-resetting of U .

Remark 13.2. Alternatively, we can define U1 ≡ U2 for types and sequence types by
coinduction, without reference to 01-stable isomorphisms:

• o ≡ o

• (Sk)k∈K ≡ (S′k)k∈K′ if there is a bijection ρ : K → K ′ such that, for all k ∈ K,
Sk ≡ S′ρ(k).

• (Sk)k∈K → T ≡ (S′k)k∈K′ → T ′ if (Sk)k∈K ≡ (S′k)k∈K′ and T ≡ T ′.

Mutable supports and relabellings Actually, 01-resetting a labelled (or not) tree
or forest U consists in assigning new track values to the edges labelled with tracks k > 2.
In that case, we may (a bit abusively) use the position a · k of U to stand for the edge
from a to a ·k and we set lab(a ·k) = k: the number k is indeed the track that labels the
edge from a to a · k. In the forest case, if k ∈ Rt(F ), then we also use k to denote not
an edge but the root of the tree F |k. In particular, if x : (k ·S) ` x : S, is the conclusion
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T2 = (5·(7·o1, 2·o3) → o2, 3·o2) →
o1

Figure 13.1: 01-Isomorphic Labelled Trees (S-Types)

of an ax-rule we say that k is the axiom root of this ax-rule i.e. k denotes both the
integer that labels the root of the singleton sequence type (k · S) and this root itself.

This motivates the notion of mutable support and of 01-relabelling :

Definition 13.3. Let U be a labelled (or not) tree or forest.

• The mutable support suppmut(U) = {a · k ∈ supp(U) | a ∈ N∗, k ∈ N \ {0, 1}}
(in the unlabelled case, we understand supp(U) as U).

• A 01-relabelling of U is a function θ from suppmut(U) to N \ {0, 1} such that, for
all a ∈ N, k1, k2 ∈ N \ {0, 1} such that a · k1, a · k2 ∈ suppmut(U), k1 6= k2 implies
θ(a · k1) 6= θ(a · k2).

Intuitively, suppmut(U) is the set of edges of U whose track value may be changed
and θ(a ·k) is the new track (given by θ) of the edge between position a and the mutable
position a · k. Indeed, from a 01-relabelling θ of U , we can define a 01-resetting of U
denoted φθ by induction:

• φθ(ε) = ε.

• φθ(a · k) = φθ(a) · k if k = 0, 1

• φθ(a · k) = φθ(a) · θ(a · k) if k ∈ N \ {0, 1}.

Thanks to Definition 13.3, the function φθ is indeed a 01-resetting of U . We call it the
resetting induced by θ.

Definition 13.3 can also be instantiated for rigid types:

Definition 13.4. A 01-resetting (resp. 01-relabelling) whose domain is a rigid (se-
quence) type is called a (sequence) type resetting (resp. a (sequence) type rela-
belling).

Example 13.2. The transformation from T1 to T2 in Fig. 13.1 can be seen as the re-
labelling θ defined on suppmut(T1) = {4, 4 · 3, 4 · 8, 8} by θ(4) = 5 (the edge labelled 4
receives the new label 5), θ(4) = 5, θ(4 · 3) = 7, θ(4 · 8) = 2, θ(8) = 3.

Let F and F ′ two 01-isomorphic (labelled) forests. A root isomorphism is a
function ρ from K = Rt(F ) to K ′ = Rt(F ′) such that, for all k ∈ K, F |k ≡ F ′|ρ(k).
Thus, a root isomorphism is a function ρ from Rt(F ) to Rt(F ′) that can be extended to
a 01-isomorphism from F to F ′. Conversely, every isomorphism φ from F to F ′ induces
a root isomorphism from F to F ′, that we denote Rt(φ).
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Example 13.3. Let T1 and T2 be the types of Fig. 13.1. Let us set F1 = (3 · T1, 4 · o, 7 ·
(2 · o, 5 · o′)→ o′) and F2 = (2 · o, 7 · (3 · o′, 5 · o)→ o′, 9 · T2).
Then Rt(F1) = {3, 4, 7}, Rt(F2) = {2, 7, 9} and ρ : Rt(F1)→ Rt(F2) defined by ρ(3) = 9,
ρ(4) = 2, ρ(7) = 5 is a root isomorphism from F1 to F2.

Let us try now to build the (possibly) infinite versions of R0-types as collapses of
rigid types. As already remarked several times, in the finite case, when we forget about
tracks, a finite rigid type collapses on an R0-type e.g., T = (7 · o1, 3 · o2, 2 · o1) → o,
T ′ := (9 · o2, 7 · o1, 6 · o1) → o or T ′′ = (7 · o2, 3 · o1, 2 · o1) → o all three collapse on
τ = [o1, o2, o1] → o. But note that T , T ′ and T ′′ collapse on τ precisely because they
are isomorphic types.

Thus, we can define the set of R-types, that correspond to the infinitary version of
R0-types, as the quotient set Typ/ ≡. For instance, in Fig. 13.1, both T1 and T2 collapse
on [o2, [o1, o3]→ o2]→ o1. Multisets types of system R are the ≡-equivalence classes of
sequence types. Note that R allows infinite multiset types and infinite nesting of types
inside multisets.

System R is defined as R0 (Sec. 3.2.4), except that we use the coinductive types of
R instead of just finite types of R0 and we allow coinductive derivations to type the
infinite terms of Λ001. A countable version of the binary operator + can be easily defined
(more details will be given in Sec. 13.1.3).

The following observations and notations will be useful to define isomorphisms by
induction:

Notation 13.1.

• If S = F → T , where F is a sequence type and T a type, we write Sc(S) for the
sequence type F (the source of S) and Tg(S) for the type T (the target of S).

• If ψ : F1 −→ F2 is a sequence type isomorphism and φ : T1 → T2 is a type
isomorphism, then ψ → φ : (F1 → T1) → (F2 → T2) is the type isomorphism
defined by: (ψ → φ)(k · c) = φ(k · c) when k > 2 and (ψ → φ)(1 · c) = 1 · φ(c). If
F is a sequence type, then F → φ denotes idF → φ.

• Conversely, if φ is a type isomorphism from F1 → T1 to F2 → T2, then Tg(φ)
and Sc(φ) are respectively the type isomorphism from T1 to T2 and the sequence
type isomorphism from F1 to F2 induced by φ. Thus, φ = Sc(φ) → Tg(φ) and
Tg(ψ → φ) = φ and Sc(ψ → φ) = φ.

13.1.2 The Representation Theorem and Hybrid Derivations

Now that we have formally defined R-types (types based on multiset constructions) as
collapses of S-types, we can better understand some difficulties related to the represen-
tation of the R-derivations by means of S-derivations.

As observed before, R-derivations collapse2 on S-derivations e.g., in Sec. 10.2.3, Pex
collapses on Πex, but the surjectivity of this collapse is not ensured at this stage. From
the introduction, we recall that we will give a positive answer to this question:

Question 1: Is every R-derivation the collapse of an S-derivation?

2This collapse will be also formalized (Sec. 13.1.3).



294
CHAPTER 13. THE SURJECTIVITY OF THE COLLAPSE OF SEQUENTIAL

INTERSECTION TYPES

From Theorem 12.1, we know that every term is typable in R If we try to proceed by
induction on the structure of an R-derivation Π, we may be easily stuck. For instance,
assume that:

• Π =
Πλx.r � Γ ` λx.r : [σi]i∈I → τ (Πi �∆i ` s : σi)i∈I

Γ + (+i∈I∆i) ` (λx.r)s : τ
.

• Πλx.r and the Πi are all S-representable.

The second assumption means that there are S-derivations Pλx.r�C ` λx.r : (Sk)k∈K →
T and (Pi �Di ` s : S′i)i∈I′ that respectively collapse on Πλx.r and the Πi. But Pλx.r
and the Pi can be used to represent Π only if (1) we can ensure that the Sk and the
S′i are syntactically equal (modulo some permutations) and (2) that we can avoid track
conflict.

For point (1), notice that, given a term t typable with type τ in R, there may be
some S-types T that collapse on τ such that t is not S-typable with T e.g., if S = σ = S′,
but S 6= S′, then T := (2·S) → S′ collapses on τ := [σ] → σ and I := λx.x can be
R-typed with τ and S-typed with (2·S)→ S or (5·S′)→ S′, but not with T .

Thus, some typing constraints inside r or s could a priori forbid that we can equalize
the Sk and the S′i since it is difficult to describe the S-types of r and s that collapse on
τ or σi. Since R-types may be infinite and there is no productive reduction, we cannot
resort to Tait’s realizability argument or even step-indexed logical relations. We then use
the method described in the Presentation of p. 253 that is also used in Chapter 12. The
remainder of this chapter is dedicated to proving that the answer to the above question
is positive, that is:

Theorem 13.1 (Representation). Every R-derivation is the collapse of an S-derivation.

First, the above discussion suggests that system S is too constraining for the question
of representability to be addressed directly and that we should relax the app-rule. This
motivates to define the set Derivh of hybrid derivations by replacing, in Deriv, the
rule app by:

C ` t : (Sk)k∈K → T (Dk ` u : S′k)k∈K′ (Sk)k∈K ≡ (S′k)k∈K′

C ] (]k∈KDk) ` tu : T
apph

Thus, the apph-rule demands that, for an application t u to be typed, (Sk)k∈K , the
source of the arrow type given to t must be 01-isomorphic to the sequence type (S′k)k∈K′

given to u i.e. apph demands that (Sk)k∈K =: LP (a) ≡ RP (a) := (S′k)k∈K′ . We call the
sequence types LP (a) (resp. RP (a)) the left key (resp. the right key) at position a in
P . We often write simply R(a) and L(a) for those sequence types. Note that a hybrid
derivation P is trivial when for all a ∈ supp@(P ), LP (a) = RP (a) i.e. when the left and
the right keys are equal.

More formally, let P be a hybrid derivation. We set supp@(P ) = {a ∈ supp(P ) | t(a) =
@}. For all a ∈ supp@(P ), we set LP (a) = Sc(TP (a·1)) and RP (a) = (TP (a·k))k∈ArgTrP (a),
where ArgTrP (a) = {k > 2 | a · k ∈ supp(P )} (this is a particular case of Notation 10.1).

The notion of quantitative derivation (Sec. 10.3.2) straightforwardly extends to
hybrid derivations, as well as the notations posP , AxP etc.
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13.1.3 System R and the Hybrid Construction

In this section, we prove that representability is easy when considering hybrid derivation
instead of trivial derivations. We also make more precise the definition of system R (an
infinitary version of Gardner/de Carvalho’s system R0) that has already been informally
used in several occasions (e.g., Sec. 10.1.3 or 12.1). The idea is to define system R with
sequential constructions and then specifying than the tracks do not matter (for that, we
resort to equivalence relations using 01-isomorphisms).

We first recall that we have defined the R-types as the equivalence classes of rigid
types under ≡.

If U is an S-type or a sequence type, its equivalence class is written U . We may now
define coinductively the notation of the collapses of S-types:

• The equivalent class of a sequence type F = (Sk)k∈K is the multiset type written
[Sk]k∈K

• We write F → T for F → T .

• If o is a type variable, o is the singleton {o} is written simply o (instead of {o}).

If T = τ (resp. F = [σi]i∈I), we say that T (resp. F ) is a parser of τ (resp. [σi]i∈I).

Countable Multiset Sum We may define countable sum operator + on multiset
types. We then adapt Remark 3.5 and prove that the multiset sum is infinitarily asso-
ciative and commutative as expected. For instance, let F = (Sk)k∈K be a sequence type.
We define the function mF from the set of R-types to N ∪ {∞} by: for all R-type σ,
mF (σ) = #{k ∈ K |Sk = σ} i.e. mF (σ) is the (possibly infinite) number of occurrences
of σ in m. Since F ≡ F ′ obviously implies mF = mF ′ . From that, the verifications are
easy.

Semi-Rigid Derivations An R-context is a function from the set of term variables
V to the set of (infinite) multiset types. An R-judgment is a triple of the form Γ `
t : τ where Γ is an R-context, t a 001-term and τ an R-types. The set of semi-rigid
derivations is the set of trees (labelled with R-judgments) defined coinductively by the
following rules

x : [τ ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (∆k ` u : σ′k)k∈K [σi]i∈I = [σ′k]k∈K

Γ +k∈K ∆k ` t u : τ
app

Why semi-rigid derivations? Because the argument subderivations are still placed
on argument tracks k ∈ K, while obviously, they should not matter when we work with
multisets. Let P1 and P2 be two semi-rigid derivations. We can write P1 ≡ P2 to
mean that there is a 01-labelled isomorphism from P1 to P2. We define the set of R-
derivation as the quotient set of that of semi-rigid derivations by the relation ≡. Then,
we obtain exactly the rules of system R0, except that the types are taken in TypR , as
expected in Sec. 13.1.1. Notice that the derivations Π and Π′ of Subsection 10.1.3 are
R-derivations w.r.t. this formal definition. Quantitativity can be defined in system R
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(see Appendix A.6.1).

Let Π be a quantitative R-derivation. We show now that Π has a hybrid quantitative
representative P . Let then P̃ be a quantitative semi-rigid derivation representing P̃ and
A = supp(P̃ ). For each a ∈ AxP , we choose an integer tr(a) greater > 2 s.t. no
conflict arises (that is, for all x ∈ V , there are no a′, a′′ ∈ AxPa (x) s.t. a′ 6= a” and
tr(a′) = tr(a′′)).

For each axiom leaf a ∈ A of Π, we choose Tax(a), a type representing τ(a).

We write C(a)(x) for the sequence type (tr(a0)·Tax(a0))a0∈Axa(x). and we choose for
each a ∈ A a representative T (a) of τ(a), by a induction.

• If a is an axiom leaf, we set T(a) = Tax(a).

• If a·0 ∈ A, then t(a) = λx and we set T(a) = C(a·0)(x)→ T (a·0).

• If a·1 ∈ A, then we set T (a) = Tg(T (a·1)).

The above induction shows that the definition is sound (T (a) = τ(a) for all a ∈ A)
and that we have P ∗ = Π. We call this process the hybrid construction.

13.2 Subject Reduction

Systems R and S satisfy subject reduction and subject expansion, and Sh almost does:

Property 13.1.

• Subject Reduction: if t → t′ and �ShC ` t : T , then �ShC ` t′ : T ′ for some
T ′ ≡ T .

• Subject Expansion: if t → t′ and �RΓ ` t′ : τ , �ShC ` t′ : T ′, then �ShC ` t : T
for some T ≡ T ′.

In this section, we explain how subject reduction is handled with trivial and hybrid
derivations and why T may be replaced by an isomorphic type T ′ in Sh (and vice versa).
In system Sh, we retrieve some determinism by considering (root) interfaces i.e. se-
quence type isomorphisms that constrain how reduction is processed in a derivation and
how axiom leaves typing x, the variable or a redex, should be replaced by argument
derivations typing while respecting the rules of Sh. This is explained in Sec. 13.2.1 from
a high-level perspective. In Sec. 13.2.2, we give a few intuitions on the means to capture
sequences of reduction choices.

13.2.1 Encoding Reduction Choices with Interfaces

In Sec. 13.2.1, we explain how reduction choices (Sec. 4.1.2) in system Sh can be encoded
by using sequence type isomorphisms that we call interfaces.

For the remainder of the section, we assume that t|b = (λx.r)s, t
b→ t′ (so that

t′|b = r[s/x]), each axiom rule concluding with x : (k · Sk) ` x : Sk will be replaced by a
subderivation Pk′�Dk′ ` s : S′k′ satisfying S

′
k′ ≡ Sk. So that there may be many ways to

produce P ′ typing t′ if (Sk)k∈K (and so, (S′k)k∈K′ as well) contains some 01-isomorphic
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Assumptions: ρa(2) = 8, ρa(7) = 5
(so that S2 ≡ S′8, S7 ≡ S′5)

Comment: since ρa(2) = 8, ρa(7) =
5, the argument subderivation P8 (resp.
P5) on track 8 (resp. 5) will replace the
axiom rule using track 2 (resp. 7).

C;x : (Sk)k∈K ` t :T
0

C`λx.r : (Sk)k∈K→T

1
C ]D5 ]D8 ` (λx.r)s : T 〈a〉

Pr ♥
〈a·1·0·α♥〉

x : (7·S7)

〈a·1·0·a7〉

x : (2·S2)

〈a·1·0·a2〉

P5

D5`s :S′5

5

P8

D8`s :S′8

8

♣

〈a·8·α♣〉

Subderivation typing the redex

Pr
♥
〈a·α♥〉

C ]D5 ]D8 ` r[s/x] : T ′ 〈a〉

P5

D5`s :S′5

〈a·a7〉

P8

D8` s :S′8
〈a·a2〉

♣

〈a·8·α♣〉

Subderivation typing the reduct

Figure 13.2: Subject Reduction and Residuals

types. We say then that there are reduction choices in system Sh. This also holds for
system R.

All this is illustrated by the left part of Fig. 13.2, which generalizes Fig. 10.5, p. 218,
since system Sh extends system S: under the same hypotheses, we assume that a ∈
supp(P ) is such that a = b (thus, a is the position of a judgment typing the redex to be
fired) and that there are exactly 2 ax-rules typing x above a, using axiom tracks 2 and
7. Notice that the ax-rule typing x on track 7 (assigning S7) must be above a · 1 · 0, so
that its position is of the form a ·1 ·0 ·a7. Likewise, for the other ax-rule assigning S2 on
track 2. We omit ax-rules right-hand sides. We indicate again the position of a judgment
between angle brackets e.g., 〈a · 1 · 0 · a7〉 means that judgment x : (7 · S7) ` x : S7 is at
position a · 1 · 0 · a7.

By typing constraints, there must be two argument derivations typing s with types
isomorphic to S2 and S7. We assume that those two argument derivations are on track
5 and 8 and conclude with Dk ` s : S′k (k = 5, 8) where e.g., S2 ≡ S′8 and S7 ≡ S′5. If
moreover, S2 ≡ S7, then the ax-rule #2 can be replaced by P5 as well as by P8: there is
a reduction choice. In all cases, the type of r[s/x] may change e.g., if x : S7 corresponds
to the head variable of r, then S7 is replaced by an isomorphic type S′5 (or S′8), so T
may also be replaced by an isomorphic T ′.

We use now 01-root isomorphisms (Sec. 13.1.1) to represent particular reduction
choices in system Sh. Let P be a hybrid derivation:

• Let a ∈ supp@(P ). A root interface (resp. an interface) at position a is a root
isomorphism (resp. a sequence type isomorphism) from LP (a) to RP (a).

• Let b ∈ supp(t) such that t(b) = @. A total (root) interface at position b is a
family of (root) interfaces for all a ∈ supp(P ) s.t. a = b.

• A total interface is the datum for an interface φa for all a ∈ supp@(P ).
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For all a ∈ supp@(P ), we write InterP (a) for the set of interfaces at position a in P .
Note that a root interface is a function (between root tracks) that can be extended to
an interface isomorphism and conversely, every interface isomorphism φ.

An operable derivation is a hybrid derivation endowed with a total interface. If P
is an operable derivation whose interface is (φa)a∈supp@(P ), we usually only write ρa for
Rt(φa) (so that ρa is a root interface) and we set LP = {(a · 1, k · c) ∈ bisupp(P ) | k ∈
N\{0, 1}} and RP = {(a ·k, c) ∈ bisupp(P ) | k ∈ N\{0, 1}}. For all p = (a ·1, k ·c) ∈ LP ,
we just write φ(p) for (a · k′, c′) with k′ ∈ N \ {0, 1}, c′ ∈ N∗ and k′ · c′ = φa(k · c).

Assuming that S2 ≡ S7 in Fig. 13.2, we have seen above that the two ax-rules typing
x could be indifferently replaced by P5 or P8. But if a is endowed with the root interface
ρa s.t. ρa(2) = 8 and ρa(7) = 5, then the ax-rule typing x on track 2 must be replaced
by P8 and the other one by P5, as on the right part of the figure.

Remark 13.3. Still assuming that S2 ≡ S7, the root interface ρa defined by ρa(2) = 5
and ρa(7) = 8 is licit, but it would produce another derivation typing r[s/x], obtained
from the right part of Fig. 13.2 by swapping the two inner triangles.

In contrast, if we assume now that P is a trivial derivation (system S), then (Sk)k∈K =
(S′k)k∈K′ and there is always one straightforward canonical way to produce a derivation
P ′ typing t (remember Sec. 10.3.3): for all k ∈ K, we replace the axiom rule concluding
with x : (k · Sk) ` x : Sk by Pk i.e. P |a·k (a process that can seem somewhat limited, as
discussed on p. 289): implicitly, a trivial derivation is endowed with a trivial interface
i.e. we consider only the identity isomorphism from LP (a) to RP (a) for all a ∈ supp@(P ).

13.2.2 Residuation and Encoding Reduction Choices

In Sec. 13.2.2, we give a high level input on how interfaces can actually capture sequences
of reduction choices.

As seen in Sec. 13.2.1, a total root interface(ρa)a=b (we write a = b for a ∈ supp(P ), a =
b) at position b is enough to formally capture the notion of reduction choice used im-
plicitly to define a derivation P ′ typing t′ from a derivation P typing t when t

b→ t′.
This allows us to define a suitable notion of residuals of positions (the residual of
α ∈ supp(P ), if it exists, is a α′ ∈ supp(P ′) that may be denoted Res

ρ
b(α
′) since it

depends both on b and (ρ)a=b).
Now, if instead of endowing P with a total root interface (ρa)a=b at position b, we

endow it with a total interface (φa)a=b at position b, we can define a notion of residuals
(and quasi-residuals) for right bipositions (Sec. 10.3.1) as we did for system S (trivial
derivation) in Sec. 10.3.3 and 12.4.1. The definitions are not so straightforward because
they involve type isomorphisms. See Appendix B.1 for the details.

The residual (resp. quasi-residual) of (α, c) may be then denoted Res
φ
b (α, c) (resp.

QRes(α, c)). Interestingly, if we can define the residual of interfaces: more precisely, if
P is endowed with a total interface at position b and α ∈ supp@(P ) is such that α 6= b,
then α has a residual α′ := Res

φ
b (α) w.r.t. φ and there is a bijection ResI

φ
b (α) from

InterP (α) to InterP
′
(α′)

Thus, every interface ψ′α′ at position α
′ in the derivation P ′ typing the reduct t′ may

be seen as the residual ResIφb (a)(ψα) of some interface ψα at position α := (Resφb )−1(α′)
in the derivation P . Since (1) reduction choices in P ′ can be implemented with some
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interfaces of P ′ and (2) interfaces of P ′ are residuals3 of interfaces of P , we can directly
implement reduction choices in P ′ with interfaces in P (instead of P ′). By induction,
this allows us to endow directly inside some interfaces of P a sequence of reduction
choices along a reduction sequence t = t0

b0→ . . .
bn−1→ tn. This explains why:

Lemma 13.1. Every sequence of reduction choices of length 6 ω in a quantitative
derivation Π can be built-in in an operable derivation representing Π.

Proof. A complete proof of this statement can be found in Appendix B.1.4.

13.3 Representation Theorem and Isomorphisms of
Derivations

In this section, we explain why the proof of the Representation Theorem may be related
to the notion of isomorphism of derivations and then, we will describe those isomorphisms
in different suitable ways, till we introduce the notion of relabelling of derivation in
Sec. 13.3.3.

As we will see in Sec. 13.4, some edges inside a derivations may be identified (because
they correspond to a same type moving through the judgments). This motivates to
consider the notion of thread (from Sec. 11.1.1), that is formally defined in the setting
of this chapter in Sec. 13.4.1.

Since a hybrid derivation P is a tree of N∗ that is labelled with rigid judgments, and
for all a ∈ supp(P ), TP (a) is also a labelled tree of N∗, it is easy to define the notion
of isomorphism (Definition 13.5 below) from one hybrid derivation P1 to another P2,
using suitably the notion of 01-isomorphism Sec. 13.1.1, by just specifying how (2) the
support of P1 is mapped onto that of P2 (2) how the types assigned in ax-rules in P1

are mapped onto those of P2 (since a quantitative hybrid derivation P can be computed
from supp(P ) and the datum of the types assigned in ax-rules).

Actually, two hybrid derivations P1 and P2 are isomorphic iff they collapse on the
same R-derivation. From Sec. 13.2.1, we recall that an operable derivation is a hybrid
derivation P that is endowed with a total interface (φa)a∈supp@(P ). This motivates the
notion of isomorphism of operable derivations. Informally, if P1 and P2 are operable
derivations, then an isomorphism Ψ of hybrid derivations from P1 to P2 is actually an
isomorphism of operable derivations if Ψ commutes with the interfaces of P1 and P2.

Now, since we remember that a trivial derivation is endowed with identity interfaces,
the Representation Theorem is a consequence of this one:

Theorem 13.2. Every operable derivation is isomorphic to a trivial derivation.

With Lemma 13.1, this theorem means that any R-derivation Π and any sequence of
reduction choices w.r.t. Π can be encoded by an S-derivation P , as expected from the In-
troduction. Let us now define isomorphisms (Sec. 13.3.1) and resettings (Sec. 13.3.2). In
Sec. 13.3.3, we extend the notion of 01-relabelling to define that of relabelling of deriva-
tions, that allow describing more lightly isomorphisms of derivations and, prospectively,
to prove Theorem 13.2 above.

Remark 13.4. Intuitively, system Sh is statically rigid, because hybrid derivations have
a bisupport and any symbol in an Sh-derivation can be pointed to. But it is not dy-
namically rigid: indeed, there is no canonical way to perform subject reduction on

3via the interfaces of P corresponding to position b, that define residuation when firing the redex.
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Sh-derivation since the premises of the application rule are of the form t : (Sk)k∈K → T ,
(u : S′k′)k′∈K′ and (Sk)k∈K ≡ (S′k)k∈K′ but nothing indicates how reduction should be
processed when there are several isomorphic Sk (i.e. there are reduction choices).

System Sop is rigid, but it is not syntax directed: the application rule in system Sop
is intuitively indexed by the set of sequence type isomorphisms, since a sequence type
must be specified in each use of app-rule.

Thus, the only fully rigid syntax directed system is system S. The twin theorems 13.1
and 13.2 entail that there is no loss of generality to consider the rigid and syntax directed
system S instead of the non-rigid system R or the non-syntax direct system Sop. In
particular, Theorem 13.1 means that there is no need to burden the typing system with a
complicated permutation rule. In the finite case, this means that Gardner/de Carvalho’s
original system G (with the perm-rule) and system R0 are both subsumed by system S0,
the finite version of system S.

13.3.1 Isomorphisms of Operable Derivations

In Sec. 13.3.1, we define a natural notion of isomorphism between hybrid or operable
derivations.

Let P1 and P2 be two hybrid derivations collapsing one the same R-derivation Π
(thus, intuitively, P1 and P2 should be isomorphic as hybrid derivations). We set
Ai = supp(Pi) and we write Ci, Ti, tri, posi for CPi , TPi , trPi , posPi and so on.
We write Axi for the set of leaves of Ai (i = 1, 2).

Definition 13.5. A hybrid derivation isomorphism Ψ from P1 to P2 is the datum
of:

• Ψsupp a 01-isomorphism from A1 to A2. We often write Ψ instead of Ψsupp.

• For each a1 ∈ Ax1, a type isomorphism Ψa1 from T1(a1) to T2(a2), where a2 =
Ψ(a1).

We often just write Ψ(a1) instead of Ψsupp(a1), for a1 ∈ supp(P1). We can check that
isomorphisms of hybrid derivations behave as expected (e.g., a judgment of P1 is mapped
onto a judgment of P2 that represents the same R-judgment) and allow defining many
useful isomorphisms, as the isomorphisms from the keys of P1 to the keys of P2. The
following claims are detailed in Appendix B.2.1 and are proved by downward induction,
using the typing rules of Sh:

• If Ψ(a1) = Ψ(a2), then t(a1) = t(a2) (since a1 = a2), and Ψ induces a bijection
from Ax1 to Ax2 and from supp@(P1) to supp@(P2). In particular, Ψ maps the
ax-rules (resp. the app-rules) of P1 onto the axioms (the app-rules) of P2.

• Let a1 ∈ A1 and a2 = Ψ(a2) ∈ A2, C1 = C1(a1), C2 = C2(a2), T1 = T1(a1) and
T2 = T2(a2), so that P1(a1) = C1 ` t|b : T1 and P2(a2) = C2 ` t|b : T2 with
b = a1 = a2. Then, from Ψ, we can canonically define:

– A type isomorphism, denoted4 Ψa1 , from T1 to T2.

– A sequence type isomorphism, denoted Ψa1,x, from C1(x) to C2(x), for all
x ∈ V .

4This thus extends the notation Ψa1 for all a1 ∈ supp(P ), and not only for the positions of ax-rules.
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This indeed means that P (a1) and P (a2) represent the same R-judgments, as
hinted at above.

• We can canonically define from Ψ a bijection from bisupp(P1) to bisupp(P2). The
image of a biposition p1 ∈ bisupp(P1) by this bijection is simply noted Ψ(p1). The
bijection Ψ maps right (resp. left) bipositions of P1 onto right (resp. left) bipositions
of P2.

An important point to formulate properly Theorem 13.2 is that Ψ also induce isomor-
phisms from the left keys (resp. the right keys) of the app-rules of P1 to those of P2 i.e.
from Ψ, we can canonically define, for all a1 ∈ supp@(P1) and a2 = Ψ(a2) ∈ supp@(P2):

• A sequence type isomorphism ΨL
a1 from L1(a1) to L2(a2).

• A sequence type isomorphism ΨR
a1 from R1(a1) to R2(a2).

Definition 13.6. Let P1 and P2 be two operable derivation typing the same term t.
Their interface isomorphisms are written (φi,a)a∈supp@(Pi) (i = 1, 2). An operable
derivation isomorphism is a hybrid derivation isomorphism Ψ from P1 to P2 such
that for all a1 ∈ supp@(P1) and a2 = Ψ(a1), the following diagram is commuting:

L1(a1)
φ1,a1
−−−−→ R1(a1)yΨL

a1

yΨR
a1

L2(a2)
φ2,a2
−−−−→ R2(a2)

13.3.2 Resetting an Operable Derivation

In Sec. 13.3.2, we explain how to reset a hybrid or operable derivation into a new one
that is isomorphic to the former. This is a first step before characterizing the resetting
that define a trivial derivation later on (Sec. 13.4.3).

Let P an operable derivation. We reuse the notations A, C, T, Ax, tr, pos and
(φa)a∈supp@(P ). In the last section, we have defined, the notion of isomorphism from
one operable derivation P1 to another P2. Now, using 01-resettings (Sec. 13.1.1) and in
particular, of type resetting, we want to build, given only one operable derivation P , a
derivation P0 that is isomorphic to P . This will serve the purpose of proving that every
operable derivation is isomorphic to a trivial derivation.

Definition 13.7. A resetting of P is given by the data of:

• Ψsupp a 01-resetting of A.

• For each a ∈ Ax, Ψa a type resetting of T(a).

• Ψtr an injection from Ax to N \ {0, 1}.

The function Ψsupp describes the new support of the derivation and the function Ψa

the new supports of the types assigned in the axiom rules. The function Ψtr is used
to define new track values. Theoretically, we only need to avoid track conflict, but the
injectivity of Ψtr will actually serve to produce a derivation P0 isomorphic to P such
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that two distinct axiom rules of P0 do not use the same axiom track (which of course
ensures the absence of track conflict). We state the following proposition in an informal
(but intuitive way). See Appendix B.2.2 for a complete statement and its proof.

Proposition 13.1. Let P an operable derivation. From a resetting Ψ of P , we can
canonically define another operable derivation, denoted Ψ(P ), such that Ψ induces an
isomorphism of operable derivation from P to Ψ(P ).

13.3.3 Relabelling a derivation

We recall that tracks are numbers that label edges (of types or of derivations). Let P be
an operable derivation. We want to find a trivial derivation P0 that is isomorphic to P
(as an operable derivation). But roughly speaking, defining an isomorphism of operable
derivation whose domain is P is a matter of giving new values to the tracks that are
present in P . These new values must be chosen appropriately to:

(1) respect the typing rules of Sh

(2) respect the interface of P and yield a trivial derivation.

In system Sh, tracks 0 and 1 are special (they are dedicated to the premise of the
abs-rule or the left-premise of the apph-rule and also to the target of→) and their value
is fixed by 01-isomorphisms. But the value of tracks > 2 may be changed: we say that
they are mutable. We write informally E(P ) for the set of edges nested in P whose tracks
are mutable. An element e ∈ E(P ) is called a mutable edge, that may be of 3 natures:

• The edges of the source of arrows nested in types (inner mutable edges).

• The edges leading to an argument derivation in some apph-rule (argument edges).

• Not edges but the axiom roots (p. 292) which are labelled with axiom tracks in
contexts.

The set of argument edges corresponds to suppmut(P ) (Sec.13.1.1). By analogy
with suppmut, we define the mutable bisupport of P by bisuppmut(P ) = {(a, c) ∈
bisupp(P ) | c ∈ suppmut(T

P (a))} ∪ {(a, x, ` · c) ∈ bisupp(P ) | c ∈ suppmut(C
P (a)(x))}.

Implicitly:

• A right biposition e = (a, c · k) ∈ bisuppmut(P ) stands for the edge from c to c · k
in the type TP (a). Its label lab(e) is then k.

• A left biposition e = (a, x, ` · c · k) ∈ bisuppmut(P ) stands for the inner edge from
c to c · k in the sequence type CP (a)(x). We set then lab(e) = k.

• A left biposition e = (a, x, `) does not stand for a proper edge but for the “axiom
root” of CP (a)(x)|` (we recall that ε /∈ supp(CP (a)(x)) since CP (a)(x) is a forest).
We set then lab(e) = `.

However, contexts are inactive in the typing rules and moreover, in a hybrid derivation
P , every context is determined by the types and axiom tracks given in the axiom leaves
(notwithstanding outer argument tracks), so that we do not need to consider mutable
left bipositions/edges except for the ax-tracks in ax-rules. Metavariable e is used to
denote mutable edges. Thus, we set E(P ) = suppmut(P ) ∪ {(a, c) ∈ bisuppmut(P )|a ∈
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N∗, c ∈ N∗} ∪ AxP × {ε}. A (a, ε) ∈ AxP × {ε} can be seen as a placeholder for the new
axiom track value that will be assigned to the axiom at position a.

Remark 13.5 (Axiom Roots). Note that the set of axiom roots in ax-rules (cf. p. 13.1.1)
cannot be safely identified with AxP because it is possible that suppmut(P ) ∩ AxP 6= ∅:
indeed, if a · k ∈ AxP , we also have a · k ∈ suppmut(P ). In the latter case, a · k is not
taken as an ax-rule but as the argument edge from a to a · k.

Actually, as it has been noticed before (the hybrid construction of Sec. 13.1.3 makes
use of that), everything in a hybrid derivation P can be computed from the ax-rules via
the support of P . If we remember the notion of relabelling from Sec. 13.1.1, resetting an
operable derivation P (hopefully, into a trivial derivation) is mainly a matter of giving
new good track values to:

• the mutable tracks of the types assigned in ax-rules.

• the axiom tracks given in ax-rules

• the argument tracks of argument rules.

This suggests the notion of referent as well as that of relabelling of a derivation: the
referents of P are the mutable e ∈ E(P ) that generate the derivation P and a relabelling
of P is the datum of new values to assign to the referents.

Definition 13.8. Let e ∈ E(P ).

• e is an inner referent (written e ∈ refin(P )) if e = (a, c) for some a ∈ AxP and
c ∈ suppmut(T

P (a)).

• e is an axiom referent if e = (a, ε) for some a ∈ AxP (i.e. e ∈ AxP × {ε})

• e is an argument referent if e = a for some a ∈ suppmut(P ) (i.e. e ∈ suppmut(P )).

A referent of P is an element of the set ref(P ) = refin(P ) ∪ AxP × {ε} ∪ suppmut(P )

Definition 13.9. A relabelling Θ of an operable derivation P is given by:

• A relabelling Θarg of suppmut(P ).

• For all a ∈ Ax, a relabelling Θa of TP (a).

• An injection Θtr from Ax× {ax} to N \ {0, 1}.

When such a Θ is given, we reuse the construction of the resetting induced by a rela-
belling of Sec. 13.1.1.

• We define a function ΨΘ
supp as the 01-resetting of supp(P ) induced by Θarg.

• For all a ∈ Ax, we define ΨΘ
a as the 01-resetting of TP (a) induced by Θa.

• We set ΨΘ
tr(a) = Θtr(a, ε) for all a ∈ Ax.

Thus, ΨΘ is a resetting of P (Definition 13.7). We then set PΘ = ΨΘ(P ) (Proposi-
tion 13.1). Thus, PΘ is a derivation that is isomorphic to P .
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Abstraction rule
ax

x : (5·S5) ` x : S5 〈pos(a · 0, x, 5)〉

C; x : (Sk)k∈K ` t : T 〈a·0〉
abs

C ` λx.t : (Sk)k∈K → T 〈a〉

Application rule

C ` t : (Sk)k∈K → T 〈a·1〉 (Dk ` u : S′k 〈a·k〉)k∈K′ apph
(Sk)k∈K ≡ (S′k)k∈K′

C ] (]k∈KDk) ` tu : T 〈a〉

endowed with an interface φa : (Sk)k∈K → (S′k)k∈K′

Figure 13.3: Ascendance, Polar Inversion and Consumption (Hybrid Setting)

13.4 Edge Threads

In this section, we start to use the ideas and techniques presented on p. 235 (that are
also implemented in Chapter 12). For that, we will consider the notions of ascendance,
polar inversion, syntactic polarity and threads.

Let us first shortly discuss the moves of a type inside a hybrid derivation by look-
ing at Fig. 13.3 (we refer to Sec. 11.1.1, 11.3.1 and 11.3.2 for more detailed descriptions
of those moves). As it was noticed in Chapter 11 and Sec. 12.2.3, types move inside a
derivation (and they occur at several places). In particular, we refer to Sec. 11.1.1, 11.3.1
and 11.3.2 for more detailed descriptions of those moves and the notions of ascendance
and polar inversion. In system Sop, this can be illustrated with Fig. 13.3. For instance,
in the abs-rule, type T “moves” from the premise (as the type of t) to the conclusion,
where it is the target of the arrow type (Sk)k∈K → T given to λx.t. We say the former
occurrence of T is the ascendant of the latter. Likewise, in the apph-rule, the type T
occurs as the target of the arrow type given to t and as the type of t u. Moreover, in the
abs-rule, the occurrence of S5 corresponds to that in the right-hand side of the ax-rule
at position pos(a, k, x). We also say that the occurrence of S5 in the ax-rule is the
ascendant of the one in the abs-rule. Intuitively, this means that there is a congruence,
that we also5 denote ≡, on E(P ), that identifies labelled edges according to the moves
of the types inside P . Concretely, two labelled edges e1 and e2 are congruent iff the
typing rules of Sh constrain them to be labelled with the same track, as expected. We
denote by ThrE(P ) the quotient set of E(P ) by ≡ and an element θ ∈ ThrE(P ) is called
a mutable edge thread or simply a thread. Of course, an isomorphism Ψ of hybrid
derivations must assign the same track value to two edges e1 and e2 of the same thread θ.

This discussion explains how to capture point (1) of the beginning of Sec.13.3.3 i.e.
respecting the typing rules of Sh. For point (2), we also want to respect the interface
(φa)a∈supp@(P ) of P while obtaining a trivial interface (i.e. using only identity isomor-
phisms). In the apph-rule of Fig. 13.3, the interface φa will map the sequence type
(Sk)k∈K onto (S′k)k∈K′ . Thus, φa will identify every mutable edge of (Sk)k∈K with a

mutable edge of (S′k)k∈K′ . We write θ1 : e1
a→ e2 : θ2 or simply θ1

a
→̃ θ2 if the interface

5Not to be confounded with isomorphisms between labelled trees.
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φa maps some e1 ∈ θ1 onto some e2 ∈ θ2 and we say then that θ1 and θ2 are consumed
at position a. In that case, θ1 and θ2 may be labelled with different track values (since
φa is just a 01-isomorphism and not simply the identity), but in order to get a trivial

derivation, they must be assigned the same value by Ψ. We set →̃ = ∪a∈suppmut(P )

a
→̃.

Thus, →̃ is the union of the
a
→̃.

To prove Theorem 13.2, we must then prove that we can assign a value Val(θ) to
each edge thread θ ∈ ThrE(P ), such that, if θ1

φa→ θ2 for some a ∈ supp@(P ), then
Val(θ1) = Val(θ2). This assignation Val must be consistent i.e. satisfy the two following
points:

• No track conflict should arise from Val (in the contexts of apph-rules).

• Two brother threads should not be mapped on the same value. Two edge threads
θ1 and θ2 are brother threads if they respectively hold two distinct mutable edges
e1 and e2 coming from the same node (e.g., edges 4·3 and 4·8 in T1 in Fig. 13.1
cannot both be mapped e.g., on 7 · 5 i.e. both be relabelled with track 5).

Actually, the first condition (no track conflict) is easy and we may prove that such a
good assignation Val exists iff there is no proof (based upon the interface (φa)a∈supp@(P ))
showing that there are two brother threads that should be given an equal track value.

Such a proof would be called a brother chain and would have the form θ0

a0
↔̃ θ1

a1
↔̃

. . .
an−1

↔̃ θn, where θ0 and θn are two brother threads and
a
↔̃ is the symmetric closure

of
a
→̃. This corresponds to a proof of equality in an ad hoc first order theory TP whose

set of constants is ThrE(P ) and whose axioms are Val(θ1) = Val(θ2) for all θ1, θ2 s.t.

θ1

a
→̃ θ2 for some a ∈ supp@(P ).

13.4.1 Threads and Consumption of Mutable Edges

In Sec. 13.4.1, we formally define edge threads and consumption, as suggested in the
introduction of Sec. 13.4 and consumption, which is a notion coming from Sec. 11.1.2.

We have abusively denoted the edges of a labelled tree or of a derivation by their
deepest extremities e.g., the position 3 · 2 · 5 also denotes the edge from position 3 · 2 to
position 3 · 2 · 5. Thus, it is not a surprise that ascendance and polar inversion are
defined as in Sec. 11.3.2 or in Sec. 12.2.3.

The relation of ascendance→asc is defined by:

• For all a ∈ supp(P ) such that t(a) = @, for all c ∈ suppmut(T(a)), (a, c)→asc

(a · 1, 1 · c).

• For all a ∈ supp(P ) such that t(a) = λx for some x, for all c ∈ N∗ such that
1 · c ∈ suppmut(T(a)), (a, 1 · c)→asc (a · 0, c).

Relation e1→asce2 means that e2 is the ascendant of e1 i.e. e1 and e2 are corresponding
pointers to the same edge in the conclusion and the (left) premise of the rule at some
position a. Note that an argument or axiom thread has no ascendant or descendant.

The relation of polar inversion→pi is defined by:

• For all a ∈ supp(P ) such that t(a) = λx for some x, for all k · c ∈ suppmut(T
P (a))

(with k ∈ N \ {0, 1}), (a, k · c)→pi (pos(a · 0, x, k), c).
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Relation e1→pi e2 means that eE is the polar inverse of e1. If e1 = (a, c)→pi (pos(a ·
0, x, k), c) = e2, then observe that when c = ε, then e2 is an axiom referent whereas it
is an inner referent when c 6= ε (and in that case, c ∈ suppmut(T

P (pos(a · 0, x, k))).

Remark 13.6 (Polar Inversion with Edges). This definition of polar inversion matches
that in Sec. 11.3.2, but not that in Sec. 12.2.3 since a special “biposition of emptiness”
must be considered in Chapter 12. Note that Chapter 11 and Chapter 12 feature threads
of bipositions and not threads of edges.

The lemma below states that two edges of the same thread are labelled with the
same track, as expected from Sec. 13.4:

Lemma 13.2. Let e1, e2 ∈ ThrE(P ) such that e1 ≡ e2. Then lab(e1) = lab(e2).

Proof. By induction, since the lemma is true when ≡ is replaced with→asc and→pi.

And more generally:

Lemma 13.3. Let Θ be a relabelling of P . Then, for all e1, e2 ∈ E(P ) such that e1 ≡ e2.
Then Θ(e1) = Θ(e2).

Proof. By induction on ≡. Note that the lemma is true when ≡ with→asc and→pi

because of the inductive definitions that are associated to the resetting of derivation
given (see Appendix B.2).

Consumption and Interfaces The relation consumption is associated with rule
apph. This notion was informally presented in Sec. 11.1.2 and then, formally defined
for system S in Sec. 12.2.4. However, it is more complex in system Sop due to the
presence of non-trivial interfaces. Assume t(a) = @, t|a = u v with u : (Sk)k∈K → T
for all k ∈ K and v : S′k for all k ∈ K ′ for all k ∈ K with φa : (Sk)k∈K→̃(S′k)k∈K′ as in
Fig. 13.3 so that u v can be typed with T . The types Sk (k ∈ K) and S′k (k ∈ K ′) occur
in the premises of the judgment typing t u, however, they are absent in this judgment.
We say that they have been consumed. Intuitively, for all k ∈ K, the sequence type
isomorphism φa given by the interface of P will identify every edge e of Sk with some
edge e′ of some S′k′ . Formally, we set, for all a, c, c′ ∈ N∗, k, k′ ∈ N \ {0, 1} such that
(a · 1, k · c) ∈ bisuppmut(P ), φa(k · c) = k′ · c′ :

• If c 6= ε, (a · 1, k · c) a→ (a · k′, c′)

• (a · 1, k)
a→ a · k′.

Indeed, the premise concluding with u : (Sk)k∈K → T is at position a·1. The interface
φa will map Sk onto the type S′k′ (with ρa = Rt(φa) and k′ = ρa(k), so that S′k′ ≡ Sk),
that occurs in the judgment Dk′ ` v : S′k′ at position a · k′.

• A c ∈ suppmut(Sk) corresponds to the edge k·c in supp((Sk)k∈K → T ) (see the
first observation in Sec. 12.2.3). But the edge of Sk that ends at some position c
will be mapped (by the interface) φa on the edge of S′k that ends at c′ := φa|k(c).

• Moreover, biposition (a · 1, k), that stands for the inner edge joining (a · 1, ε) with
(a ·1, k), will be mapped on the argument edge joining a with a ·k′, denoted simply
by a · k′.
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We set →= ∪{ a→ | a ∈ supp@(P )} and write ← for the symmetric relation. Implic-
itly, the relations a→ and → both depend on the interface φ of P .

Note that consumption depends on the interface φ of the operable derivation P ,
whereas ascendance and polar inversion do not.

13.4.2 Edge Threads and Syntactic Polarity

As announced in Sec. 13.4, let us define now mutable edge threads (see Sec. 11.1.1
and Sec. 11.1.2 for more intuitions):

Definition 13.10. Let P a hybrid derivation.

• An ascendant (edge) thread is an equivalence class of relation ≡asc, the reflex-
ive, transitive, symmetric closure of→asc.

• An edge thread (metavariable θ) is an equivalence class of relation≡ (see Fig. 12.3).
Relation e ∈ θ is also written θ : e, e : θ and we say that θ occurs at e. The
thread of an edge e is denoted thrPE (e) or just thr(e).

• The quotient set E(P )/ ≡ is denoted ThrE(P ).

This definition is very close to Definition 12.1. We also consider the extension of
relation → up to ≡. We write θ1

a
→̃ θ2 if ∃e1, e2, θ1 = thr(e1), θ2 = thr(e2), e1

a→ e2.

Thus, θ1

a
→̃ θ2 iff θ1 : e1

a→ e2 : θ2 for some e1, e2. In that case, we say that θ1 (resp.
θ2) has been left-consumed (resp. right-consumed) at biposition e1 (resp. e2).

13.4.3 Brother Chains and Representation

Before studying threads and ascendant threads more precisely and defining syntactic po-
larity (as in Sec. 11.1), we explain why Theorem 13.2 is equivalent to a first order theory
involving threads as constants, and in particular, brother threads, that will correspond
to elements that must not be reassigned a same label. The concept of brother threads
is informally presented in Sec. 11.1.3.

Let Θ be a relabelling of P and assume that φ(eL) = eR. Thus, the edges eL and eR
are identified by the interface (we have eL → eR). We recall that lab(eL) is the label
of the edge eL, lab(eR) that of eR and that Θ(eL) and Θ(eR) (that is Θ(φa(eL)) will be
their new labels assigned by Θ. According to the discussion of 13.4, if we want Θ to
produce a trivial derivation PΘ (we say then that Θ trivializes P ), we need eL and eR
to be assigned the same label. Indeed, using the notation LP from Sec. 13.2.1):

Lemma 13.4. Let P be an operable derivation P and Θ a relabelling of P . If, for all
p ∈ LP , Θ(p) = Θ(φ(p)), then PΘ is a trivial derivation.

Proof. See the proof of Lemma B.3 in Appendix B.3

Given an operable derivation P with the usual notations, we consider now the fol-
lowing first order theory TP , whose sets of constants is ThrE(P ), whose unique function
symbol is Val and that holds the axioms Val(θ1) = Val(θ2) for all θ1, θ2 ∈ ThrE(P ) such

∃a ∈ supp@(P ), θ1

a
→̃ θ2. Intuitively, Val(θ1) stands for Θ(θ) (i.e. Θ(e) for any e ∈ θ)
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where Θ is a relabelling that trivializes P .

Intuitively, two edges e1, e2 ∈ E(P ) are brother edges if they correspond to two edges in
the source of a same arrow, so that e1 and e2 cannot be relabelled with the same track
value (see Definition 13.9 and Sec. 13.1.1). Formally, the definition of brotherhood must
be a little more general (and handle axiom and argument edges).

Definition 13.11. Let P be a hybrid derivation and e1, e2 ∈ E(P ).

• e1 and e2 are strict brother edges if they have a node in common or type i.e.:

– either e1 = a · k1, e2 = a · k2 (with a ∈ suppmut(t)) (i.e. argument edges of a
same app-rule)

– or e1 = (a, c · k1), e2 = (a, c · k2) (with a ∈ AxP ) (i.e. two edges that are in
the source of a same arrow (whose pos. is c) in a type assigned in an axiom
rule).

– or e1 = (pos(a, x, k1), ε), e2 = (pos(a, x, k2), ε) (with a ∈ supp(P ), x ∈ V )
(i.e. two axiom roots of a free occurrence of some variable).

for some k1 6= k2 > 2.

• e1 and e2 are (non-strict) brother edges if they have a node in common or they
are both axiom edges i.e. if they are strict brother edges or (e1, e2 ∈ AxP × {ε}
and e1 6= e2).

As expected, e1 and e2 are brothers if one cannot assign them the same track i.e.
they may be the cause of a track conflict in a relabelling. In particular, the last condition
in the definition of strict brother states that axiom tracks must be chosen so that no
track conflict occurs in contexts. The definition of non-strict brother edges is written
to match Definitions 13.7 and 13.9. If we assign pairwise different track value to every
axiom roots, then we will obtain from P a (trivial) derivation P0 such that no axiom
track is used twice in P0, which is stronger that the statement of Theorem 13.2. We will
prove in Sec. 13.5.3 that this is possible.

As in Sec. 11.1.3, we extend the notion of brotherhood to threads:

Definition 13.12. θ1, θ2 ∈ ThrE(P ) are brother threads if θ1 : e1 and θ2 : e2 for some
brother edges e1, e2.

Actually, the only thing that could go wrong is that the interface φ of P may syntac-
tically constrain two brother threads to be relabelled with the same edge in a prospective
relabelling that would trivialize P . Indeed, if this does not happen, we can prove that
such a relabelling exists:

Proposition 13.2. Let P be an operable derivation. If TP cannot prove an equality of
the form Val(θ1) = Val(θ2) for some (non-strict) brother threads θ1 and θ2, then P is
isomorphic to a trivial derivation.

Proof. Under the assumption of the statement, we define an equivalence relation ∼ on
ThrE(P ) by θ1 ∼ θ2 iff TP proves that Val(θ1) = Val(θ2)i.e. TP ` Val(θ1) = Val(θ2)).

Since ThrE(P ) is a countable set, let i be an injection from ThrE(P )/ ∼ to N\{0, 1}.
We define then a relabelling Θ of P by:
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• Θarg(a) = i(thr(a)) for all a ∈ suppmut(P ).

• Θa(c) = i(thr(a, c)) for all a ∈ Ax and c ∈ suppmut(T(a)).

• Θtr(a) = i(thr((a, t(a), trP (a))) for all a ∈ Ax.

Since no brother edges are assigned the same value by hypothesis, this definition matches
the clauses of definition 13.9 and Θ is indeed a relabelling of P . By Lemma 13.4, PΘ is
a trivial derivation, that is isomorphic to P , thanks to Sec. 13.3.3.

According to Proposition 13.2, in order to prove Theorem 13.2, we must now check
that, for any operable derivation P , there is not proof in TP that two brother threads θ1

and θ2 should be assigned the same value. Such a proof would involve a brother chain:

Definition 13.13. A brother chain is a finite sequence of the form θ0

a0
↔̃ θ1

a1
↔̃

θ2 . . . . . . θn−1

an−1

↔̃ θn where θ0 and θn are two brother threads and
ai
↔̃ is the symmetric

closure of
ai
→̃.

With this vocable, Proposition 13.2 can be restated:

Proposition 13.3. Let P be an operable derivation. If there is no brother chain in P ,
then P is isomorphic to a trivial derivation.

We must then prove that brother chains do not exist.

13.4.4 Towards the Final Stages of the Proof

In Sec. 13.4.4, we give a global input on the final steps of the proof of Theorem 13.2
(quoted below) before implementing them in the later sections.

Theorem. Every operable derivation is isomorphic to a trivial derivation.

Since Lemma 13.1 ensures that every way of performing finite or not sequences of
subject-reduction can be built-in inside an operable, it establishes that the “rigid” frame-
work S does not cause any loss of expressivity compared to type system R resorting to
multiset constructions.

By Proposition 13.2 and the discussion that follows, it is sufficient to prove that
brother chain do not exist. We start by giving an outline of the final stages of the proof.

First, notice that, in a derivation P , some types are “called” by an abs-rule (i.e.
correspond to a part of the context that becomes the source of an arrow type). For
instance, in Fig. 13.3, the source (Sk)k∈K of the type of λx.t was just “called” by the
abs-rule. We say then that the types Sk occur with a negative syntactic polarity
in the judgment typing λx.t at position a. Parts of a type that cannot be traced back
to an abs-rule are said to occur with a positive syntactic polarity. In Pex, the only
part of the type of λx.x x that occurs positively is the target o′. This notion extends to
edges e ∈ E(P ): an edge e occurs negatively if it can be traced back to an abs-rule and
positive if not. If θ1 : e1

φa→ e2 : θ2 and e1 is negative (resp. positive), we say that the
thread θ1 is left-consumed negatively (resp. positively) at position a.

According to the end of Sec. 13.4.3, in order to prove Theorem 13.2, we must prove
that brother chains do not exist. For that, we assume ad absurdum that there is some

brother chain θ0

a0
↔̃ θ1

a1
↔̃ θ2 . . . . . . θn−1

an−1

↔̃ θn associated to an operable derivation P .
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It is easy to see to prove that, if no thread is left-consumed negatively in the chain
(in that case, we say that the chain is a normal brother chain), then it is of the form

θ0
⊕

a1
→̃ . . .

an−1

→̃ θn and that a1 , a2, . . . are resp. nested in an argument of a0, a1, . . ..

This entails that ad(a0) < ad(a1) < ad(a2) . . . Since θ0 : e0
φa0→ and

φan−1→ e′n : θn implies
that the edges of the thread θ0 are above or below a0 · 1 whereas some edges of θn are
above an−1 · k (for some k > 2). From that and ad(a0) < ad(an · k), we deduce that θ0

and θn cannot be brother, which is a contradiction.

Thus, if a brother chain existed, then it cannot be normal and at least one thread
should be left-consumed negatively. But left consumption is associated to the left premise
of an apph-rule i.e. the left-hand side of an application, and negative polarity is related
to abstractions. It is thus not a surprise that negative left-consumption hints at the

presence of a redex: more precisely, if θi	
φai→ θi+1, there is a finite reduction sequence

t →∗ t′ such that t′|a is a redex. If we fire that redex, then we have θi = θi+1 instead

of θi	
φai→ θi+1: the problematic link of the chain is destroyed. This process is also the

collapsing strategy (as in Sec. 12.4.2). If a brother chain C existed, then the collapsing
strategy would produce from C another brother chain C′ that is normal. Since normal
brother chains do not exist, we may conclude that brother chains do not exist at all,
as expected. By the end of Sec. 13.4.3, this is enough to conclude that any operable
derivation is isomorphic to a trivial one, which ends the proof of Theorem 13.2.

Remark 13.7. Of course, a lot is implicit in the last section: for the collapsing to be a
sound process, we must first check that threads also have residuals under β-reduction in
an operable derivation (as positions and bipositions do) and that β-reduction preserves
consumption. We are going to do that now.

Before giving back our attention to the technical details, let us sum up what remains
to be done and the main tools used in the final proof:

• Defining properly the applicative depth of a thread and syntactic polarity.

• Proving that applicative depth increases in case of positive left-consumption i.e.
if θ1

⊕→̃θ2, then ad(θ1) < ad(θ2) (Lemma 13.11). This is the main argument to
be used in the final stage of the proof (Sec. 13.5.3), the basic idea being that if
ad(θ1) < ad(θ2), then θ1 and θ2 cannot be brother threads.

• We must then discard negative left-consumption. For that, we implement the
technique informally presented in Sec. 11.2.1 (as it is also done in Chapter 12).
This demands that we reduce some redexes and thus, that we properly define
residuation for edge threads (Sec. 13.5.1).

• In particular, we must check a few preservation properties (w.r.t. residuation) on
brother threads (e.g., Lemma 13.14), consumption and formalize some observations
of Chapter 11

13.4.5 Top Ascendants, Syntactic Polarity and Referents

In order to prove that the hypothesis of Proposition 13.2 is satisfied by any operable
derivation (and thus proving Theorem 13.2), we must describe edge threads in a more
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precise way. In this section, we formalize some observations of Sec. 11.1.1 about syntactic
polarity or the possible forms of a thread.

Notice that→asc is functional: if e1→asce2, we write e2 = asc(e1). Notice also that
asc is injective. Thus, e1 ≡asc e2 iff ∃i > 0, e2 = asci(e1) or e1 = asci(e2) (as in
Sec. 12.3.1).

Given an edge e = (a, c) ∈ E(P ), asc may only add the prefix 0 or 1 to a and
add/remove the prefix 1 to c, by induction:

Lemma 13.5. If (a1, c1) ≡asc (a2, c2) then ∃a3 ∈ {0, 1}∗, (a2 = a1·a3 or a1 = a2·a3)
and ∃i > 0, (c2 = 1i · c1 or c1 = 1i · c2).

Lemma 13.5 corresponds to Lemma 12.2. As in Sec. 11.1.3, we notice that, in a
thread, every occurrence has the same applicative depth, which is a consequence of
Lemma 13.5 along with the definition below:

Definition 13.14. Let P a hybrid derivation e ∈ E(P ). We define the applicative
depth of e (denoted ad(e).

• If e = (a, c), then ad(e) = ad(a).

• If e = a ∈ suppmut(P ), then ad(e) = ad(a).

We set, for all e ∈ bisuppmut(P ), Asc(e) = asci(e), where i is maximal (i.e. asci(e)
is defined, but not asci+1(e)). Thus, Asc(e) is the top ascendant of e. Remark
that if e = (a, ε) with a ∈ AxP or e = a ∈ suppmut(P ), Asc(e) = e. As noted in
Observation 11.1, p. 241, a top ascendant is either located in an ax-node or an abs-node
(asc is total on app-nodes), motivating the notion of syntactic polarity (see Sec. 11.1.2
for examples) for mutable edges:

Definition 13.15.

• Let e ∈ E(P ). We define the polarity of e as follows:

– If Asc(e) = (a0, c0) ∈ refin(P ) ∪ Ax× {ε} with t(a0) = x (resp. t(a0) = λx)
for some x ∈ V , then we set Pol(e) = ⊕ (resp. Pol(e) = 	).

– If e = a ∈ suppmut(P ), then Pol(e) = ⊕.

• If thr(e) = θ and Pol(e) = ⊕/	, we say that θ occurs positively/negatively at e.

• If θ is left/right-consumed at e and Pol(e) = ⊕ (resp. Pol(e) = 	), we say that
θ is left/right-consumed positively (resp. . negatively) at edge e.

Then, we write for instance θ1
⊕

a
→̃	 θ2 to mean that θ1 is left-consumed positively

and θ2 is right-consumed negatively in the app-rule at position a. We can compare
Definition 13.15 is quite similar to Definition 12.3.

Since →pi also defines an injective function and p1 →pi p2 implies that p1 (in a
λx) and p2 (in an axiom) do not have ascendants, giving Lemma 13.6 (compare with
Lemma 12.3):

Lemma 13.6. For all e1, e2 ∈ E(P ) such that e1 ≡ e2, we have Pol(e1) = ⊕ and
Pol(e2) = 	 iff Asc(e1)→pi Asc(e2).
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Lemmas 13.5 and 13.6 may be illustrated by Fig. 11.1, p. 240). Lemma 13.6 means
an edge thread can have at most two connex components (ascendant threads) e.g., the
green or the purple threads in Fig. 11.1. Note that an argument thread contains only
one element (an argument does not have ascendants or descendants).

Remark 13.8.

• If the top occurrence of an ascendant thread is in an ax-rule typing a variable x
s.t. x is not bound in t, then the thread has one (positive) “connex component”
e.g., the red thread in Fig. 11.1.

• Since we consider threads of mutable edges, no thread can have only negative
occurrences (contrary to the blue thread in Fig. 11.1), because if (a, c) ∈ E(P ),
t(a) = λx and (a, c) does not have an ascendant, then (1) 1 is not a prefix of c (if
we had c = 1 ·c0, then (a ·0, c0) would be an ascendant of (a, c)) (2) c 6= ε (because
(a, ε) /∈ E(P ) when a /∈ AxP ). Thus, c = k · c0 for some k ∈ N \ {0, 1} and (a, c)
has a positive polar inverse which is (pos(a · 0, x, k), c0).

• Note that a thread containing an axiom edge cannot be consumed positively: in-
deed, if e = (a, ε) with a ∈ AxP , then e cannot be in the domain of the consumption
relation → (by definition of →) and does not have a descendant

By Remark 13.8, we can define the following notion, intuitively presented in Sec. 11.1.3:

Definition 13.16. Let P be a hybrid derivation and θ ∈ ThrE(P ).

• The referent of θ, denoted ref(θ) is the top ascendant of the positive ascendant
thread included in θ.

• A thread whose referent is an argument referent (resp. an axiom referent resp. an
inner referent) is said to be an argument thread (resp. an axiom thread, resp.
an inner thread).

• The applicative depth of θ, denoted ad(θ), is defined by ad(θ) = ad(ref(θ)).

Since (a, k · c)→pi (a′, c) implies a 6 a′ and so ad(a) 6 ad(a′), we have, for all e ∈ θ,
ad(e) 6 ad(θ), as observed in Sec. 11.1.3.

The referent of a thread θ is the unique element of the intersection θ∩ref(P ). Given
a relabelling Θ of the hybrid derivation P (Definition 13.9), the referent of a mutable
edge e may be seen as the unique representative of thr(e) that allows us to directly
compute Θ(e) from Θ, according to Lemma 13.3.

Since a consumed biposition does not have a descendant, Lemma 13.5 and 13.6 imply
Lemma 13.7, which is the formal version6 of Observation 11.3, p. 11.3:

Lemma 13.7 (Uniqueness of Consumption). Let ~ ∈ {⊕,	} and θ ∈ Thr, θ 6= θ⊥.
Then, there is a most one θ′ s.t. (θ~→̃θ′ or θ~←̃θ′).

6As Lemma 12.4 also is.
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Brotherhood, Threads and Consumption Lemma 13.8 below means that axiom
threads may only occur at the root of sources of arrows and that consumption, when
the left-hand side is negative, identifies some axiom threads with argument threads:

Lemma 13.8.

• If θL→̃θR and θL is an axiom thread, then θR is an argument thread.

• If θL	→̃θR and θR is an argument thread, then θL is an axiom thread.

Proof. See the proof of Lemma B.4 in Appendix B.3.

Lemma 13.9. Let P be a hybrid derivation and e1, e2 ∈ E(P ) two brother edges.

• If e1 ≡ e′1 ∈ E(P ), then there is a brother edge e′2 ∈ E(P ) of e′1 such that e2 ≡ e1.

• In particular, ref(thr(e1)) and ref(thr(e2)) are brother edge.

• Moreover, if thr(e1) and thr(e2) are not axiom threads, then they have the same
applicative depth.

Proof. Straightforward by induction on≡asc. Note that, by Definition 13.11, two brother
edges have the same applicative depth except perhaps when they are axiom edges.

Moreover, thread brotherhood is compatible with consumption in the following sense,
which captures Observation 11.7:

Lemma 13.10. Let θ1 and θ2 be two brother edges and a ∈ supp@(P ). Then θ1 is
consumed at position a iff θ2 is. Moreover:

• If θ1

a
→̃ θR1, then, there is θR2, brother with θR1, such that θ2

a
→̃ θR2.

• If θL1
a
→̃ θ1, then, there is θL2, brother with θL1, such that θL2

a
→̃ θ2.

A monotonicity property relates consumption and applicative depth, provided the
left thread is consumed with a positive polarity. Lemma 13.11 is the formal counterpart
of Observation 11.6:

Lemma 13.11 (Monotonicity). If θL⊕→̃θR, then ad(θL) < ad(θR).

Proof. We have θL : eL
⊕ a→ eR : θR for some eL = (a · 1, k · c), eR = (a · k, c) ∈ E(P ), a ∈

supp@(P ) k > 2 and c ∈ N∗. By the sentence just above Lemma 13.14, ad(θL) = ad(eL),
so that ad(eL) = ad(a · 1) = ad(a). We conclude with ad(θR) > ad(eR) = ad(a · k) =
ad(a) + 1.

13.5 Residuation of Threads and the Collapsing Strategy

In order to apply the monotonicity lemma (Lemma 13.11) and conclude the proof of
Theorem 13.2 in Sec. 13.5.3, we must avoid the cases of negative left-consumption.
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13.5.1 Edges and Residuation

In this section, we informally discuss the behavior of residuation of edges and threads,
and we state the main properties of residuation w.r.t. threads.

Residuation is needed because, in order to discard negative left-consumption in a
brother chain related to a term t, one will actually (finitarily) reduce the term t. This
implies that the notion of residual of thread must be properly defined. Since threads are
sets of mutable edges, we must first define residuation for edges.

In this section, we only give the main properties of residuation. See Appendix B.4
for the details and the formal definitions. In particular, quasi-residuation is defined for
mutable edges in Appendix B.4.1.

First, let us observe informally that a distinction should be made between residuation
for nodes and residuation for edges.

Consider an operable derivation P �C ` t : T and assume that t|b = (λx.r)s, t b→ t′

(so that t′|b = r[s/x]), P b→ P ′ so that P ′ is a residual operable derivation of P . Assume
that a ∈ supp@(P ), a = b and a · k ∈ suppmut(P ) i.e. a · k = b · 1, which is the position
of subterm s in t.

• As a position, a·k points to the argument of the redex. This position has a residual
since the argument derivation at position argument derivation will be moved. For
instance, in Fig. 13.2, the subderivation P5 at position a · 5 is moved.

• As an edge, a · k represents the argument edge from a judgment typing the redex
to an argument derivation. This edge is destroyed. For instance, in Fig. 13.2, the
edge from the root of the derivation typing (λx.r)s to P5 is destroyed and does
not have a residual.

Thus, as a position, a · k has a residual, but it does not as an edge.
Relations→asc and→pi are compatible with reduction. This entails, by induction on

≡:

Lemma 13.12. If e1 ≡ e2, then QResEb(e1) is defined iff QResEb(e2) is. In that case,
QResEb(e1) = QResEb(e2).

Lemma 13.12 allows us to define (quasi)-residuals for edge threads. We set Resb(θ) =
thr′(QResEb(e)) for any e : θ (where thr′(·) denotes threads in P ′). Residuation is
compatible with consumption in the following sense:

Lemma 13.13. Let P be an operable derivation whose interface is φ. Assume that
θ1 → θ2.

• Then Resb(θ1) is defined iff Resb(θ1) is.

• In that case, Resb(θ1)→̃Resb(θ2) or Resb(θ1) = Resb(θ2).

• Moreover, Resb(θ1) = Resb(θ2) iff (θ1 occurs in the left key of the redex and is not
an axiom thread).

Proof. A complete statement can be found in Lemma B.6.
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The 3rd point of Lemma 13.13 means that θ1 must occur in the source of the type of
λx.r, the abstraction of the reduced redex. Thus, the threads of the left key of a redex
(which are not axiom threads) can be collapsed by reduction, which is generalized in
Sec. 13.5.2.

Likewise, (strict) brotherhood is compatible with residuation:

Lemma 13.14. Let P be a hybrid derivation and θ1, θ2 be two strict brother threads.
Then Resb(θ1) is defined iff Resb(θ2) is.
In that case, Resb(θ1) = Resb(θ2).

13.5.2 The Collapsing Strategy for Operable Derivations

Now that residuation is defined for threads, we can explain how to discard negative
left-consumption by using Lemma 13.13. This will allow us to invoke the monotonicity
lemma (Lemma 13.11), as suggested in the end of Sec. 13.4.4.

Let P be an operable derivation whose interface is denoted φ. Assume that we have
θL
	

a
→̃ θR for some θL, θR ∈ ThrE(P ) and that θL is not an axiom thread.
Thus, θL : eL

⊕ a→ eR : θR for some e1 := (α·1, k·c), e2 := (α·k′, c′) with α ∈ supp@(P ),
k, k′ > 2 and c, c′ ∈ N∗. Let (αλ, cλ) = Asc(eL), so that t(αλ) = λx for some x since eL
is negative. Then (see Sec. 11.2.1, particular, Fig. 11.4) there is a maximal a 6 αλ such
that t(a) = @. Note that t|a is a redex. We define the collapsing strategy w.r.t. θ	L
by induction on h := |αλ| − |a|:

• Case h = 1: then αλ = a · 1 and a = α and there is a redex in t at position a. We
fire it and the strategy is completed. By Lemma 13.13, Resb(θL) = Resb(θR) (both
members of this equality are defined since θL is not an axiom thread).

• Case h > 1: We fire the redex at position a, so that, by Lemma 13.13, Resb(θL)
a
→̃

Resb(θR), but the height h has decreased by 2, and we go on with the strategy.

All this is related to the notion of redex tower and can be formalized, as in Sec. 12.4.2.
Let rs be the sequence of reductions representing the collapsing strategy. Lemma 13.13

entails that Resrefrs (θL) = Resrefrs (θR). Thus:

Lemma 13.15. If θL	→̃θR and θL is not an axiom thread, then, there is a reduction
sequence rs such that Resrs(θL) = Resrs(θR).

Lemma 13.15 is extremely important: it entails that we can discard negative left-
consumption by a finite sequence of reduction.

13.5.3 Conclusion of the Proof

In Sec. 13.5.3, we prove the two final steps to obtain Theorem 13.2, namely:

Definition 13.17. A brother chain is said to be normal if no threads is left-consumed
negatively in it.

Proposition 13.4. If a brother chain exists w.r.t. some operable derivation P typing a
term t, then there exists a normal brother chain w.r.t. a derivation P ′ typing a reduct
of t.
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Proposition 13.5. There is no normal brother chain.

Indeed, Propositions 13.4, 13.5 and 13.3 entail Theorem 13.2 (and thus, Theorem 13.1).

Proof of Proposition 13.4. Assume that there is a normal brother chain θ0

a0
↔̃ θ1

a1
↔̃

. . .
an−1

↔̃ θn w.r.t. a an operable derivation typing a term t, where θ0 and θn are brother
threads.

We describe now an algorithm to produce from C a normal brother chain C′ that is
minimal.

By Lemma 13.7. There may not be “crossings” of the form θi−1

ai−1

→̃ ⊕θi
⊕

ai
→̃ θi+1.

Moreover, if there is a crossing θi−1

ai−1

←̃ ⊕θi
⊕

ai
→̃ ⊕θi+1, then (still by Lemma 13.7),

ai−1 = ai and θi−1 = θi+1, so that we may assume that this kind of crossing never
occurs (if a some point these is one, we immediately remove it).

Likewise, we may remove every crossing of the form θi−1

ai−1

←̃ 	 θi
	

ai
→̃ θi+1, since this

implies that θi−1 = θi+1.
Since argument threads only occur positively and axiom threads can be only be

consumed negatively (3rd point of Remark 13.8), Lemmas 13.7 and 13.8 imply that no
θi may be an argument thread and that no θi may be an axiom thread that is left-

consumed negatively: if not, we would have n = 1 and C would be θ0

a0
→̃ θ1 with θ0

axiom thread and θ1 (or θ0

a0
←̃ θ1. . . ), which is not a brother chain!

Thus, there are no axiom threads in C. This allows us to resort to the collapsing
strategy (Lemma13.15): we can reduce t so that we obtain a normal brother chain C′
associated to a reduct t′ of t. Notice that, by Lemma 13.13, this process terminates and
the length of C′ is smaller than that of C.

We prove now Proposition 13.5.

Proof of Proposition 13.5. We proceed ad absurdum and consider a normal brother

chain θ0

a0
↔̃ θ1

a1
↔̃ . . .

an−1

↔̃ θn where θ0 and θn are brother threads. By the proof of
Proposition 13.4, there is no axiom thread in the chain and we can also assume that
they are no “crossing” of the form ←̃⊕θi⊕→̃.

Thus, there may be only four kinds of crossings in C. θi−1
⊕ αi−1→ 	 θi

⊕ αi→ θi+1 (right-
right) or θi−1

αi−1← ⊕θi
	 αi← ⊕θi+1 (left-left) or θi−1

⊕ αi−1→ 	 θi
⊕ αi← ⊕θi+1 (minus-plus) or

θi−1
⊕ αi−1→ ⊕θi

	 αi←⊕θi+1 (plus-minus)

We cannot have only crossings of kind right-right. If it were, by Lemma 13.11, we
would have ad(θ0) < ad(θn). But, as it has been observed above, θ0 and θn cannot be ax-
iom threads. By Lemma 13.9, we should have ad(θ0) = ad(θn), which is a contradiction.
For the same reason, we cannot only have crossings of kind left-left.

Thus, there must be at least a crossing of kind minus-plus or of kind plus-minus.
This is easy to see that there can only be one (there cannot be more that one “change
of direction” in C′: if not, we would have a crossing on the form θi−1←̃θi→̃θi+1 and this

case is not possible for C). In both cases, the chain starts with θ0
⊕

a0
→̃ θ1 and ends with

θn−1

an−1

←̃ ⊕θn. Lemmas 13.10 and 13.7 entail that a0 = an−1 and θ1 and θn−1 are brother
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threads. Thus, θ1

a1
↔̃ . . .

an−2

↔̃ θn−1 is also a brother chain. By induction on i 6 n/2, we
show that θi and θn−i are brother threads, so that n is even and i0 := n/2 is a natural
number and θi0 is brother with itself, which is impossible (by Lemma 13.9). Thus, C
cannot exist. This concludes the proof of Proposition 13.5 and of Theorem 13.2.

13.6 Conclusion

Theorem 13.2 establishes that every R-derivation Π (i.e. any derivation based on mul-
tiset constructions and a coinductive type grammar) is the collapse of an S-derivation
P and that we even could internalize every sequence of reduction choices of R in S.

From Sec. 13.4.3 and 13.5.3, we may remember that the technique to deal with
non-productive reduction (i.e. reduction that does not normalize) introduced here is the
following: instead of trying to normalize terms, we try to normalize proofs (these proofs
are called brother chains here, whereas we normalized another kind called nihilating
chains in Chapter 12), as it was announced in the presentation p. 235.

The same technique was actually later used twice in Chapter 12 (first, to prove that
every term was S-typable, second, to prove that S captured the order of the terms) but
by considering another first order theory.

The question of the surjectivity of the collapse of the irrelevant version of S on Dw

(i.e. is every Dw-derivation the collapse of a possibly irrelevant S-derivation?) remains
open.





Conclusion

Aussi ne peut-il y avoir d’autre terme que l’épuisement du voyageur explorant
ce paysage inépuisable, contemplant la carte approximative qu’il en a dressée
et à demi rassuré seulement d’avoir obéi de son mieux dans sa marche à
certains élans, certaines pulsions. [. . . ]. À sa recherche, il progresse la-
borieusement, tâtonne en aveugle, s’engage dans des impasses, s’embourbe,
repart — et, si l’on veut à tout prix tirer un enseignement de sa démarche,
on dira que nous avançons toujours sur des sables mouvants..

Claude Simon, Discours de Stockholm

Now that the time has come to part company, we hope that the reader is convinced
of the use of non-idempotent intersection and union types in general, and of sequential
intersection in particular: they give syntax-direction, easy proofs of termination in the
finite case, nice combinatorial features without duplication, possibility to express a va-
lidity criterion in the infinite case or to study non-productive reduction. We also hope
that the methodological motto has proved7 its worth and its utility:

This thesis’s thesis
The introduction of a type system should always come along with a figure repre-
senting subject reduction from the perspective of derivations trees.

This maxim, that will, to be sure, become a classic in every kindergarten textbook
within a few years, was illustrated by Figures 3.1, 3.2, 3.3, 6.8, 7.8, 10.5 and 13.2, and
are all akin to Figure 2.6, representing β-reduction.

Besides drawing figures, we used non-idempotent types to characterize head and
strong normalization in the λµ-calculus, infinitary weak normalization and to prove that
every term can be typed in a non-trivial way with infinitary types. Incidentally, on
the way, we showed that we did not lose anything by considering sequential intersection
instead of multiset intersection. In general, non-idempotent types have not yet shown all
their possible applications as good-behaviors certificates or as quantitative descriptors.
There are also probably many operational or observational properties of the λ-calculus
or of one of its variant, that could be given simpler semantic proofs involving them.

As a conclusion of this document, we give a summary of our work along with interest-
ing perspectives, as well as a few insights on another contribution regarding intersection
type theory, which takes a different direction from what has been presented here: namely,
Melliès and Zeilberger’s “type as functors” approach.

7It certainly helped the author penetrate the jungle of intersection type theory in any case and, as
a somewhat more important consequence, secured the prospective buffet following his PhD defense.



Perspectives on Part II: the λµ-Calculus

We extended the non-idempotent intersection types of the λ-calculus into non-idempotent
intersection and union types for the λµ-calculus. This allowed us to provide type-
theoretic characterizations of head and strong normalization in the λµ-calculus, along
with upper bounds to the length of the head reduction strategy and of all reductions
sequences in the former and in the latter case respectively. We also introduced a small-
step operational semantics λµr extending that of the λµ-calculus. The characterization
of strong normalization in the λµ-calculus (by means of system Sλµ) was then extended
characterizing strong normalization in λµr (by means of system Sλµr). This work can be
furthered in different directions (conclusion on p. 184):

The λµ-calculus and classical logic (future work)
• Obtaining exact bounds for normalizing reduction sequence (instead of just upper
bounds) à la B-L [13].
• Proving that inhabitation is decidable as for non-idempotent intersection [18].
• Studying the models associated e.g., to Hλµ , investigating the quantitative to
qualitative collapse as in [41].
• Providing quantitative inter. and union. types for other classical calculi, e.g.,
the λµµ̃ [32].

Perspective on Part III: Infinitary Normalization

We provided a type-theoretic characterization of the set of hereditary head normaliz-
ing λ-terms, thus answering positively to Klop’s question. Simultaneously, we gave a
semantic proof that the hereditary head reduction strategy is complete for (infinitary)
weak normalization in the infinitary calculus Λ001, which is an extension of arguments
that were hitherto used in the finite case. Last, we characterized the set of hereditary
permutations by means of S-types, which gives a positive answer to TLCA Problem #
20. Many natural extensions of these contributions come to mind (conclusion on p. 232):

Infinitary normalization and system S, beyond Klop’s question
• Identifying other sets of Böhm trees (besides hereditary permutations) that can
be characterized with system S.
• Characterizing strong normalization in Λ001.
• Extending the characterization of WN (and possibly SN) to the other infinitary
calculi Λ111 and Λ101.
• Relations of system S with Bucciarelli-Ehrhard’s indexed Linear Logic [16], with
Grellois-Melliès’ infinitary model of LL [51].

Perspective on Part IV: Non-Productive Reduction

We proved that (1) every term is typable in system R and in system S (when S is not
endowed with the approximability criterion) (2) the order of a term t could be extracted
from the set of R-types that can be assigned to t (3) every derivation of system R is the
collapse of a derivation system S (4) every reduction choice sequence w.r.t. a derivation
of system R can be encoded in a derivation of system S. The method used in Part IV
allows us to work with completely unstable terms (mute terms) and to emancipate our-
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selves from productivity. If for any term t, we set [[t]] = {(Γ, τ) | �R Γ ` t : τ}, then we
obtain a relational model [17] of the λ-calculus, that can also be denoted R. Following
the conclusions on p. 284 and 317, we suggest exploring next:

The model R (open questions)
• Studying the equational theory of R.
• Does infinitary subject expansion hold (without approximability)?
• Can we extract a tree-like semantics from R?
• Applications to observational theories (TLCA Problem # 18), possible new se-
mantic proofs, etc.
• Is the collapse from Rw to Dw (irrelevant non-idempotent intersection to irrele-
vant idempotent intersection) surjective?
• Investigating whether the proofs of Chapters 12 and and 13 could be reformulated
intro Girard’s Geometry of Interaction or Ludics [48].

Polyadic Approximations and Fibrations and Intersection Types: a
categorical interpretation of intersection type theory

We conclude by saying a few words about a work that was not presented in this thesis,
that provides a categorical understanding of intersection type systems (whereas we have
been more focused on the “concrete machinery” of typing throughout this document).

Starting from an exact correspondence between polyadic affine approximations
and non-idempotent intersection types, we have developed, with Mazza and Pellissier,
a general framework [81] for building intersection types systems characterizing normal-
ization properties in the finite case. This construction, which uses in a fundamental way
Melliès and Zeilberger’s “type systems as functors” viewpoint [82], allows us to recover
equivalent versions of every well-known intersection type system (including Coppo and
Dezani’s original system, as well as its non-idempotent variants independently intro-
duced by Gardner and de Carvalho).

An intersection type system is then defined as a colored operad (i.e. a symmetric
multicategory with possibly more than one object) endowed with 2-arrows, that is,
arrows between arrows: a multimorphism generalizes the notion of typed judgment
Γ ` t : B, where t is now thought as a multimorphism from Γ to B. Intuitively, there is
a 2-arrow from Γ ` t : B to Γ ` t′ : B if the latter judgment is obtained from the former
by subject reduction steps.

An intersection type system is built from a given restriction of the λ-calculus (e.g.,
the set of λ-terms endowed with head reduction) and a given subset of the simply typed
polyadic calculus by a pullback construction, inspired form the Grothendieck con-
struction. This framework enables us to almost automatically build new systems of
intersection types in this way. The proofs of the termination properties (i.e. properties
of the form “if t is typable, then t is normalizing”) in the most known type systems (e.g.,
DΩ, D0,w, R0, G) are now subsumed by the proof of strong normalization of proposi-
tional multiplicative exponential linear logic. When operads are extended into cyclic
operads (i.e. an operad in which categorical rules allow permuting inputs and outputs,
in order to handle the fact that, intuitively, some λµ-terms have several outputs), the
type system Hλµ from Chapter 7 can be recovered with the pullback construction.



Related contribution
• Extending Melliès and Zeilberger’s “type systems as functors” to intersection type
theory.
• A Grothendieck-like construction allowing us to recover most well-known inter-
section type systems and to build new ones.
• A universal proof of termination resorting to the strong normalization of MELL.

Interestingly, infinitary normalization (as in Chapter 10) does not fit in this frame-
work, notably because of the approximability criterion, but also because the notion of
productivity is difficult to capture from a categorical perspective.

Thus, giving a categorical definition of productivity is currently the main challenge
to provide an abstract account of typing and its semantical consequences, which was
also left unaddressed in Melliès and Zeilberger’s work.

Future work on the “Types as functors” viewpoint
• Capturing the notion of productivity in the categorical framework.



Bibliography

[1] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda
calculus. Inf. Comput., 105(2):159–267, 1993.

[2] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A
nonstandard standardization theorem. In Peter Sewell, editor, Proceedings of the
41st Annual ACM Symposium on Principles of Programming Languages (POPL).
ACM Press, 2014.

[3] Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj
Dawar and Helmut Veith, editors, Proceedings of 24th EACSL Conference on Com-
puter Science Logic, volume 6247 of Lecture Notes in Computer Science, pages
381–395. Springer-Verlag, August 2010.

[4] Shahin Amini and Thomas Erhard. On Classical PCF, Linear Logic and the MIX
Rule. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Com-
puter Science Logic (CSL 2015), volume 41 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 582–596. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015.

[5] Y. Andou. Church-rosser property of a simple reduction for full first-order classical
natural deduction. Annals of Pure Applied Logic, 119(1-3):225–237, 2003.

[6] Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. Classical call-by-need and
duality. In C.-H. Luke Ong, editor, Typed Lambda Calculi and Applications -
10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011.
Proceedings, volume 6690 of Lecture Notes in Computer Science, pages 27–44.
Springer-Verlag, 2011.

[7] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the
multiplicative additive case. In Jean-Marc Talbot and Laurent Regnier, editors,
25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August
29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 42:1–42:17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[8] Henk Barendregt. The Lambda-Calculus: Its Syntax and Sematics. Ellis Horwood
series in computers and their applications. Elsevier, 1985.

[9] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter
lambda model and the completeness of type assignment. Bulletin of Symbolic
Logic, 48:931–940, 1983.

[10] Henk Barendregt and Jan Willem Klop. Applications of infinitary lambda calculus.
Inf. Comput., 207(5):559–582, 2009.

323



324 BIBLIOGRAPHY

[11] A. Berarducci. Infinite lambda-calculus and non-sensible models. Lecture Notes
in Pure and Applied Mathematics, 180:339–377, 1996.

[12] Alessandro Berarducci and Benedetto Intrigila. Some new results on easy lambda-
terms. Theor. Comput. Sci., 121(1&2):71–88, 1993.

[13] Alexis Bernadet and Stéphane Lengrand. Complexity of strongly normalising λ-
terms via non-idempotent intersection types. In Martin Hofmann, editor, Founda-
tions of Software Science and Computation Structures (FOSSACS), volume 6604
of Lecture Notes in Computer Science. Springer-Verlag, 2011.

[14] Alexis Bernadet and Stéphane Lengrand. Non-idempotent intersection types and
strong normalisation. Logical Methods in Computer Science, 9(4), 2013.

[15] Antonio Bucciarelli, Alberto Carraro, Giordano Favro, and Antonino Salibra.
Graph easy sets of mute lambda terms. Theor. Comput. Sci., 629:51–63, 2016.

[16] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational
semantics: the exponentials. Ann. Pure Appl. Logic, 109(3):205–241, 2001.

[17] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points
is enough. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Sci-
ence Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of
the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume
4646 of Lecture Notes in Computer Science, pages 298–312. Springer-Verlag, 2007.

[18] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. The inhab-
itation problem for non-idempotent intersection types. In Díaz et al. [37], pages
341–354.

[19] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Strong normalization
through intersection types and memory. Electr. Notes Theor. Comput. Sci.,
323:75–91, 2016.

[20] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersec-
tion types for the lambda-calculus. Mathematical Structures in Computer Science.,
2017.

[21] Felice Cardone and J. Roger Hindley. Lambda-Calculus and Combinators in the
20th Century, volume 5 of Handbook of the History of Logic. Elsevier, 2009.

[22] Daniel De Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD
thesis, Université Aix-Marseille, November 2007.

[23] Daniel De Carvalho. Execution time of lambda terms via denotational semantics
and intersection types. Mathematical Structures in Computer Science, 2017.

[24] Alonzo Church. A Note on the Entscheidungsproblem. J. Symb. Log., 1(1):40–41,
1936.

[25] Alonzo Church. An unsolvable problem of elementary number theory. Amer. J.
of Math., (58):345–363, 1936.

[26] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.



BIBLIOGRAPHY 325

[27] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for
lambda-terms. Archive for Mathematical Logic, 19:139–156, 1978.

[28] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic func-
tionality theory for the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–
693, 1980.

[29] Thierry Coquand. Une théorie des constructions. Thèse de Troisième Cycle. PhD
thesis, Université Paris 7, 1985.

[30] Thierry Coquand and Gérard Huet. Constructions: A higher order proof sys-
tem for mechanizing mathematics. In Bruno Buchberger, editor, EUROCAL ’85,
European Conference on Computer Algebra, Linz, Austria, April 1-3, 1985, Pro-
ceedings Volume 1: Invited Lectures, volume 203 of Lecture Notes in Computer
Science, pages 151–184. Springer, 1985.

[31] Thierry Coquand and Christine Paulin-Mohring. Indutively defined types. In
P. Martin-Löf and G. Mints, editors, Proceedings of Colog’88 (LNCS 41.7).
Springer-Verlag, 1990.

[32] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Mar-
tin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’00), Mon-
treal, Canada, September 18-21, 2000., pages 233–243. ACM, 2000.

[33] Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-Holland
Co., Amsterdam, 1958. (3rd edn. 1974).

[34] Lukasz Czajka. A coinductive confluence proof for infinitary lambda-calculus. In
Gilles Dowek, editor, Rewriting and Typed Lambda Calculi - Joint International
Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8560 of Lecture
Notes in Computer Science, pages 164–178. Springer, 2014.

[35] Ferruccio Damiani and Paola Giannini. A decidable intersection type system based
on relevance. In Hagiya and Mitchell [54], pages 707–725.

[36] Erika De Benedetti and Simona Ronchi Della Rocca. Bounding normalization time
through intersection types. In Graham-Lengrand and Paolini [50], pages 48–57.

[37] Josep Díaz, Ivan Lanese, and Davide Sangiorgi, editors. Proceedings of the 8th
International Conference on Theoretical Computer Science (TCS), volume 8705 of
Lecture Notes in Computer Science. Springer-Verlag, 2014.

[38] Daniel J. Dougherty, Silvia Ghilezan, and Pierre Lescanne. Characterizing strong
normalization in the curien-herbelin symmetric lambda calculus: Extending the
coppo-dezani heritage. Theoretical Computer Science, 398(1-3):114–128, 2008.

[39] Andrej Dudenhefner and Jakob Rehof. Intersection type calculi of bounded di-
mension. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 653–665. ACM, 2017.



326 BIBLIOGRAPHY

[40] Andrej Dudenhefner and Jakob Rehof. Typability in bounded dimension. In
Ouaknine [87], pages 1–12.

[41] Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégiel-
ski and Arnaud Durand, editors, Proceedings of 26th EACSL Conference on Com-
puter Science Logic, volume 16 of LIPIcs, pages 259–273. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[42] Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and
Alexandra Silva. A coinductive framework for infinitary rewriting and equational
reasoning. In Maribel Fernández, editor, 26th International Conference on Rewrit-
ing Techniques and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw,
Poland, volume 36 of LIPIcs, pages 143–159. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[43] Philippa Gardner. Discovering needed reductions using type theory. In Hagiya
and Mitchell [54], pages 555–574.

[44] Gerhard Gentzen. Untersuchungen über das logische schließen. Mathematische
Zeitschrift, (39):405–431, 1934.

[45] Jean-Yves Girard. Une extension de l’interprétation de Gödel l̀’analyse, et son
application à l’élimination des coupures dans l’analyse et la théorie des types. In
J.E. Fenstad, editor, Proceedings of the Scandinavian Logic Symposium, North-
Holland, 1971.

[46] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

[47] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[48] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301–506, 2001.

[49] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
University Press, 1990.

[50] Stéphane Graham-Lengrand and Luca Paolini, editors. Proceedings of the Sixth
Workshop on Intersection Types and Related Systems (ITRS), Dubrovnik, Croatia,
2012, volume 121 of Electronic Proceedings in Theoretical Computer Science, 2013.

[51] Charles Grellois and Paul-André Melliès. An infinitary model of linear logic. In
Andrew M. Pitts, editor, Foundations of Software Science and Computation Struc-
tures - 18th International Conference, FoSSaCS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Computer Science,
pages 41–55. Springer, 2015.

[52] Charles Grellois and Paul-André Melliès. Relational semantics of linear logic and
higher-order model checking. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin,
Germany, volume 41 of LIPIcs, pages 260–276. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.



BIBLIOGRAPHY 327

[53] Timothy Griffin. A Formulae-as-Types Notion of Control. In 17th Annual ACM
Symposium on Principles of Programming Languages (POPL), pages 47–58. ACM
Press, 1990.

[54] Masami Hagiya and John C. Mitchell, editors. Theoretical Aspects of Computer
Software, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994,
Proceedings, volume 789 of Lecture Notes in Computer Science. Springer, 1994.

[55] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
Lambda-Calculus. Cambridge University Press, 1980.

[56] Giuseppe Jacopini. A condition for identifying two elements of whatever model
of combinatory logic. In Corrado Böhm, editor, Lambda-Calculus and Computer
Science Theory, Proceedings of the Symposium Held in Rome, March 25-27, 1975,
volume 37 of Lecture Notes in Computer Science, pages 213–219. Springer, 1975.

[57] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries.
Infinitary lambda calculus. Theor. Comput. Sci., 175(1):93–125, 1997.

[58] Delia Kesner. A theory of explicit substitutions with safe and full composition.
Logical Methods in Computer Science, 5(3:1):1–29, 2009.

[59] Delia Kesner. Reasoning about call-by-need by means of types. In Bart Jacobs
and Christof Löding, editors, Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9634 of Lecture
Notes in Computer Science, pages 424–441. Springer-Verlag, 2016.

[60] Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution
calculus. In Díaz et al. [37], pages 296–310.

[61] Delia Kesner and Daniel Ventura. A resource aware computational interpretation
for herbelin’s syntax. In Martin Leucker, Camilo Rueda, and Frank D. Valencia,
editors, Theoretical Aspects of Computing - ICTAC 2015 - 12th International Col-
loquium Cali, Colombia, October 29-31, 2015, Proceedings, volume 9399 of Lecture
Notes in Computer Science, pages 388–403. Springer-Verlag, 2015.

[62] Delia Kesner and Pierre Vial. Types as Resources for Classical Natural Deduction.
In Dale Miller, editor, 2nd International Conference on Formal Structures for
Computation and Deduction, FSCD 2017, September 4-7, 2017, Oxford, England,
pages 1–15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[63] Assaf Kfoury. A linearization of the lambda-calculus and consequences. Technical
report, Boston Universsity, 1996.

[64] Assaf Kfoury and Joe Wells. Principality and type inference for intersection types
using expansion variables. Theoretical Computer Science, 311(1-3):1–70, 2004.

[65] Kentaro Kikuchi and Takafumi Sakurai. A translation of intersection and union
types for the λµ-calculus. In Jacques Garrigue, editor, Programming Languages
and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-
19, 2014, Proceedings, volume 8858 of Lecture Notes in Computer Science, pages
120–139. Springer-Verlag, 2014.



328 BIBLIOGRAPHY

[66] Stephen C. Kleene. λ-definability and recursiveness. Duke Mathematical Journal,
(2):340–353, 1936.

[67] Stephen Cole Kleene. On the interpretation of intuitionistic number theory. J.
Symb. Log., 10(4):109–124, 1945.

[68] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in
computers and their applications. Masson, 1993.

[69] Toshihiko Kurata. A type theoretical view of böhm-trees. In Typed Lambda Calculi
and Applications, Third International Conference on Typed Lambda Calculi and
Applications, TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, pages 231–
247, 1997.

[70] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, 1986.

[71] Peter J. Landin. Correspondence between ALGOL 60 and church’s lambda-
notation: part I. Commun. ACM, 8(2):89–101, 1965.

[72] Peter J. Landin. A correspondence between ALGOL 60 and church’s lambda-
notations: Part II. Commun. ACM, 8(3):158–167, 1965.

[73] Olivier Laurent. On the denotational semantics of the untyped lambda-mu calcu-
lus, 2004. Unpublished note.

[74] Jean-Jacques Lévy. An algebraic interpretation of equality in some models of the
lambda calculus. Lambda Calculus and Computer Science Theory ( LNCS No. 37),
1975.

[75] G. Longo. Set-theoretical models of lambda calculus: Theories, expansions and
isomorphisms. Annals of Pure and Applied Logic, 1983.

[76] Giulio Manzonetto. Lambda Calculus, Linear Logic and Symbolic Computation.
Mémoire d’habilitation à diriger des recherches, Université Paris-Nord, 2017.

[77] Betti Venneri Mario Coppo, Mariangiola Dezani-Ciancaglini. Functional charac-
ters of solvable terms. Mathematical Logic Quarterly, 27:45–58, 1981.

[78] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. Rose and
J. Shepherdson, editors, Proceedings of the Logic Colloquium ’73, North Holland
Co., Amsterdam, 1975.

[79] Per Martin-Löf. An Intuitionistic Theory of Types (technical report, 1972). In
Giovanni Sambin and Jan Smith, editors, Twenty-Five Years of Constructive Type
Theory, pages 127–172. Clarendon Press, Oxford, 1998.

[80] Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full
lambda-calculus. In Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages
471–480. IEEE Computer Society, 2012.



BIBLIOGRAPHY 329

[81] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic Approximations, Fibra-
tions and Intersection types. In Proceedings of the 45th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2018, Los Angeles, USA,
January 8-13, 2017 (to appear), pages 1–26, 2018.

[82] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems.
In Proceedings of POPL, pages 3–16, 2015.

[83] Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst.
Sci., 17(3):348–375, 1978.

[84] Hiroshi Nakano. A modality for recursion. In 15th Annual IEEE Symposium on
Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000,
pages 255–266. IEEE Computer Society, 2000.

[85] Peter Møller Neergaard and Harry G. Mairson. Types, potency, and idempotency:
why nonlinearity and amnesia make a type system work. In Chris Okasaki and
Kathleen Fisher, editors, Proceedings of the Ninth ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 138–149. ACM Press, 2004.

[86] Luke Ong and Steven J. Ramsay. Verifying higher-order functional programs with
pattern matching algebraic data type s. In Thomas Ball and Mooly Sagiv, editors,
Proceedings of the 38th Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 587–598. ACM Press, 2011.

[87] Joel Ouaknine, editor. 32nd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer
Society, 2017.

[88] Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-
calculus. In Luke Ong, editor, Foundations of Software Science and Computation
Structures, volume 6014 of Lecture Notes in Computer Science, pages 358–373.
Springer-Verlag, 2010.

[89] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical natural
deduction. In Andrei Voronkov, editor, International Conference on Logic Pro-
gramming and Automated Reasoning, volume 624 of Lecture Notes in Computer
Science, pages 190–201. Springer-Verlag, July 1992.

[90] Michel Parigot. Classical proofs as programs. In Georg Gottlob, Alexander Leitsch,
and Daniele Mundici, editors, Computational Logic and Proof Theory, Third Kurt
Gödel Colloquium, KGC’93, Brno, Czech Republic, August 24-27, 1993, Proceed-
ings, volume 713 of Lecture Notes in Computer Science, pages 263–276. Springer,
1993.

[91] Michel Parigot. Proofs of strong normalisation for second order classical natural
deduction. J. Symb. Log., 62(4):1461–1479, 1997.

[92] Pierre-Marie Pédrot and Alexis Saurin. Classical by-need. In Peter Thiemann,
editor, Programming Languages and Systems - 25th European Symposium on Pro-
gramming, ESOP 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 616–
643. Springer-Verlag, 2016.



330 BIBLIOGRAPHY

[93] Emmanuel Polonovski. Substitutions explicites, logique et normalisation. Thèse de
doctorat, Université Paris 7, 2004.

[94] Dag Prawitz. Natural deduction: A proof-theoretical study. In Acta Universitatis
Stockholmiensis, Stockholm studies in philosophy, volume 3. Almqvist & Wicksell,
1965.

[95] Christophe Raffalli. Data types, infinity and equality in system af2. In Egon
Börger, Yuri Gurevich, and Karl Meinke, editors, Computer Science Logic, 7th
Workshop, CSL ’93, Swansea, United Kingdom, September 13-17, 1993, Se-
lected Papers, volume 832 of Lecture Notes in Computer Science, pages 280–294.
Springer, 1993.

[96] Luigi Santocanale. A calculus of circular proofs and its categorical semantics.
Technical Report RS-01-15, BRICS, Dept. of Computer Science, University of
Aarhus, May 2001.

[97] Helmut Schwichtenberg. Definierbare Funktionen im λ-Kalkül mit Typen. Arch.
Math Logik 17, pages 113 – 114, 1976.

[98] Peter Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Mathematical Structures in Computer Science, 11(2):207–
260, 2001.

[99] Robert I. Soare. Turing Computability - Theory and Applications. Theory and
Applications of Computability. Springer, 2016.

[100] William W. Tait. Intensional interpretations of functionals of finite type I. J.
Symb. Log., 32(2):198–212, 1967.

[101] Makoto Tatsuta. Types for hereditary head normalizing terms. In Jacques Gar-
rigue and Manuel V. Hermenegildo, editors, Functional and Logic Programming,
9th International Symposium, FLOPS 2008, Ise, Japan, April 14-16, 2008. Pro-
ceedings, volume 4989 of Lecture Notes in Computer Science, pages 195–209.
Springer, 2008.

[102] Makoto Tatsuta. Types for hereditary permutators. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27
June 2008, Pittsburgh, PA, USA, pages 83–92. IEEE Computer Society, 2008.

[103] Alan Turing. On computable numbers with an application to the ” Entschei-
dungsproblem”. Proceeding of the London Mathematical Society, 1936.

[104] Alan M. Turing. Computability and λ-definability. J. Symb. Log., 2(4):153–163,
1937.

[105] Pawel Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic
Logic, 64(3):1195–1215, 1999.

[106] Steffen van Bakel. Complete restrictions of the intersection type discipline. Theor.
Comput. Sci., 102(1):135–163, 1992.

[107] Steffen van Bakel. Intersection type assignment systems. Theor. Comput. Sci.,
151(2):385–435, 1995.



BIBLIOGRAPHY 331

[108] Steffen van Bakel. Completeness and partial soundness results for intersection and
union typing for lambda_µµ_. Ann. Pure Appl. Logic, 161(11):1400–1430, 2010.

[109] Steffen van Bakel. Sound and complete typing for lambda-mu. In Elaine Pimentel,
Betti Venneri, and Joe B. Wells, editors, Proceedings Fifth Workshop on Intersec-
tion Types and Related Systems, ITRS 2010, Edinburgh, U.K., 9th July 2010.,
volume 45 of EPTCS, pages 31–44, 2010.

[110] Steffen van Bakel, Franco Barbanera, and Ugo de’Liguoro. Characterisation of
strongly normalising lambda-mu-terms. In Graham-Lengrand and Paolini [50],
pages 1–17.

[111] Steffen van Bakel, Franco Barbanera, and Ugo de’Liguoro. Intersection types for
the lambda-mu calculus. CoRR, abs/1704.00272, 2017.

[112] Femke van Raamsdonk, Paula Severi, Morten Heine Sørensen, and Hongwei Xi.
Perpetual reductions in lambda-calculus. Inf. Comput., 149(2):173–225, 1999.

[113] Lionel Vaux. Convolution lambda-bar-mu-calculus. In Simona Ronchi Della
Rocca, editor, Typed Lambda Calculi and Applications, 8th International Con-
ference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings, volume 4583
of Lecture Notes in Computer Science, pages 381–395. Springer-Verlag, 2007.

[114] Pierre Vial. Infinitary intersection types as sequences: A new answer to Klop’s
problem. In Ouaknine [87], pages 1–12.

[115] Alfred North Whitehead and Bertrand Russell. Principia Mathematica. Cambridge
University Press, 1925–1927.





Appendix A

Complements to Klop’s Problem

A.1 Expanding the Π′n and Π′

• ρ1 = [ ]→ o

• ρn+1 = [ρk]16k6n → o

• A term t typed with ρn+1 can be fed with an argument u typed with ρ1, . . . , ρn to
give the term t u of type o.

• Γn = x : ([[o]→ o]n−1 + [o]→ o).

We set:

Ψ1 =

f : [[ ]→ o] ` f : [ ]→ o

f : [[ ]→ o] ` f(xx) : o

f : [[ ]→ o] ` ∆f : ρ1

and, for all k > 2:

Ψk =

f : [[o]→ o] ` f : [o]→ o

x : [ρk−1] ` x : ρk

(
x : [ρi] ` x : ρi

)
16i<k−2

x : [ρi]16i6k−1 ` xx : o

f : [[o]→ o];x : [ρi]16i6k ` f(xx) : o

f : [[o]→ o] ` ∆f : ρk

We may then define:

Π1 =
Ψ1 � f : [[ ]→ o] ` ∆f : [[ ]→ o]

Γ1 : Yf

and, for all n > 2:

Πn =
Ψn � f : [[o]→ o] ` ∆f : ρn (Ψk � f : [[. . .]→ o] ` ∆f : ρk)16k6n−1

Γn ` Yf : o

By induction, on n, we prove that:

Lemma. For all n > 1, the derivation Πn is obtained from Π′n by n steps of subject
expansion.

333
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ρ1 = [ ]→ o

→

o

ρn+1 = [ρk]16k6n → o

→

oρnρ2ρ1

The derivation Πn below is obtained from Πk
n (Fig. 10.2) after k steps of expansion.

The subderivation Ψn types ∆f with ρn.

Ψn

Πn =

[o]→ o

ρn−1 ρn−2 ρ2 ρ1

ρn

ρn−1 ρ2 ρ1

@

λx

@

f @

x x x x

Ψn−1 Ψ2 Ψ1

Remark: Π1 is a bit different, it just assigns [ ]→ o to f .

Intuitively, the family (ρn)n>1 is “directed” (ρn is a truncation of ρn+1).
The infinite type ρ below is the “join” of this family.

ρ = [ρ]ω → o

→

oρρ

Since (ρn)n>1 is “directed”, (Ψn)n>0 and then, (Φn)n>0 are also directed
(Ψn and Φn are truncations of Ψn+1 and Φn+1 resp.).

Their resp. joins are then Ψ and Π below.

Ψ

Π =

[o]→ o

ρ ρ ρ

ρ

ρ ρ

@

λx

@

f @

x x x

Ψ Ψ

Figure A.1: Expanding the Πk
n and Π′
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The last part of this appendix is more informal. We explain how the derivation
Π′ typing fω can be expanded into a derivation Π typing Yf by taking the infinite
reduction sequence Yf →∞ fω backwards. The derivations Πn play a key role and Π
will be obtained by taking their join them. First, we observe that, for all k < n:

• The type ρk is a truncation of ρn since [ρi]16i<k is obviously a truncation of
[ρi]16i<n (so that ρk = [ρi]16i<k → o is a truncation ρn = [ρi]16i<n → o). Thus,
the family (ρn) is “directed”.

• The derivation Ψk is a truncation of Ψn thanks to the first observation.

• The derivation Πk is a truncation of Πn.

Those observations are corroborated by drawing ρn, Ψn, P in for small values of n. We
then observe that the type ρ coinductively defined by ρ = [ρ]ω → o is the “join” of the
types ρn (the family (ρn) is directed and every finite truncation of ρ is “included” in a
ρn for some great enough n). We define

Ψ =

f : [[o]→ o] ` f : [o]→ o

x : [ρ] ` x : ρ

(
x : [ρ] ` x : ρ

)
ω

x : [ρ]ω ` xx : o

f : [[o]→ o];x : [ρ]ω ` f(xx) : o

f : [[o]→ o] ` ∆f : ρ

Then Ψ is the “infinitary join” of the Ψn, notably because the ρ is the infinitary join of
the ρn.

Π =
Ψn � f : [[o]→ o] ` ∆f : ρ (Ψk � f : [[o]→ o] ` ∆f : ρ)ω

Γ ` Yf : o

We note likewise that, intuitively, Π is the “infinitary join” of the Πn, and Π conclude,
as expected, with Γ ` Yf : o.

An example of Unsound Derivation

Using the type ρ, we set:

Π∆ :=

x : [ρ] ` x : ρ

(
x : [ρ] ` x : ρ

)
ω

x : [ρ]ω ` xx : o

` ∆ : ρ

Then Ω can be typed with o:

ΠΩ :=
Π∆� ` ∆ : ρ (Π∆� ` ∆ : ρ)ω

` Ω :
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A.2 Equinecessity, Reduction and Approximability

The rigid constructions presented here ensure "trackability", contrary to multiset con-
structions of system R. We show here a few applications useful to prove that approx-
imability is stable under reduction or expansion (Lemma 10.5). We consider a derivation
P , with the usual associated notations (including A = supp(P )).

A.2.1 Equinecessary bipositions

Definition A.1. Let p1, p2 two bipositions of P .

• We say p1 subjugates p2 if, for all finite fP 6 P , p1 ∈ fP implies p2 ∈ fP .

• We say p1 and p2 are equinecessary (written p1 ↔ p2) if, for all finite fP 6 P ,
p1 ∈ fP iff p2 ∈ fP .

Moreover, let B1, B2 ⊆ P . Then B1 and B2 are equinecessary if every p1 ∈ B1 (resp.
p2 ∈ B2) is equinecessary to some p2 ∈ B2 (resp. p1 ∈ B1).

There are many elementary equinecessity cases that are easy to observe. We need
only a few ones and we define asc(p) and Asc(p) s.t. p ↔ asc(p) and p ↔ Asc(p) for
all p ∈ bisupp(P ).

• asc(p) is defined for any p ∈ bisupp(P ) which is not in an axiom leaf.

– Left bipositions: asc(a, x, k · c) = (a · `, x, k · c), where ` > 0 is the unique
integer s.t. (a · `, x, k · c) ∈ bisupp(P ).

– Right bipositions (abs): if t(a) = λx, asc(a, ε) = (a · 0, ε), asc(a, 1 · c) =
(a · 0, c) and asc(a, k · c) = (a · 0, x, k · c) if k > 2.

– Right bipositions (app): if t(a) = @, asc(a, c) = (a · 1, 1 · c).

• Asc(p) is a right biposition and is defined as the highest right biposition related to
p by asc.

– Right bipositions: if p = (a, c), let h be maximal such that aschp is defined.
In that case, we set Asc(p) = asch(p).

– Left bipositions: if p = (a, x, k·c), let h be maximal (if it exists) such that
asch(p) exists. In that case, asch(p) is of the form (a0, x, k·c) with t(a0) = x.
We set then Asc(p) = (a0, c).

Since t ∈ Λ001 (and not in Λ111 − Λ001), Asc(p) is defined for any right biposition p. If
p is quantitative, then Asc(p) is also defined for any left biposition.

An examination of the app-rule shows that, if t(a) = @, for all k > 2 and c ∈ N∗,
(a·1, k·c)↔ (a·k, c).

Assume t|b = (λx.r)s. A very important case of equinecessity is this one (with the
same notations as in Sec. 10.3.5 e.g., a = b): (a · 1, k · c) ↔ (a · 10 · ak, x, k · c) and
(a · 1, k · c)↔ (a · k, c). Thus, (a · 10 · ak, c)↔ (a · k, c).
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A.2.2 Approximability is stable under (anti)reduction

We assume here that P → P ′ (P is still assumed to be quantitative). Let 0B ⊆
bisupp(P ) a finite subset. We notice that Resb is defined for any right biposition which
is on an axiom leaf typing y 6= x.

So, let 0B∗ be the set obtained from Asc(B) by replacing any (a·10·ak, c) by (a·k, c).
Then |0B∗| 6 |0B| (so that 0B∗ is finite) and any p ∈ 0B is equinecessary with a p̃ ∈ 0B∗.
So the partial proof of Lemma 10.5 is valid for 0B∗. By equinecessity, it entails it is also
valid for 0B.

For the converse implication, we just have to replace 0B′ by Asc(0B′).

Remark A.1. This also allows us to prove that a derivation P is approximable iff P
is quantitative and, for all finite set of right bipositions 0B ⊆ bisupp(P ), there exists
fP 6 P such that 0B ⊆ bisupp(fP ). The implication ⇒ is obvious by Definition 10.4
and Lemma 10.5 (first point).
Let us prove the converse implication. Let 0B ⊆ bisupp(fP ) be a finite set of bipositions.
Since P is quantitative, for all p ∈ 0B, Asc(b) is defined. We set 0B∗ = Asc(0B), so that
0B∗ is a set of right bipositions equinecessary to 0B. By hypothesis, there is fP 6 P
such that 0B∗ ⊆ bisupp(fP ). By equinecessity, 0B ⊆ bisupp(fP ).

A.2.3 Equinecessity and Bipositions of Null Applicative Depth

One may conjecture that every biposition (in a quantitative derivation P ) is equineces-
sary with a root biposition i.e. a biposition that is located in the root judgment of P .
Such a biposition is of the form p = (0, c) with c ∈ supp(TP (0)) or p = (0, x, k · c) with
k · c ∈ supp(CP (0)(x)).

This would imply that, for a derivation P to be approximable, it is enough to have:
“P is quantitative and, for all 0B ⊆ bisupp(P ) finite set of root bipositions, there exists
fP 6 P such that 0B ⊆ bisupp(fP )”. We call this condition root approximability.
p ∈ 0B,

This is actually true in the finite case and so, for the approximable derivation. How-
ever, this is not true for any derivation. We exhibit a counter-example of this conjecture
in this section i.e. a derivation that root approximable but not approximable. We present
this counter example with a R-derivation whereas it should be a S-derivation (since ap-
proximability is only an informal notion for System R, Sec. 10.3.4), but it is easier to
understand that way. Corresponding S-derivations are not difficult to define from our
presentation.

The idea is to use a strongly converging sequence t0 → t1 → t2 → . . . →∞ t′ such
that no reduction step is erasing but there is a variable x ∈ fv(t0) = fv(t1) = . . . such
that x /∈ fv(t′) (i.e. there is an asymptotic erasure).

Let ∆∗ = λx.(λz.y(xx z) and t = ∆∗∆∗, so that t → λz.y(t z) (see Fig. A.2). We
have t ≡β Y (λtx.(λz.y(tx))).

Note that t f strongly converges to the term t′ = yω, which does not contain f .
Indeed, t f → (λz.y(t z))f → y(t f) (non-erasing steps).

There are two derivations Ψ1 and Ψ2 respectively concluding with y : [[o] → o]ω `
λz.y(t z) : [o] → o and y : [[o] → o]ω ` λz.y(t z) : [ ] → o. They are obtained from Ψ′1
and Ψ′2 from Fig A.2 by a one-step expansion:

Let ΠΩ a derivation concluding with ` Ω : o. This derivation is unsound (it types
the mute term Ω) and is intuitively not approximable: it is impossible to find a finite
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Figure A.2: Reduction of t
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Ψ′2 � y : [[o]→ o]ω ` λz.y(t z) : [ ]→ o

Figure A.3: Two Derivations typing t′ := λz.y(t z)

derivation (of R0) concluding with ` Ω : o. Then using Ψ1 and ΠΩ and an app-rule
we can build a derivation Π1 concluding with y : [[o] → o]ω ` tΩ : o, in which the
subterm Ω is typed. We can also build a derivation Π2 from Ψ2 that also concludes with
y : [[o]→ o]ω ` tΩ : o. This times, the subter Ω is not typed.

It is not difficult to see that Π2 is intuitively approximable, whereas Π1 is 0-approximable
but not fully approximable. Roughly speaking, the subderivation of Π1 typing Ω is the
only non-approximable part of Π1. Indeed:

• Π2 is not approximable since it contains a subderivation typing the mute term Ω.

• Every (finite) approximation of Π2 is an approximation of Π1. Thus, the join of
the finite approximations of Π1 is actually Π2.

This proves that depth 0 approximability is not equivalent to approximability.

A.3 Lattices of (finite or not) approximations

In this Appendix, we prove Theorem 10.3, stating that the set of derivations typing a
given term t is a complete semi-lattice. We implicity use some of the concepts of Part IV
(e.g., ascendance) but in a more basic way.

Let t be a term, A = {a ∈ N∗ | a ∈ supp(t)} and B = A × (N \ {0})∗ ∪ A × V ×
((N \ {0, 1}) · (N− \{0})∗). Thus, A (resp. B) holds the potential positions (resp. right
and left bipositions) of a derivation P typing t i.e. if P types t, then supp(P ) ⊆ A and
bisupp(P ) ⊆ B.
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Let p ∈ B. Whether p is of the form (a, c) or (a, x, k·c), we set out(p) = a.

In order to prove Theorem 10.3, we first need to characterize the set of function
P : B −→ O ∪ {→} which actually define a derivation typing t.

Thus, let P : B −→ O ∪{→} a function. We set B = dom(P ) and A = {out(a) | p ∈
B}.

For all a ∈ A, we write T (a) : (N \ {0})∗ → O ∪ {→} for the function defined by
T (a)(c) = P (a, c) and for all x ∈ V , we write C(a)(x) : ((N \ {0, 1}) · (N \ {0})∗) →
O ∪{→} for the function defined by C(a)(x)(x) = P (a, x, c). We write P (a) for P (a) =
C(a) ` t|a : T (a).

We also set Lves(B) = {(a, c) ∈ B | (a, c · 1) /∈ B} ∪ {(a, x, c) ∈ B | (a, c · 1) /∈ B}.

Let us first observe that A and B must satisfy the following conditions, for P to be
a derivation:

• Non-Vacuity (c1): (ε, ε) ∈ B, for all a ∈ A, (a, ε) ∈ B.

• Axiom Rule (c2): for all a ∈ A s.t. t(a) = x:

– There is a unique k ∈ N such that (a, x, k) ∈ B. This integer k may be then
denoted trP (a).

– For all y ∈ V s.t. y 6= x, for all k > 2, c ∈ N∗, (a, y, c) /∈ B.

• Abstraction (c3): For all a ∈ A such that t(a) = λx:

– For all k > 2, c ∈ N∗, (a, x, k·c) /∈ B.

– (a, 1) ∈ B.

• Application (c4): for all a ∈ A such that t(a) = @, for all x ∈ V , k > 2 such that
(a, x, k) ∈ B, there is a unique ` > 1 such that (a·`, x, k) ∈ B. This integer ` may
be then denoted uptrP (a, x, k) (uptr stands for “up" and “track").

• 001-Restriction (c5): for all (a, c) ∈ B (resp. (a, x, c) ∈ B), there is n > 0 such
that (a, c · 1n) /∈ B (resp. (a, x, c · 1n) /∈ B).

Let us briefly explain the meaning of those conditions. Condition (c1) states that a
derivation is non-empty and requires that there is a type on the right-hand side of `
whenever there is a context on its left-hand side (without (c1), it is not difficult to
have define a “derivation" typing fω without right-hand sides under the hypotheses of
Proposition A.1 below). Condition (c2) states that, if t(a) = x (i.e. if a ∈ A necessarily
corresponds to an ax-rule typing x), then x is typed with a singleton sequence type (first
point) and that no other variable is typed (second point), modulo some conditions to
be introduced later ((tf1) and (tf2)). Condition (c3) means that, if t(a) = λx, then
x is not typed in the context of t|a (first point) and that the type of t|a is an arrow
type and not a type variable (support={ε}): its support must contain 1 (second point).
Condition (c4) means that, if t(a) = @ (i.e. a ∈ A corresponds to an app-rule), then
there are no track conflicts (see Sec. 10.2.3). Condition (c5) ensures that types are in
Typ (and not in Typ111 \ Typ).
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Conditions (c1), (c2), (c3), (c4), (c5) are necessary but not sufficient for P to be
a derivation typing t. Assume that P satisfies (c1), (c2), (c3), (c4), (c5). This allows
us to define some binary relations on B, that will be denoted by an arrow. Notice that
those relations are defined on B (and not on B ⊆ B), but that they depend on B e.g.,
condition (la@) below is well-founded and unambiguously defined because P satisfies
(c4), condition (axf) depends on (c2).

• Type Formation (tf1): For all a ∈ A, x ∈ V , c ∈ N∗, k ∈ N, (a, c · k)→t1 (a, c)
(a, x, c · k)→t1 (a, x, c)

• Type Formation (tf2): For all a ∈ A, x ∈ V , c ∈ N∗, k > 2, (a, c · k)→t1 (a, c · 1)
and (a, c · k)→t1 (a, x, c · 1) .

• Axiom Formation (axf): For all a ∈ A such that t(a) = x, for all c ∈ N∗,
(a, x, k·c)→ax (a, c), where k = trP (a) (see (c2)).

• Right Ascendance λ (raλ): For all a ∈ A s.t. t(a) = λx, for all c ∈ N∗,

• Right Ascendance @ (ra@): For all a ∈ A s.t. t(a) = @, for all c ∈ N∗, (a, c)→asc

(a · 1, c)

• Left Ascendance λ (laλ): For all a ∈ A s.t. t(a) = λx:

– (laλ1) For all k > 2, c ∈ N∗, (a, k·c)→asc (a·0, x, k·c)
– (laλ2) For all y ∈ V , k > 2, c ∈ N∗ s.t. y 6= x, (a, y, k·c)→asc (a·0, y, k·c)

• Left Ascendance @ (la@): For all a ∈ A, x ∈ V , k > 2 s.t. t(a) = @ and
(a, x, k) ∈ B, for all c ∈ N∗, (a, x, k·c)→asc (a · `, x, k · c), where ` = uptrP (a, x, k)
(see (c4)).

• Consumption (con): For all a ∈ A s.t. t(a) = @, for all k > 2, c ∈ N∗, (a·1, k·c)→
(a·k, c)

Notice that if p1 →asc p2, then p2 = ascp1, with the notation of Sec. A.2.1. But if
t(a) = λx, we have (a · 0, ε) = asca, ε, but not (a, ε)→asc (a · 0, ε).

We will consider ≡@, the reflexive transitive symmetric closure of→ax ∪→asc ∪→pi

∪ →: relation ≡@ helps us to track a type symbol through a derivation. For instance,
in Pex, let us describe the equivalence class of (03, ε) (a biposition pointing to o′) by
≡@. We have (ε, 1)→asc (0, ε)→asc (03, ε)ax← (03, x, 2)asc← (0, x, 2)asc← (0, 2) but also
(03, ε)← (01, 3)ax←(01, x, 43)asc← (0, x, 43)asc← (ε, 43). All those bipositions also point
to type variable o′.

An attentive observation of the relations above shows that, for P to be a derivation
typing t, then B must be closed under→t1, →t2, ≡@. Type formation ensures that
the supports of the types (on the right-hand sides of `) are well formed e.g., closure
under→t1 ensures that the supports of types are trees and closure under→t2means that
any non terminal node in a type has a son on track 1 (because a non terminal node
of a type is an arrow and has its right hand-side placed on track 1, see Sec. 10.2.2).
Left ascendance is mostly about how the context of a rule may be computed from the
contexts of its premises. Right ascendance explains how the type given in a rule is par-
tially computed from the type given in one of its premises. Relation→ax ensures that
axiom are of the form x : (k · T ) ` x : T where k is the axiom track given by (c2)
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at position a. Consumption is related to the app-rule: the left-hand side of the arrow
type typing the left-hand side of the application (bipositions of the form (a·1, k·c) must
be equal to the sequence of types given to the argument (bipositions of the form (a·k, c)).

Conditions (c1), (c2), (c3), (c4), (c5) and closure under→t1,→t2,≡@ are not enough
to guarantee that P is a derivation. There are also labelling conditions (for (lab3), see
the example above with (03, ε)).

• Non terminal nodes are arrow (lab1): For all p ∈ B \ Lves(B), P (p) =→.

• Leaves are type variables (lab2): For all p ∈ Lves(B), P (p) ∈ O.

• Matching leaves labels (lab3): for all p1, p2 ∈ Lves(B) such that p1 ≡@ p2, P (p1) =
P (p2).

We claim and prove:

Proposition A.1. The function P is a S-derivation typing t iff is satisfies (c1), (c2), (c3),
(c4), (c5), (lab1), (lab2), (lab3) and is closed under→t1,→t2 and ≡@.

Proof. The necessity of those conditions has been discussed. Let us prove that they are
sufficient and consider a function P satisfying the hypotheses of the proposition.

First, thanks to (tf1), (tf2), (lab1), (lab2), it easy to check that, for all a ∈ A and
x ∈ V , T (a) is a type and C(a)(x) is sequence type of Typ111. Using (c5), we check that
they are in Typ. Thus, the P (a) = C(a) ` t|a : T (a) are well-formed S-judgments.

• Correctness of ax-rules: let a ∈ A such that t(a) = x. By (r1), let k > be the
unique integer 2 such that (a, x, k) ∈ B. By (axf), closure by ≡@ and (lab3)
(w.r.t.→ax), the function (c 7→ C(a)(x)(c) and (c 7→ T (a)(c) are equal. Moreover,
by (r1) again, if y 6= x, then C(a)(y) is empty. Thus, P (a) = x : k·T (a) ` x : T (a)
is a correct ax-rule.

• Correctness of abs-rules: let a ∈ A such that t(a) = λx. By (r2), (ε, 1) ∈ B, so
(a, ε) /∈ Lves(B) and 1 ∈ supp(T (a)) so T (a) is an arrow type (if it were a type
variable, we would have supp(T (a)) = {ε}).
The fact that C(a · 0) = C(a);x : Sc(T (a)) comes from the definition of left as-
cendance (see (laλ1) and (laλ2)) and (lab3) (w.r.t. →asc). By (raλ) and (lab3)
(w.r.t. →asc), the functions c 7→ T (a)(1 · c) and c 7→ T (a · 0)(x) are equal i.e.
T (a · 0) = Tg(T (a)).
Thus, we have a correct abs-rule.

• Correctness of app-rules: let a ∈ A such that t(a) = x. The fact that C(a) =
]`∈{1}∪KC(a · `) comes from the definition of left ascendance (see (laapp)) and
(lab3) (w.r.t. →asc), but also from (c4) and the fact that every C(a · `)(x) is a
correct sequence judgment.
By (c1), (a, ε) ∈ B, so, by (raapp), (a · 1, 1) ∈ B, so (a, ε) /∈ Lves(B) and
P (a, ε) =→.
By (ra@) and (lab3) (w.r.t.→asc), the functions c 7→ T (a)(c) and c 7→ T (a ·1)(1 ·c)
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are equal i.e. T (a) = Tg(T (a · 1)). By (con) and (lab3) (w.r.t. →), the functions
(k, c) 7→ T (a · 1)(k · c) and (k, c) 7→ T (a · k)(c) (from (N \ {0, 1}) × N∗) are equal
i.e. Sc(T (a · 1)) = ]k>2,a·k∈A(k · T (a · k)).
Thus, we have a correct app-rule.

A.3.1 Meets and Joins of Derivations Families

Lemma A.1. Let (Pi)i∈I be a non-empty family of derivations typing the same term t,
such that ∀i, j ∈ I, ∃P ∈ Deriv, Pi, Pj 6∞ P .
We define P by bisupp(P ) = ∩i∈Ibisupp(Pi) and P (p) = Pi(p) for any i ∈ I.
Then, P defines a correct derivation (that is finite if one of the Pi is finite). We write
P = ∧i∈IPi.

Proof sketch.

• We first check that if one of the Pi satisfies (c1), (c2), (c3), (c4), (c5), then P
also does.

• The stability of P under→t1,→t2 and ≡@ comes from the stability of under those
for the Pi. However, ≡@ depends on B := bisupp(P ), because of (axf) and (la@).
This works because:

– For all a ∈ A := out(B) such that t(a) = x, for all i ∈ I, trP (a) = trPi(a).

– For all a ∈ A, x ∈ V and k > 2 such that t(a) = @ and (a, x, k) ∈ B, for all
i ∈ I, uptrP (a, x, k) = uptrPi(a, x, k).

Thus, the relation ≡@ of P is the intersection of those of the Pi (i ranging over I).

• Condition ∀i, j ∈ I, ∃P ∈ Deriv, Pi, Pj 6∞ P implies that p ∈ Lves(P ) iff
p ∈ Lves(Pi) for all i. Thus, P also satisfies (lab1) and (lab2). Finally, P satisfies
(lab3) because of the remark about ≡@ in the last point.

Lemma A.2. Let (Pi)i∈I be a non-empty family of derivations typing the same term,
such that ∀i, j ∈ I, ∃P ∈ Deriv, Pi, Pj 6∞ P (e.g., (Pi)i∈I is directed).
We define the labelled tree P by bisupp(P ) = ∪i∈Ibisupp(Pi) and P (p) = Pi(p) for
any i such that p ∈ bisupp(Pi).
Then P defines a correct derivation (that is finite if I is finite and all the Pi are). We
write P = ∨i∈IPi.

Proof sketch.

• We first check that, since Pi satisfies (c1), (c2), (c3), (c4), (c5)for all i, then
P also does. For instance, for (c5), we need to also use (lab2) and condition
∀i, j ∈ I, ∃P ∈ Deriv, Pi, Pj 6∞ P , which entail that if p ∈ Lves(Pi) for some
i, then Pi(p) = o (for some o ∈ O), so, for all j ∈ I such that p ∈ bisupp(Pj),
Pj(p) = o i.e. p ∈ Lves(Pj). Thus, p ∈ Lves(B). In particulier, this easily implies
that P also satisfies (lab1) and (lab2).
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• The stability of P under→t1,→t2 and ≡@ comes from the stability of under those
for the Pi. However, ≡@ depends on B = bisupp(P ), because of (axf) and (la@).
This works because:

– For all a ∈ A := out(B) such that t(a) = x, then for all i ∈ I such that
a ∈ Ai := supp(Pi), we have trP (a) = trPi(a).

– For all a ∈ A, x ∈ V and k > 2 such that t(a) = @ and (a, x, k) ∈ B, then
for all i ∈ I such that (a, k, x) ∈ Bi := bisupp(Pi), we have uptrP (a, x, k) =
uptrPi(a, x, k).

Thus, the relation ≡@ of P is the union of those of the Pi (i ranging over I).

• Finally, P satisfies (lab3) because of the remark about ≡@ in the last point.

The previous lemmas define the join and the meet of derivations (under the same
derivation) as their set-theoretic union and intersection. More precisely, they entail
Theorem 10.3:

Theorem. The set of derivations typing a same term t endowed with 6∞ is a directed
complete semi-lattice.

• If D is a directed set of derivations typing t:

– The join ∨D of D is the function P defined by dom(P ) = ∪P∗∈Dbisupp(P∗)
and P (p) = P∗(p) (for any P∗ ∈ D s.t. p ∈ bisupp(P∗)), which also is a
derivation.

– The meet ∧D of D is the function P defined by dom(P ) = ∩P∗∈Dbisupp(P∗)
and P (p) = P∗(p) (for all P∗ ∈ D), which also is a derivation.

• If P is a derivation typing t, Approx∞(P ) is a complete lattice and Approx(P ) is
a lattice.

A.3.2 Reach of a derivation

Definition A.2. • For any derivation P , we set Reach(P ) = {p ∈ bisupp(P ) | ∃fP 6
P, p ∈ fP}.

• If p ∈ Reach(P ), we say p is reachable.

• If B ⊂ bisupp(P ), we say B is reachable if there is fP 6 P s.t. B ⊂ bisupp(fP ).

Since Approx(P ) is a complete lattice and the bisupports of its elements are finite,
we can write P 〈p〉 (resp. P 〈B〉) for the smallest fP containing p (resp. containing B),
for any p ∈ Reach(P ) (resp. for any reachable B ⊂ bisupp(P )).

Proposition A.2. Let B ⊂ bisupp(P ). Then B is reachable iff B is finite and B ⊂
Reach(P ).
In that case, P 〈B〉 = ∨p∈BP 〈p〉.

Definition A.3. If Reach(P ) is non-empty, we define P 〈Reach〉 as the induced labelled
tree by P on Reach(P ).
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We have actually P 〈Reach〉 =
∨

p∈Reach(P )

P 〈p〉, so P is a derivation. By construction,

P is approximable.

A.3.3 Proof of the subject expansion property

We reuse the notations and assumptions of Sec. 10.5.4 and set A′ = supp(P ′). expansion
of a term inside demands to choose new axiom tracks. We will do this uniformly i.e. we
fix an injection b·c from N∗ to N− {0, 1} and any axiom rule created at position a will
use the axiom track value bac.

Assume fP ′ 6 P ′. Let N ∈ N s.t., for all n > N, bn /∈ fA′ with fA′ = supp(fP ′). For
n > N , we write fP ′(n) for the derivation replacing t′ by tn in fP ′. This derivation is
correct according to the subject substitution lemma (section 10.4.4), since tn(a) = t′(a)
for all a ∈ fA′.

We then write fP ′(n, k) (with 0 6 k 6 n) the derivation obtained by performing
k expansions (w.r.t. our reduction sequence and b·c). Since bn is not in A, we observe
that fP ′(n + 1, 1) = fP ′(tn). Therefore, for all n > N, fP ′(n, n) = fP ′(N, N). Since
we could replace N by any n > N , fP is morally fP ′(∞, ∞). We write P = P ′(init)
to refer to this deterministic construction.

We set D = {fP ′(init) | fP ′ 6 P ′}. Let us show that D is a directed set.
Let fP ′1,

fP ′2 6 P ′. We set fP ′ = fP ′1 ∨ fP ′2. Let N be great enough so that ∀n >
N, bn /∈ fA′ with fA′ = supp(fP ′).

We have fP ′i 6
fP ′, so fP ′i (N) 6 fP (N), so, the by monotonicity of uniform expan-

sion, fP ′i (N, N) 6 fP ′(N, N) i.e. fPi(init) 6 fP (init).
Since D is directed, we can set P = ∨fP ′6P ′fP ′(init). Since for any fP ′ 6 P and the

associated usual notation, fC(ε) = fC ′(ε), fT (ε) = fT ′(ε) and C(ε), C ′(ε), T (ε), T ′(ε)
are the respective infinite join of fC(ε), fC ′(ε), fT (ε), fT ′(ε) when fP ′ ranges over
Approx(P ′), we conclude that C(ε) = C ′(ε) and T (ε) = T ′(ε).

A.4 Approximability of the quantitative NF-derivations

We show in this Appendix that every quantitative derivation typing a normal form t is
approximable. We use the same notations as in Section 10.5: we consider a derivation
P built as in Subsection 10.5.2, from a normal form t, a support candidate A of t and
a type T̊ (̊a) given for each unconstraind position å ∈ Å. It yields a family of contexts
(C(a))a∈A and of types (T(a))a∈A such that P (a) is C(a) ` t|a : T(a) for all a ∈ A.

A.4.1 Degree of a position inside a type in a derivation

For a ∈ N∗, we define the rank rk(a) of x by rk(a) = max(ad(a),max(a)). Thus, rk(a)
bounds the “width” and applicative depth of a.
• For each a in A and each position c in Cal(a) such that Cal(a)(c) 6= Xi, we define

the number rkin(a, c) by:

• When a is a unconstrained node, dout(c) is rk(a).
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• When a is a non zero position: the value of rkin(a, c) for the positions colored in
red is the applicative depth is rk(a, c) (and of å).

E(̊a)(x1)→E(̊a)(x2)→ . . .→E(̊a)(xn)→ T(̊a)

• When a is partial: the value of
rkouta, c for the positions colored in red is the applicative depth of a.

R1(a)→ . . .→Rn(a)→ T(̊a)

From Sec. 10.5.1, we recall that n is also denoted rdeg(a).

For each a ∈ A and each position c in T(a), we define the number degout(a, c) (that
is the applicative depth of the position a′ on which c depends) by extending rankout via
substitution (this is formally done in the next section).

Again, for each a ∈ A, each variable x and each position c in C(a)(x)(c) we define
degout(a, x, c) by extending rankout via substitution.

The definition of degout(a(, x), c) in T(a) and C(a)(x) is sound, because in E(a)(x)
and Fj(x), there a no symbol other than the Xi. But the Xi disappear thanks to the
coinductive definition of T(a): every biposition (a, c) will receive a value for degout(a, c).

• For each a in A and each position c in S(a) such that S(a)(c) 6= Xi, we define the
number rkin(a, c) by:

• When a is a unconstrained node: rkin(a, c) = rk(c) (c is a position of T(a)).

• When a is an abstraction node: if c is a position colored in red, rkin(a, c) = rk(c):

E(̊a)(x1)→E(̊a)(x2)→ . . .→E(̊a)(xn)→T(̊a)

• When a is partial: if c is a position colored in red, rkin(c) = rk(c)

R1(a)→ . . .→Rn(a)→T(̊a)

As for rkout, we extend rkin(a, c) into degin(a, c) for inner positions of T(a) or in
C(a)(x) via substitution.

Definition A.4. If p ∈ bisupp(P ), the degree of p is defined by deg(p) = max(degout(p), degin(p)).

A.4.2 Truncation of degree n

We present more formally the definitions of the last section and we recall that rk(a) =
max(ad(a), max(a)) for a ∈ N∗.

For all a ∈ A and k ∈ N, we set T0(a) = Xa and Tk+1(a) = Tk(a)[Cal(a′)/Xa′ ]a′∈N∗ .
For all k ∈ N, we set supp∗(Tk(a)) = {c ∈ supp(Tk(a)) | Tk(a)(c) 6= Xa′}.

If c ∈ supp(T(a)), there is a minimal k ∈ N s.t. c ∈ supp∗(T
k(a)). We denote it

cd(a)(c) (call-depth of c at pos. a).
In that case, there are unique c′ ∈ supp(T(a)), c′ ∈ N∗ and a′ ∈ A s.t. c =

c′ · c′′, Tk−1(a)(c′) = Xa′ (we have necessarily a 6 a′) and c′′ ∈ supp(Cal(a′)).
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We write a′ = cop(a, c) (calling outer position of c at position a), c′ = cipa, c (calling
inner position of c at position a) and c′′ = pf(a, c) (postfix of c at position a). Then, we
set degout(a, c) := rk(a′) and degin(a, c) = rk(c′′). Finally, we may define deg(a, c) by
deg(a, c) = max(degout(a, c), degin(a, c)).

• We set An = {a ∈ A | rk(a) 6 n}.

• For all å ∈ Ån, we define T̊n(̊a) by removing all the positions c such that rk(c) > n
i.e. T̊n(̊a) is (as a function) the restriction of T̊ (̊a) on {c ∈ supp(T̊ (̊a)) | rk(c) 6 0}.

Since t is in Λ001 (and not in Λ111 \ Λ001), An is finite. Since, for all a ∈ A, T(a) is in
Typ (and not in Typ111 \ Typ), the type T̊n(̊a) is finite for all å ∈ Ån.

We define Pn as the natural extension of (An, T̊n). We retrieve contexts Cn and types
Tn such that, for all a ∈ An, Pn = Cn(a) ` t|a : Tn(a).

Lemma A.3. For all k ∈ N, a ∈ A, c ∈ N∗, we have rk(a) 6 n and c ∈ supp(Tkn(a)) iff
c ∈ supp(Tk(a)) and deg(a, c) 6 n.
In that case, Tk(a)(c) = Tkn(a)(c).

Proof. By a simple but tedious induction on k. We write copn, cipn, pfn and Tkn w.r.t.
Pn.

• Case k = 0:
If rk(a) 6 n and c ∈ supp(T0

n(a)), then rk(a) 6 n and c = ε. By definition,
degout(a, ε) = rk(a) 6 n and degin(a)(ε) = rk(ε) = 0. Thus, deg(a, c) 6 n.
Conversely, if c ∈ supp(T0(a)) and deg(a, c) 6 n, we have likewise c = ε and
cop(a, ε) = a, so rk(a) = degout(a, c) 6 n. So c = ε ∈ T0

n(a).

• Case k + 1:
If rk(a) 6 n and c ∈ supp(Tk+1

n (a)), we assume that a /∈ supp∗(T
k
n(a)) (case al-

ready handled by induction hypothesis).

Assume first that c ∈ supp(Tkn(a)) and Tkn(a) = Xa′ . Then Tk+1
n (a) = Caln(a′)(ε).

By IH, we have deg(a, c) 6 n and Tk(a)(c) = Xa′ , so Tk+1(a)(c) = Cal(a′)(ε) and
rk(a′) = degout(a, c) 6 n, so that rk(a) 6 n since a 6 a′. Since rk(ε) = 0, we
have Caln(a′)(ε) = Cal(a′)(ε). So Tk+1(a) = Tk+1

n (a, ε).

We assume now that c /∈ supp(Tkn(a)). We set a′ = copn(a, c) and c′ = cipn(a, c)
(thus, Tkn(a)(c′) = Xa′) and c′′ = pfn(a, c). By IH, we also have a′ = cop(a, c) and
c′ = cip(a, c). We have two subcases, depending if Tk+1

n (a)(c) = Xa′′ holds or not.

– If Sk+1
n (a)(c) = Xa′′ (with necessarily rk(a′′) = degout(a, c) 6 n), then

c′′ = 1j ·` with j < rdeg(a′) and ` = ba′′c > 2 and, by IH, c′ ∈ supp(Tk(a))
and Tk(a)(c′) = Xa′ .
Then c = c′ · c′′ = c′ · 1j ·` ∈ supp(Tk+1(a)), degout(a, c) = ad(a′′) 6 n (since
rk(a′′) 6 n) and degin(a, c) = rk(ε) = 0. So we have deg(a, c) 6 n.
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– If Tk+1
n (a)(c) 6= Xa′′ for all a′′, then c′′ ∈ supp∗(Caln(a′)) ⊆ Cal(a′). Thus,

we also have Tk+1(a)(c) = Caln(a′)(c) = Tk+1
n (a, c). Moreover, we have

degout(a, c) = rk(a′) 6 n and degin(a, c) = rk(c′′) 6 n, so that deg(a, c) 6 n.

Conversely, if a ∈ A, c ∈ supp(Tk+1(a)) and deg(a, c) 6 n, we assume that
a /∈ supp∗(S

k(a)) (case already handled by IH).

Assume first that c ∈ supp(Tk(a)) and Tk(a) = Xa′ . Then rk(a′) = degout(a, c) 6
n, so that a′ ∈ An, and Tk+1(a) = Caln(a′)(ε). By IH, we have c ∈ supp(Tkn(a))
and Tkn(a)(c) = Xa′ , so Tk+1

n (ε) = Caln(a′)(ε) = Cal(a′)(ε) = Tk+1(a)(c).

We assume now that c /∈ supp(Tk(a)). We set a′ = cop(a, c) and c′ = cip(a, c)
(thus, Tk(a)(c′) = Xa′) and c′′ = pf(a, c). By IH, we also have a′ = copn(a, c) and
c′ = cipn(a, c). We have two subcases, depending if Tk+1(a)(c) = Xa′′ holds or not.

– If Tk+1(a)(c) = Xa′′ , then, by definition of degout(a, c), we have rkin(a, c) =
rk(a′′), so rka′′ = degout(a, c) 66 deg(()a, c) 6 n, so a′′ ∈ An. Since a 6 a′,
rk(a) 6 n.
Moreover, c′′ = 1j · ` with j < rdeg(a′) and ` = ba′′c > 2. Since rk(a′′) 6 n,
we have c′′ ∈ supp(Caln(a′)), so that c ∈ supp(Tk+1

n (a)) and Tk+1
n (a)(c) =

Xa′′ .

– If Tk+1(a)(c) 6= Xa′′ for all a′′, then c′′ ∈ supp∗(Cal(a′)), degout(a, c) =
rk(a′) and degin(a, c) = rk(c′′). Thus, rk(a′), rk(c′′) 6 n by deg(a, c) 6 n
(in particular, a′ ∈ An). So a′′ ∈ An and c′′ ∈ supp∗(Caln(a′)), so that
c ∈ supp∗(T

k+1
n (a)) and Tk+1

n (a)(c) = Tk+1(a)(c).

A.4.3 A Complete Sequence of Derivation Approximations

Proposition A.3. If P is a quantitative derivation typing a Normal Form t, then P is
approximable.

Proof. Let 0B ⊂ bisupp(P ) a finite subset. We set n = max{deg(p) | p ∈ B}. Then
0B ⊆ bisupp(Pn).

In order to conclude, it is enough to prove that Pn is a finite derivation. For that,
we notice that Tk+1

n (a) =
ttTn+1

n (a) for all k > n+ 1, since Tn+1
n (a) does not hold any Xa′ .

This proves the claims of Sec. 10.5.3.

A.5 Isomorphisms between S-Derivations

Let P1 and P2 be two S-derivations typing the same term t. We write Ai, Ci, Ti for
their respective supports, contexts and types.

A derivation isomorphism φ from P1 to P2 is given by:

• φsupp, a 01-isomorphism (of unlabelled tree) from A1 to A2 (Definition 13.1).
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• For each a1 ∈ A1:

– A type isomorphism φa1 : T1(a1)→ T2(φsupp(a1))

– For each x ∈ V , a sequence type isomorphism φa1|x : C1(a1)(x)→ C2(φsupp(a1))(x)

such that the following "rules compatibility" conditions hold:

• If t(a1) = λx, then:

– φa1(1 · c) = 1 · φa1·0(c) and φa1(k · c) = φa1·1|x(k · c) for any k > 2 and c ∈ N∗

– φa1|y = φa1·0|y for any y ∈ V , y 6= x.

• If t(a1) = @:

– φa1(c) = Sc(φa1·1(1 · c)), for any c ∈ N∗, where Sc(k · c) = c (removal of the
first integer in a finite sequence).

– φa1|x =
⋃
`>1

φa1·` (the functional join must be defined because of the app-rule).

The above rules means that φ must respect different occurrences of the "same" (from
a moral point of view) biposition. For instance:

• Assume t(a1) = λx, then T1(a1) = C1(a1 ·0)(x)→ T1(a1 ·0). So, any inner position
c1 inside T (a1 ·0) can be "identified" to the inner position 1 ·c1 inside T1(a1). Thus
(forgetting about the indexes), if φ maps c1 on c2 (inside T2(a2), then φ should
map 1 · c1 on 1 · c2.

• Assume t(a1) = @. Then, the sequence type C(a1)(x) if the union of the C(a1·`)(x)
(for ` spanning over N−{0}). Then φ should map every inner position k · c inside
C(a1)(x) according to the unique C(a1 · `) to which it belong.

Lemma A.4. If P1
b→ P ′1, P2

b→ P ′2, then P1 ≡ P2 iff P ′1 ≡ P2.

Proof. Let α′1 ∈ A′1. We set α1 = Res−1
b (α′1), α2 = φsupp(α1), α′2 = Resb(α2) (Resb is

meant w.r.t. P1 or P2 according to the cases). Then we set φ′supp = Resb ◦φsupp ◦Res−1
b .

Thus, α′2 = φ′supp(α
′
1).

We set φ′α′1 = φα1 . Observing the form of C1(α1)(y) (for y 6= x) given in Section
10.3.5, we set φ′α′1|y = φα1|y ∪

⋃
k∈K

φa(k)|x with K = {tr(a0) | a0 ∈ Axα1(x)} and a(k) =

pos(()a1, x, k).

Notice that φ′ is deterministically defined from φ.

Proposition A.4. If P1 and P2 are isomorphic and type the term t (we do not assume
them to be approximable), t→∞ t′, yielding two derivation P ′1, P2 according to section
10.4.4, then P ′1 and P ′2 are also isomorphism.

Proof. We reuse all the hypotheses and notations of Sec. 10.4.4 and we consider an
isomorphism φ : P1 → P2.

For all n ∈ N, let Pn1 , Pn2 and φn be the derivations and derivation isomorphisms
obtained after n steps of reduction from P1, P2 and φ. Let α′1 ∈ A′1 andN ∈ N such that,
for all n > N, |bn| > |α′1|. But then, for any n > N , Cni (α′)(x) = C ′iα

′)(x), T ′i (α
′) =

Tni (α′). So we can set φ′supp(α1) = φnsupp(α1), φ′α′ = φNα′ .
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A.6 Approximability cannot be defined by means of
Multisets

A.6.1 Quantitativity in System R

Let Γ be any context. Using the infinite branch of fω, we notice we can give the following
variant of derivation Π′ (subsection 10.1.3), which still respects the rules of system R:

f : [[o]→ o] ` f : [o]→ o Π′Γ�f : [[o]→ o]ω + Γ ` fω : o

f : [[o]→ o]ω+Γ ` fω : o

If, for instance, we choose the context Γ to be x : τ , from a quantitative/relevant
point of view, the variable x (that is not in the typed term fω) should not morally
be present in the context. We have been able to “call” the type τ by the mean of an
infinite branch (i.e. we have performed a weakening). Thus, we can enrich the type of
any variable in any part of a derivation, as long it is below an infinite branch (neglecting
the bound variables). It motivates the following definition:

Definition A.5. • A semi-rigid derivation P is quantitative if, for all a ∈ supp(P ),
Γ(a)(x) = [τ(a′)]a′∈Ax(a)(x).

• A R-derivation Π is quantitative if any of its semi-rigid representatives is (in that
case, all of them are quantitative).

In the next subsection, we show that a derivation Π from system R can have both
quantitative and unquantitative, approximable and not approximable representatives in
System S. It once again shows that rigid constructions allow a more fine-grained control
than system R does on derivations.

A.6.2 Representatives and Dynamics

A rigid derivation P (with the usual notations C, t, T) represents a derivation Π if the
semi-rigid derivation P∗ defined by supp(P∗) = supp(P ) and P∗(a) = C(a) ` t|a : T(a),

is a representative of Π. We write P1
R≡ P2 when P1 and P2 both represent the same

derivation Π.

Proposition A.5. If a rigid derivation P is quantitative, then the derivation P (in
system R) is quantitative.

Using natural extensions (Section 10.5.2), it easy to prove:

Proposition A.6. If Π is a quantitative derivation typing a normal form, then, there
is a quantitative rigid derivation P s.t. P = Π.

Proof. Let P (∗) be a semi-rigid derivation representing Π. We set A = supp(P (∗)) and
for all full position a ∈ A, we choose a representative T(̊a) of τ(a). We apply then the
special construction, which yields a rigid derivation P such that P∗ = P (∗) (we show
that, for all a ∈ A, T(a) represents τ(a)).
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P ′ =
f : ((2 · o)→ o)2 [1]

f : ((2 · o)→ o)3 [1] P ′ � f : ((2 · o)→ o)k>4 ` fω : o [2]

f : ((2 · o)→ o)k>3 ` fω : o [2]

f : ((2 · o)→ o)k>2 ` fω : o

P̃ ′ =
f : ((2 · o)→ o)2 [1]

f : ((2 · o)→ o)4 [1] P ′ � f : ((2 · o)→ o)k=3∨k>5 ` fω : o [2]

f : ((2 · o)→ o)k>3 ` fω : o [2]

f : ((2 · o)→ o)k>2 ` fω : o

Figure A.4: Two Representatives of Π′

We can actually prove that every quantitative derivation can be represented with
a quantitative rigid derivation and that we can endow it with every possible infinitary
reduction choice (Theorem 13.2). However, a quantitative derivation can also have an
unquantitative rigid representative (see below Π′ and P̃ ′).

Actually, whereas P1 ≡ P2 (Sec. A.5) means that P1 and P2 are isomorphic in every

possible way, P1
R≡ P2 is far weaker: we explicit in this subsection big differences in the

dynamical behaviour between two rigid representatives of the derivations Π and Π′ of
Subsection 10.1.3.

We omit the right side of axiom rules e.g., f : ((2 · o)→ o)2 stands for f : ((2 · o)→
o)2 ` f : (2 · o)→ o.

• Let Pk (k > 2) and P be the following rigid derivations:

Pk =

f : ((2 · o)→ o)k [1]

x : (ρ)2 [1] x : (ρ)i [i− 1]

x : (ρ)i>2 ` xx : o [2]

f : ((2 · o)→ o)k ` f(xx) : o [0]

f : ((2 · o)→ o)k ` ∆f : ρ

P =
P2 [1] (Pk [k − 1])k>3

f : ((2 · o)→ o)k>2 ` ∆f∆f

• Let P̃k (k > 2) and P̃ be the following rigid derivations:

P̃k =

f : ((2 · o)→ o)k [1]

x : (ρ)3 [1] x : (ρ)2 [2] (x : (ρ)i [i− 1])i>4

x : (ρ)i>2 ` xx : o [2]

f : ((2 · o)→ o)k ` f(xx) : o [0]

f : ((2 · o)→ o)k ` ∆f : ρ
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P̃ =
P̃2 [1] (P̃k [k − 1])k>3

f : ((2 · o)→ o)k>2 ` ∆f∆f

• The rigid derivations P and P̃ both represent Π. Morally, subject reduction in P will
consist in taking the first argument P3, placing it on the first occurrence of x in f(xx)
(in P2) and putting the other Pk (k > 4) in the different axiom rules typing the second
occurrence of x in the same order. There is a simple decrease on the track number and
we can go this way towards fω.

The rigid derivation P̃ process the same way, except it will always skip P̃3 (P̃3) will
remain on track 2). Morally, we perform subject reduction "by-hand" while avoiding to
ever place P3 in head position.

The definitions of Sec. 10.4.4 show that infinitary reductions performed in P and P̃
yield respectively to P ′ and P̃ ′ of Figure A.4.

Thus, P ′ and P̃ ′ both represent Π′ (from subsec. 10.1.3), but P ′ is quantitative
whereas P̃ ′ is not (the track 3 w.r.t. f does not end in an axiom leaf). Thus, quantita-
tivity is not stable under s.c.r.s.

Moreover, it is easy to check that P and P ′ are approximable (reuse the finite deriva-
tions of Sec.; 10.1.3) or infinitary subject reduction/expansion. Thus, Π and Π′ have both
approximable and not approximable representatives. This provides a new argument for
the impossibility of formulating approximability in system R.

A.7 A Positive Answer to TLCA Problem 20

For all n ∈ N, we denote by Sn the set of permutation of {1, . . . , n}.

Definition A.6.

• For all x ∈ V , the sets HPx of x-Hereditary Permutations (x-HP) (x ∈ V )
are defined by mutual coinduction:

px := λy1 . . . yn.x p
yσ(1) . . . pyσ(n) (n > 0, σ ∈ Sn)

Moreover, the head variable x of px is written x = hv(px) and its order n is written
n = or(px).

• A Hereditary Permutation (HP) is a term of the form p = λx.px.

We now want to define the permutation pairs ((2 · S), T ) (with S, T types of system
S) so that the judgments of the form x : (2 · S) ` t : T characterize the x-HP (i.e.
there is an approximable P � x : (2 · S) ` t : T iff t is a x-HP). Informally, if px =
λy1 . . . yn.x p

yσ(1) . . . pyσ(n) and we type px with a type of order n, then we have:

• Type of px = (type of y1) → . . . (type of yn) → o

• Type of x = (type of pyσ(1)) → . . . (type of pyσ(n)) → o

Since y1, . . . , yn are the respective head variable of the ∗-permutations py1 , . . . , pyn , this
suggests the following definition:

Definition A.7.
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• For all o ∈ O, the sets PPo of o-permutation pairs ((2 · S), T ) (where S and T
are S-types) are defined by mutual coinduction:

(S1, T1) ∈ PPo1 , . . . , (Sn, Tn) ∈ PPon o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · (2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o), (2 · S1)→ . . . (2 · Sn)→ o) ∈ PPo

In the case above, we also say that o is the last type variable of (S, T ) (for short,
o = ltv(S, T )), and that n is the order of (S, T ) (for short, n = or(S, T )).

• A pair (S, T ) ∈ PPo is said to be proper (written (S, T ) ∈ PPPo) for all o′ ∈ O, o′

occurs at most once in S and in T .

• A permutation type (metavariable U) is a type U of the form (2 ·S)→ T where
(S, T ) is a proper permutation pair.

The condition of properness is here to ensure that every variable occurs at a level
deeper than its binder and to distinguish them from one another (see the proof of
Claim A.2). The first implication of the characterization is quite natural to prove:

Claim A.1. Let x ∈ V and px be a x-permutation pair. Then there is an approximable
S-derivation P and a permutation pair ((2 · S), T ) such that P � x : (2 · S) ` px : T .

Proof sketch. Claim A.1 is proved by using a method similar to that of natural extensions
(see Sec. 10.5.1, 10.5.2 and A.4).

Let us set t = px. Let y 7→ oy be an injection from B = supp(t) to O. We associate
to each b ∈ supp(t) two indeterminates Xb and Yb. The idea is that Xb is a placeholder
for the types of head variables and Yb is a placeholder for the types of the sub-hereditary
permutations of t.

We denote by Bp the set of positions b of subterms of t that are y-HP for some y ∈ V
and, for all b ∈ Bp, hvp(b) denotes the position of the head variable of t|b (hvp stands
for “head variable position”).

Formally, we set Bp = {ε} ∪ {b · 2 |, b ∈ {0, 1, 2}∗} and, for all b ∈ Bp, hvp(b) is the
longest b0 such b0 ∈ b · {0, 1}∗.

For all b ∈ Bp, we abusively denote by or(b) the order or(t|b) of t|b and by xb the
head variable of hv(t|b) (e.g., xε = x). Observe that, if b ∈ Bp and n = or(b), then
hvp(b) = b · 0n · 1n. We just write ob instead of

Moreover, for b ∈ Bp, then t|b is of the form λy1 . . . yn.y p
yσ1 . . . pyσn with n =

or(b) > 0, y = xb and σ ∈ Sn. We then denote by σb the permutation σ and we set
b(k) = b · 0n · 1k−1 · 2 for 1 6 k 6 n, so that b(k) is the position of pyσn . For 1 6 k 6 n,
we also abusively write b(σ(k)) instead of b(σb(k)).

We then set, for all b ∈ Bp:

F(b) = (2 · Yb(σ(1)))→ . . .→ (2 · Yb(σ(n)))→ ob
G(b) = (2 ·Xb(1))→ . . .→ (2 ·Xb(n))→ ob

We then coinductively define, for all b ∈ Bp,

S(b) = F(b)[S(b′)/Xb′ , T (b′)/Yb′ ]b′∈supp(t)

T (b) = G(b)[S(b′)/Xb′ , T (b′)/Yb′ ]b′∈supp(t)

By proceeding as in Sec. A.4, we prove that, for all b ∈ Bp, (S(b), T (b)) is a proper
permutation pair. From there, it is not difficult to built a (quantitative) S-derivation P ,
such that, for all b ∈ Bp, P (b) = xb : (2 · S(b)) ` t|b : T (b). Since t is a normal form, by
Lemma 10.13, P is approximable, which concludes the proof.



A.7. A POSITIVE ANSWER TO TLCA PROBLEM 20 353

Claim A.2. Let t ∈ Λ001 be a term, P an approximable S-derivation and U a permu-
tation type such that P� ` t : U . Then t is a hereditary permutation.

Proof sketch. By Definition A.7, let (S, T ) the proper permutation pair such that U =
(2 · S) → T . We can write S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o and T = (2 · S1) →
. . .→ (2 · Sn)→ o.

Moreover, also by Definition A.7, the empty sequence type ( ) does not occur in U ,
so that ` t : U is unforgetful. Since P is approximable, this entails that t is weakly
normalizing by Proposition 10.4. Since the context in ` t : U is empty, t is closed and of
order > 1 (since, in particular, t is HN). Thus, t →∞ t′ = λx0.λy1 . . . yp.x t1 . . . tq with
t1, . . . , tq normal forms whose respective head variables are denoted y1, . . . , yq (and by
Proposition 10.5, � ` t′ : U).

Since (S, T ) is proper, o does not occur in S1, . . . , Sn, so necessarily, x = x0 and
x : (2 · S) ` λy1 . . . yp.x t1 . . . tq : T is derivable by means of an approximable derivation
P∗. Since T and S are types of order n, we must have p = q 6 n (the abs-rule creates an
arrow whereas the app-rule destroys one). Moreover, S1, . . . , Sn are the respective types
of y1, . . . , yn. Let us denote o1, . . . , on the respective last type variables of S1, . . . , Sn
(as such, they occur at applicative depth 0 in S1, . . . , Sk and at applicative depth 1 in
S and T ).

Since system S is relevant and (2 · Sk) is a singleton sequence type, y1, . . . , yn must
be typed exactly typed once in the derivation. Moreover:

• o1, . . . , op occur respectively in T1, . . . , Tn.

• oσ(p), . . . , oσ(p) are the respective last type variable of Tσ(1), . . . , Tσ(p), which are
respectively the unique types of t1 . . . tp.

Now, if a yk was typed at applicative depth > 2 (i.e. if there was a a ∈ supp(P∗) such
that t(a) = yk and a bound by λyk at position 0k−1), then ok would occur at applicative
depth > 2 in S or in T by Lemma A.5. This would contradict the properness of (S, T ).
Thus, y1, . . . , yp occur at applicative depth 1 in λy1 . . . yp.x t1 . . . tq i.e. they are the head
variables of the t1, . . . tp. Since the o1, . . . , op are pairwise distinct, we can even assert
that y1, . . . , yp are respective head variable of tσ−1(1), . . . , tσ−1(p).

This easily implies that y1 : S1 ` tσ−1(1) : T1, . . . yp : Sp ` tσ−1(p) : Tp are approx-
imably derivable judgments. We conclude by coinduction.

Lemma A.5 expresses the fact that, in an unforgetful derivation typing a normal
form, every type nested in a subterm at applicative depth n occurs at applicative depth
> n in the context or the type in the root of the derivation:

Lemma A.5. Let P be an approximable derivation concluding with C ` t : T , where t
is a normal form, and a ∈ supp(P ) such that ad(a) > 1.
Then there is c0 ∈ supp(T ) such that ad(c0) > ad(a) and T |c0 = TP (a) or there is x ∈ V
and k · c0 ∈ supp(C(x)) such that ad(c0) > 1 and C(x)|k·c0 = TP (a).

Proof sketch. We proceed by induction on ad(a). Let us just informally explain the case
ad(a) = 1.
Say that t = λx1 . . . xp.x t1 . . . tq. Let T0 be the type assigned to the head variable x.
Then T0 is an arrow type of order > q whose sources are the types assigned to t1, . . . , tq
(see the right-hand side of Fig. 3.4 for an example in system R0). Thus, the types of
the arguments t1, . . . , tq occur at applicative depth 1 in T0.
Moreover, the types of all subterms occurring at applicative depth 1 are nested in the
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types of the t1, . . . tq. Thus, the types of the subterms at applicative depth 1 occur at
applicative depth 1 in T0. To conclude, we just notice that T0 is nested at applicative
depth 1 in T if x is bound (i.e. x = xk for some k) or in C(x) is x is free.
In the case ad(a) = 2, the previous argument shows that the types of the terms occurring
at applicative depth occur in types of the terms at applicative depth > 1. . .

We can now positively answer to TLCA Problem # 20 by giving a type-theoretical
characterization of the terms whose normal form is a hereditary permutation in system
S:

Theorem A.1. Let t ∈ Λ001. Then t is β-equivalent to a hereditary permutation iff
` t : U is approximably derivable for some permutation type U .

Proof.

• The implication ⇐ is given by Claim A.2.

• Implication ⇒: assume that t →∞ p with p hereditary permutation – say that
p = λx.px. By Claim A.1, there is a proper permutation pair (S, T ) and an
approximable derivation P such that P � x : (2 · S) ` px : T . Let us set U =
(2·S)→ T , so that ` p : U is approximably derivable. By Proposition 10.7, ` t : U
is also approximably derivable.



Appendix B

Residuation, Threads and
Isomorphisms in System Sop

B.1 Subject Reduction

In Sec. B.1, we prove the first point1 of Proposition 13.1 i.e. “pseudo-subject reduction”
for system Sh, as well as all the claims of Sec. 13.2.2. From Sec. B.1.1 to Sec. B.1.3,
we formally prove that interfaces provide a sound way to produce a derivation typing a
reduct (Corollary B.1). In Sec. B.1.4, we formally prove that every sequence of reduc-
tion choices can be built-in inside an interface, as claimed by Lemma 13.1. In particular,
we define properly residuals (Sec. B.1.1) and quasi-residuals, and some associated no-
tions. Note that (quasi-)residuals are more complicated to define than in Sec. 10.3.5 and
Sec. 12.4.1 because of interface.

We still assume that t|b = (λx.r)s, t b→ t′ and P � C ` t : T . The hybrid derivation
P comes along with with the usual associated notations e.g., C for CP , T for TP , pos for
posP (see Sec. 10.3.1 and 10.3.2).

An operable derivation is a hybrid derivation endowed with a total interface. If P
is an operable derivation whose interface is (φa)a∈supp@(P ), we usually only write2 ρa for
Rt(φa) (so that ρa is a root interface) and we set LP = {(a · 1, k · c) ∈ bisupp(P ) | k ∈
N\{0, 1}} and RP = {(a ·k, c) ∈ bisupp(P ) | k ∈ N\{0, 1}}. For all p = (a ·1, k ·c) ∈ LP ,
we just write φ(p) for (a · k′, c′) with k′ ∈ N \ {0, 1}, c′ ∈ N∗ and k′ · c′ = φa(k · c).

Notation AxPa (x) In Appendix B.1, we reuse the notation AxPa (x) from Sec. 10.3.2: if
a ∈ supp(P ) and x ∈ V , we have AxPa (x) = {a0 ∈ supp(P ) | a 6 a0, t(a) = x,@a′0, a 6
a′0 6 a0, t(a

′
0) = λx} (positions of ax-rules in P above a typing occurrences of x that

are not bound w.r.t. a).

Remark B.1. Let us call a tree A ⊂ N∗ such that, for all infinite branch a of A,
ad(a) =∞, a 001-tree. Let P be a predicate on such a tree A. In order to prove “for
all a ∈ A, P(a)”, we can reason by 001-induction: we prove that P(a) for all leaf a
of A and then, for all a ∈ N∗ such a · 0 or a · 1 is in A, we prove that P(a · 0) or P(a · 1)
implies P(a).

1 The proofs can be adapted for the second point (“pseudo-subject expansion”).
2 See Sec. 13.1.1 for notation Rt(φ).
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B.1.1 Residual Derivation (Hybrid)

We assume that P is endowed with total root interface (ρa)a=b at position b. Using this
root interface, we will now build a hybrid derivation P ′ concluding with C ` t : T ′ with
T ≡ T ′, as it was announced at the beginning of Sec. 13.2.

Conventions on metavariables a and α As in Sec. 10.3.5 and 12.4.1, the letter a will
stand for a position of P that corresponds to the root of the redex (i.e. a ∈ supp(P )
and a = b) and the letter α for other positions in supp(P ) or even in A. We set
Axλ(a) = AxPa·1·0(x) and Trλ(a) = {trP (α0) |α0 ∈ Axλ(a)} = Rt(TP (a ·1)). Thus, Axλ(a)
is the set of positions of the redex variable (to be substituted) above a and Trλ(a) is
the set of the axiom tracks that have been used for them. For instance, in Fig. 13.2,
Axλ(a) = {a · 1 · 0 · a2, a · 1 · 0 · a7} and Trλ(a) = {2, 7}.

First, we define the residual position Resb(α) for each α ∈ supp(P ) except when α is
of the form a, a · 1 or a · 1 · 0 · ak (for some a satisfying a = b). We begin with discussing
the symbols ♥ and ♣ in Fig.13.2. In Fig. 13.2, ♥ represents a judgment nested in Pr.
Thus, its position must be of the form a · 1 · 0 · α♥. After reduction, the app-rule and
abs-rule at positions a and a · 0 have been destroyed and the position of this judgment
♥ will be a · α♥. We set then Resb(a · 1 · 0 · α♥) = a · α♥.

Likewise, ♣ represents a judgment nested in the argument derivation P8 on track 8
w.r.t. a. Thus, its position must be of the form a · 8 · α♣ where a · 8 is the root of P8.
After reduction, P8 will replace the ax-rule typing x on track ρ−1

a (8) i.e. 2, so its root
will be at a · a2 (by definition of a2). Thus, after reduction, the position of judgment ♣
will be a · a2 · α♣. We set then Resb(a · 7 · α♣) = a · a2 · α♣.

• Paradigm ♣: if α = a·kR ·α0 where a = b and kR ∈ Arg(a), then Resb(α) = a·akL ·α0

with kL = ρ−1
a (kR).

• Paradigm ♥: if α = a · 1 · 0 · α0 where a ∈ supp(P ), a = b and α0 6= ak, then
Resb(α) = a · α0.

• Outside the redex: if b 
 α, then Resb(α) = α

We set A′ = {Resb(α) |α ∈ A} = codom(Resb) and we call A′ the residual support
of P (w.r.t. reduction at position b and root interface (ρa)a=b). By case analysis, we check
that A′ is a tree and that Resb is an injection from dom(Resb) to A′. Moreover, we set
A′♥ = {Resb(α) |α ∈ dom(Resb), α > b · 1 · 0}, A′♣ = {Resb(α) |α ∈ dom(Resb), α > b · 2}
and A′out = {α ∈ A |α � b}, so that A′ is the disjoint union of A′♥, A

′
♣ and A′out.

Remark B.2 (Induction and reduction). Assume that Resb(αi) = α′i (i = 1, 2) and
α1 6 α′2.

• If α′1 ∈ A′♣ , then α′2 ∈ A′♣.

• If α′1 ∈ A′♥, then α′2 ∈ A′♥ ∪A′♣.

• If α′1 ∈ A′out, then α′2 ∈ A′out ∪A′♥ ∪A′♣ = A′.

So, a 001-induction on A′ should be be split in three 001-inductions: first, one on A′♣,
then one on A′♥, then, one on A′out. See for instance the proof of Lemma B.2.

Conversely, we check that the converse injection Res−1
b from A′ to dom(Resb) satisfies:
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• If b 
 α′, we set Res−1
b (α′) = α′.

• If α′ = a · α′0 where a ∈ supp(P ), a = b but there is no k s.t. b > a · ak, we set
Res−1

b (α′) = a · 1 · 0 · α′0.

• If α′ = a · ak · α′0 where a ∈ supp(P ), a = b, we set Res−1
b (α′) = a · ρa(k) · α′0.

If A is a tree (resp. T a labelled tree) and a ∈ A or a ∈ supp(T ), then childA(a) =
{k ∈ N | a · k ∈ A} and childT (a) = {k ∈ N | a · k ∈ supp(T )}. By case analysis:

Lemma B.1. For all α′ ∈ A′ and α such that Resb(α) = α′:

• α′ ∈ supp(t′)

• t′(α′) = t′(α).

• child′(α′) = child(α) (where child = childA and child′ = childA
′).

We set A′@ = {a ∈ A′ | t′(a′) = @}. By Lemma B.1, A′@ = {Resb(a) | a ∈ supp@(P )}.

B.1.2 Residual Types and Contexts (Hybrid Derivations)

In this paragraph, we define the residual derivation P ′ of P (w.r.t. reduction at position
b and the root interface (ρa)a=b). The residual support A′ will be the support of P ′ (i.e.
A′ = supp(P ′)), but we must also define the contexts CP ′(α′) and types TP ′(α′) for all
α′ ∈ A′. Since P ′ is not built yet, we will respectively denote these contexts and types
C′(α′) and T(α′) when we define them.

We assume that t satisfies Barendregt convention i.e. for all y ∈ V , λy occurs at
most once in t and the sets of free variables and of bound variables of t are disjoint.

Let Ax and Ax′ the respective sets of leaves of A and A′. For all α′ ∈ A′ and y ∈ V ,
y 6= x, we set Ax′α′(y) = {α′0 ∈ A′ |α′0 > α′ and Res−1

b (α) ∈ Ax(y)}.
We observe that, for all α′ ∈ Ax′, Res−1

b (α′) ∈ Ax. Then, we set tr′(α′) = trP (Res−1
b (α′))

and, for all α′ ∈ A′ and y ∈ V , y 6= x, C′(α′)(y) = (tr′(α′0) · T(Res−1
b (α′0)))α′0∈Ax′α′ (y).

This definition is sound, because, if α1, α2 ∈ Axα′(y) for some α′ ∈ A′ and x ∈ V , then
tr′(α1) = tr′(α2) implies α1 = α2 (case analysis).

When t′(α′) = λy (with α′ ∈ A′), a case analysis shows that Axα′(y) = {Resb(α0) | α0 ∈
Axα(y)} where α′ ∈ A′. Thus, in that case, C(α′)(y) = (tr′(α′0)·T(Res−1

b (α′0)))α′0∈Ax′α′ (y) =

(tr′(α0) · T(α0))α0∈Axα(y) = C(α)(y).

By a 001-induction on α′ ∈ A′, we define now T′(α′):

• When α′ ∈ Ax′, T′(α′) = T(Res−1
b (α′)).

• When t′(α′) = λy, we set T′(α) = C(α · 0)(y)→ T′(α · 0).

• When t′(α′) = @, we set T′(α′) = Tg(T′(α′ · 1)).
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We define then P ′ as the labelled tree s.t. supp(P ′) = A′ and for all α′ ∈ A′, P ′(α′) =
C′(α′) ` t′|α′ : T′(α′) (so that C′ = CP

′ and T′ = TP
′ as expected). We intend to prove

that P ′ is a correct hybrid derivation typing t′.
As hinted at Sec. 13.2, we must check that a type T(α) (where α ∈ A) may only

be replaced with a type T′(α′) (where α′ = Resb(α)) that is isomorphic to T(α) in the
residual derivation typing t′ that we are going to define.

Quasi-Residuation in the Hybrid Setting In order to check that, it is convenient
to extend residuation into quasi-residuation: namely, we define quasi-residual QResb(α)
for any α ∈ A such that α 6= b ·1 by setting QResb(α) = Resb(α) when Resb(α) is defined,
QResb(a) = a and QResb(a · 1 · 0 · ak) = a · ak when a = b and k ∈ RedTr(a).

Remark B.3.

• We do not necessarily have t(α) = t′(α′) or child(α) = child′(α′) when α′ =
QResb(α) (compare with Lemma B.1) and QResb is usually not injective. For in-
stance, if t = (λx.y)y, t′ = y, b = ε = α = α′, then t

b→ t′, α′ = QResb(α) but
t(α) = @ 6= y = t′(α′) and child(α) contains at least 1 but child′(α′) is empty.

• However, quasi-residuals will be useful to define the isomorphisms Resb|α, ResRb|α
and ResLb|α below.

Lemma B.2. This lemma is also a definition: that of the quasi-residuation.

• For all α′ ∈ A′, T′(α′) ≡ T(α) where α = Res−1
b (α′). Besides, if α′ ∈ Ax′ or

α′ > a · ak (for a = b), then T′(α′) = T(α).

• More precisely, if P is endowed with an interface (φa)a=b at position b (extending
the root-interface (ρa)a=b), then, for all α ∈ A and α′ ∈ A′ such that QResb(α) = α′,
we can define a type isomorphism QResb|α : T(α)→ T′(α′) by 001-induction on α′.

• When Resb(α) = α′, we write Resb|α instead of QResb|α. Moreover, Resb|α is the
identity if α′ ∈ Ax′ or α′ > a · ak for some a ∈ A, a = b and k ∈ AxTr(a · 1 · 0)(x).

Proof. We proceed by 001-induction on α′ ∈ A′ := supp(P ′) and split the cases as
suggested in Remark B.2.

• Paradigm ♣: Resb(α) = α′ and α′ > a · ak (for some a ∈ A, a = b and k ∈
RedTr(a)).

– Subcase t(α) = y: here, t(α) = y 6= x and T′(α′) = T(α).

– Subcase t(α) = λy: α · 0 ∈ A, Resb(α · 0) = α′ · 0 and by IH, we have
T′(α′ · 0) = T(α · 0) and Resb|α·0 is the identity idT(α·0).
Since T(α) = C(α · 0)(y) → T(α · 0) and T′(α′) = C(α · 0)(y) → T′(α′ · 0), we
also have T(α) = T′(α) and we set Resb|α = idT(α).

– Subcase t(α) = @: α · 1 ∈ A, Resb(α · 1) = α′ · 1 and by IH, we have
T′(α · 0) = T(α′ · 0) and Resb|α·1 is the identity idT(α·1).
Moreover, T(α) = Tg(T(α · 1)) and T′(α′) = Tg(T′(α′)). So T(α) = T(α′) and
we set Resb|α = idT(α).



B.1. SUBJECT REDUCTION 359

• Paradigm ♥: α > a · 1 · 0 and α′ > a (for some a ∈ A, a = b):

– Subcase α = a ·1 ·0 ·akL and α′ = a ·akL : α′ = Resb(a ·kR) (where kR = ρa(kL))
and by IH, T′(α′) = T(a · kR). Moreover, since T(α) = L(α)|kL , we can set
QResb|α = φa|kL .

– Subcase t(α) = y 6= x: Resb(α) = α′ and T′(α′) = T(α).

– Subcase t(α) = λy: α ·0 ∈ A, Resb(α ·0) = α′ ·0: we set Resb|α = C(α ·0)(y)→
QResb|α·0.

– Subcase t(α) = @: α·1 ∈ A, Resb(α·1) = α′ ·1: we set Resb|α = Tg(QResb|α·1).

• Outside the redex: α � b:

– Subcase α′ ∈ Ax′: here, t(α) = y 6= x and T′(α′) = T(α).

– Subcase α = α′ = a (for some a ∈ A, a = b): a = Resb(a · 1 · 0) and by
IH, we have an type isomorphism QResb|a·1·0 : T(a · 1 · 0) → T(a). Since
T(a · 1 · 0) = T(a), we can set QResb|a = QResb|a·1·0.

– Subcase t(α) = λy: α · 0 ∈ A, QResb(α · 0) = α′ · 0 and we set Resb|α =
C(α · 0)(y)→ QResb|α·0

– Subcase t(α) = @: α·1 ∈ A, QResb(α·1) = α′·1: we set Resb|α = Tg(QResb|α·1).

Remark B.4.

• It is far easier to define the residual of a biposition for a derivation of S: if P is
trivial, whenever α′ := Resb(α) is defined, the residual biposition of p := (α, γ) ∈
bisupp(P ) is Resb(p) = (α′, γ) (Sec. 10.3.5).

• Thus, quasi-residuation is defined for all (α, c) ∈ bisupp(P ) such that α 6= b · 1,
whereas in Sec. 12.4.1, it was also defined for α = a · 1. Actually, we will extend
QResb(α, c) in this case (see Remark B.7), but now, it is not useful.

B.1.3 Residual Interface

We notice that if α ∈ supp@(P ) and α 6= b, then Resb(α) is defined. So, for α′ ∈ A′@
(Sec. B.1.1), we set L′(α′) = Sc(T′(α′ · 1)), ArgTr′(α′) = {k > 2 |α′ ∈ A′} and R′(α′) =
(k · T′(α′ · k))k∈ArgTr′(α). We write then Inter′(α′) for the set of sequence type isomor-
phisms from L′(α′) to R′(α′).

Assume that α′ ∈ A′@. Let us write α = Res−1
b (α′), so that α ∈ supp@(P ), α · 1 ∈

A, α 6= b · 1, QResb(α · 1) = α′ · 1 and child(α) = child′(α′). Thanks to Lemma B.1:

• Since QResb|α·1 is a type isomorphism from T(α · 1) to T′(α′ · 1) and L′(α′) =
Sc(T′(α′ · 1)), then T′(α′ · 1) is an arrow type (since T(α · 1) is) and we define the
sequence type isomorphism ResLb|α by ResLb|α = Sc(Resb|α·1).

• We can define ResRb|α by ResRb|α(k · γ) = k · Resb|α·k(γ). It is a sequence type
isomorphism from L(α) to L′(α′).
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Thus, for each application node α ∈ supp@(P ) such that α 6= b, the residual α′ =
Resb(α) is defined and we can define a bijection ResIb|α from Inter(α) to Inter′(α′) by
ResIb|α(φ) = ResRb|α ◦φ ◦ ResL−1

b|α, so that the following diagram is commuting:

L(α)
φ

−−−−→ R(α)y ResLb|α
y ResRb|α

L′(α′)
ResIb|α(φ)

−−−−→ R′(α′)

It means that the set of interfaces at position α′ = Resb(α) in P ′ can also be seen as
the residual bijective image of the set of interfaces at position α in P . This observation
is pivotal to prove the Representation Lemma in the next subsection.

Assume P is endowed with a complete interface (φa)a∈supp(P ) (i.e. P is an operable
derivation). For all α′ ∈ A′@, we set φ′α′ = ResIb|α(φα), where α = Res−1

b (α′). Notice
again that we can retrieve φα from φ′α′ since ResIb|α is a bijection. We have enough to
ensure:

Proposition B.1. This proposition is also a definition.

• The labelled tree P ′ defined at end of Sec. B.1.2 is a hybrid derivation.

• When P is endowed with an interface (φα)α∈supp@(P ), then for all α′ ∈ A′, φ′α′ is
an interfaces at pos. α′.

• Thus, the family (φ′α′)α′∈supp@(P ′) is a total interface for P ′. We call it the residual
interface of (φα)α∈supp(P ) after firing the redex at position b. When P ′ is endowed
with the residual interface, it is an operable derivation

This entails, as expected:

Corollary B.1 (Pseudo Subject Reduction). If t → t′ and �ShC ` t : T , then �ShC `
t′ : T ′ for some T ′ ≡ T .

Thus, if needed, we can apply a new β-reduction in t′ according to this residual
interface without having to define a new one. It allows us to define deterministically
the way we perform reduction (inside a derivation) in any reduction sequence of length
` 6 ω. Now, we can assert that, for instance, A′ = supp(P ′), A′@ = supp@(P ′), for all
α′ ∈ A′@, L′(α′) = LP

′
(α′), R′(α′) = RP

′
(α′). To sum up:

Remark B.5.

• We need only a total root interface at position b to define the hybrid derivation
P ′.

• If we have a total interface at position b, we may define the isomorphisms Resb|α :
T(α) → T′(α′) (resp. QResb|α : T(α) → T′(α′) ) for all α such that α′ := Resb(α)
is defined (resp. such that α′ := QResb(α)) is defined, as well as ResIb|α for all
α ∈ supp@(P ) s.t. α 6= b.

• It allows us to choose other interfaces (at positions different from b) after firing
the redex at position b, as suggested in the end of Sec. 13.2.2. This observation is
only one we need to prove the Representation Lemma.
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B.1.4 Proof of the Representation Lemma

We prove here that every sequence of subject-reduction steps that we perform "by hand"
– so called a reduction choice sequence – starting from a derivation Π can be built-in
inside an operable derivation.

Let Π� Γ ` t : τ be a derivation, P � C ` t : T a hybrid derivation collapsing on Π

and t = t0
b0→ t1

b1→ t2
b2→ . . .

bi−1→ ti
bi→ . . . a sequence of reduction of length ` 6 ω (when

` = ω, we do not need to assume strong convergence [57]).
We write rs for the sequence (bi)i<` and rsn for the sequence (bi)i<n for all n < `.

If we perform reduction on P along with rs, we get a sequence of hybrid derivations P0

(with P0 = P ), P1, P2, ... such that Pi concludes with C ` ti : Ti for some Ti ≡ T .
More precisely, for each step i < ` of rs, we have to choose a root-interface (ρia)a=bi

at position bi in Pi (typing ti) corresponding to our reduction choice step, then to reduce
Pi w.r.t. (ρia)a=b, which yields a new hybrid derivation Pi+1. We proceed by induction
on i.

Those reduction choices are heuristically made step-by-step. This raised the follow-
ing question (Sec. 13.2.1): is the notion of operable derivation expressive enough? That
is: can we endow P with a complete interface, such that performing rs on P follows
exactly our step-by-step choices of substitutions? The answer is positive, as stated in
Lemma 13.1. We will prove that now.

We set Ai = supp(Pi) for all i < ` and we define by induction on i < ` a partial
function Resrs(i) from A to Ai:

• Resrs(0) is the identity on A.

• Resrs(i+1) = Res
ρi

bi
◦Resrs(i), where Res

ρi

bi
is the residual function on Ai = supp(Pi)

defined w.r.t. reduction at position bi and the root-interface (ρia)a=bi (see Sec. B.1.1).

For all i < `, let Ars(i) denote the domain of Res(i). Thus, Ars(0) = A0 = supp(P ),
(Ars(i))i<` is a decreasing sequence (w.r.t. ⊆) and, by induction on i, Resrs(i) is a bijec-
tion from Ars(i) to Ai. We write Res−1

rs(i) for the converse bijection from Ai to Ars(i).
To lighten notations, we write A(i) and Res(i) instead of Ars(i) and Resrs(i). We also

set A@
(i) = A(i) ∩ supp@(P ). Thus, Res(i) induces a bijection from A(i) to Ai.

Now, for all i < `, we chose an interface (φia) at position bi in Pi such that Rt(φia) = ρia
for all a ∈ Ai, a = bi = bi.

We define by induction on i a type isomorphism Res(i)|α from T(α) to Ti(Res(i)(α))
for all α ∈ A(i) and a bijection ResI(i)|α from Inter(α) to Interi(Res(i)(α)) for all
α ∈ A(i)|α by:

• Res(0)|α and Res(i)|α are respectively the identity functions on T(α) and Inter(α).

• Res(i+1)|α = Resbi|αi ◦ Res(i)|α, where αi = Res(i)(α) and Resbi|αi : Ti(αi) →
Ti+1(αi+1) (with αi+1 = Res(i+1)(α)) is the residual type isomorphism (in the
sense of Sec. B.1.2) w.r.t. the interface (φia) at position b in Pi.
We set likewise ResI(i+1)|α = ResIbi|αi ◦ ResI(i)|α, where ResIbi|αi is the bijection
(in the sense of Sec. B.1.4) w.r.t. the interface (φia) at position b in Pi.
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To conclude, let a ∈ supp@(P ). There are two cases:

• Res(i)(a) is defined for all i < `. In that case, we choose an arbitrary φa ∈
Inter(α).

• There is a unique 0 6 i < ` such that αi = Res(i)(α) is defined, but Res(i+1)(α) is
not. In that case, αi = bi and we have already chosen an interface φiαi ∈ Interi(αi)

(that extends ρiαi). We set then φa = ResI−1
(i)|a(φ

i
αi)

By construction, the complete interface (φa) emulates the reduction w.r.t. the family
(ρia)a=bi . Thus, Lemma 13.1 is proved:

Lemma. Every reduction choice sequence in a quantitative derivation Π can be built-in
in an operable derivation representing Π.

B.2 Isomorphisms and Relabelling of Derivations

In Section B.2, we formally define by induction isomorphisms associated to isomorphisms
of hybrid or operable derivations (Sec. B.2.1). We also properly define the image of a
derivation by a resetting (Sec. B.2.2). We proceed again by 001-induction (Remark B.1).

B.2.1 Isomorphisms of Operable Derivations

In this section, we formally define the isomorphisms of types/sequence types canonically
induced by an isomorphism of hybrid derivation Ψ : P1 → P2, that are hinted at in
Sec. 13.3.1.

• For all a1 ∈ A1, we set Ψtr(a1) = tr2(Ψ(a1)). Thus, Ψtr(a1) is the axiom track
(in P2) of the axiom rule a2 corresponding to a1 via Ψ.

• Since Ψsupp induces a bijection from Ax1(a1)(x) to Ax2(a2)(x) for all a1 ∈ A1, a2 =
Ψ(a1) and x ∈ V , we can define a context isomorphism Ψa1,x from C1(a1)(x) to
C2(a2)(x) by Ψa1,x(k1 · γ1) = Ψtr(a01) ·Ψa01(γ1) for all γ1 ∈ supp(T1(a1)) , where
a01 = pos1(a1, x, k1).

• By 001-induction, this allows us to define a type isomorphism Ψa1 from T1(a1) to
T2(a2) for any a1 ∈ A1 and a2 = Ψ(a1) (not only for a1 ∈ Ax1 and a2 ∈ Ax2).

– Ψa1 is already defined when a1 ∈ Ax1.

– If t(a1) = λx, we set Ψa1 = Ψa1·0,x → Ψa1·0

– If t(a1) = @, we set Ψa1 = Tg(Ψa1·1).

• We assume here that a1 ∈ supp@(P1) and a2 = Ψ(a1).

– We set ΨL
a1 = Sc(Ψa1).
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– Since Ψsupp induces a bijection from ArgTr1(a1) to ArgTr2(a2) (notation
ArgTr is defined on p. 294), we define a sequence type isomorphism ΨR

a1 from
R1(a1) to R2(a2) by ΨR

a1(k1 · γ1) = k2 · γ2, where a2 · k2 = Ψsupp(a1 · k1) and
γ2 = Ψa1·k1(γ1).

• We define now Ψ on bisupports (with a2 = Ψsupp(a2)).

– Left case: Ψ(a1, x, k1 · γ2) = (a2, x, Ψa1,x(k1 · γ1))

– Right case: Ψ(a1, γ1) = (a2, Ψa1(γ1)).

Remark B.6. The isomorphisms between S-derivations defined in Appendix A.5 are
isomorphisms of operable derivations.

B.2.2 Resetting an Operable Derivation

Let P be a hybrid derivation and Ψ a resetting of P . We may now define step by step
the Ψ(P ) mentioned in Proposition 13.1 i.e. we define the derivation P0 such that Ψ
actually defines an operable derivation isomorphism from P to P0.

• For all a0 ∈ Ax0, we set T0(a0) = Ψa(T(a)), where a = Ψ−1
supp(a0). Thus, Ψa induces

a type isomorphism from T(a) to T0(a0)

• Let Ax0(Ψ(a))(x) = {Ψsupp(a0) | al0 ∈ Axα(x)} for all a ∈ A and x ∈ V .
Since Ψsupp induces a bijection from Ax to Ax0, we can set tr0(Ψ(a)) = Ψtr(a) for
all a ∈ Ax and AxTr0(Ψ(a))(x) = Ψtr(Axα(x))
Since Ψtr is an injection whose domain is Ax, we can define pos0 : codom(()Ψtr)→
Ax′ with pos0(k0) = a0, where a0 ∈ Ax0 is the unique leaf of A0 such that
tr0(a0) = k0 (by the injectivity of Ψtr discussed above, the function pos0 re-
quires only one argument, contrary to pos).

• We define then C0(Ψ(a))(x) = (tr0(Ψ(a0)) · T(Ψ(a0)))a0∈Axα(x). So we can write
Ψa,x for the context isomorphism from C(a)(x) to C0(a0)(x) such that Ψa, x(k ·γ) =
Ψtr(a0) ·Ψa0(γ), where a0 = pos(a, x, k).

• We can now define a type T0(Ψ(a)) and a type isomorphism Ψa from T(a) to
T0(Ψ(a)) for all a ∈ A by 001-induction.

– T(a0) and Ψa are already defined when a ∈ Ax.

– If t(a) = λx, we set T0(a0) = C0(a0)(x)→ T0(a0 · 0) and Ψa = Ψa·0,x → Ψa·0.

– If t(a) = @, we set T0(a0) = Tg(T0(a0)) and Ψa = Tg(Ψa·1).

• We assume here that t(a) = @ and a0 = Ψ(a). We set then ArgTr0(Ψ(a)) =
{k0 > 2 | ∃k ∈ ArgTr(a), a0 · k0 = Ψ(a · k)}, L0(a) = Sc(T0(a0 · 1)) and R0(a0) =
(k0 · T0(a0 · k0))k0∈ArgTr0(a0).

– We set ΨL
a = Sc(Ψa).
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– We define a sequence type isomorphism ΨR
a from R(a) to R0(a0) by ΨR

a(k ·γ) =
k0 · γ0, where a0 · k0 = Ψ(a1 · k1) and γ0 = Ψa·k(γ0).

Moreover, if P is endowed with an interface φ, we can set φ0,a0 = ΨR
a ◦φa ◦ (ΨL

a)
−1.

Thus, φ0,a0 : L0(a0)→ R0(a0) is a sequence type isomorphism.

The following proposition, which is the formal counterpart of Proposition 13.1, stems
from the previous constructions:

Proposition B.2. With the above notations, let P0 be the labelled tree such that
supp(P0) = A0 and P0(a0) = C0(a0) ` t|a0 : T0(a0).
Then P0 is a hybrid derivation and (φ0, a0) is a complete interface that makes P0 iso-
morphic to P as an operable derivation via the isomorphism Ψ. Thus, we may naturally
denote P0 by Ψ(P ).

B.3 Edge Threads, Brotherhood and Consumption

Lemma B.3. Let P be an operable derivation P and Θ a relabelling of P . If, for all
p ∈ LP , Θ(p) = Θ(φ(p)), then PΘ is a trivial derivation.

Proof. Let Ψ the resetting induced by Θ. Let a0 ∈ supp@(PΘ) and a = Ψ−1(a0). From
Sec. B.1.3, we recall that the interface φΘ

a0 of PΘ is defined by φΘ
a0 = ΨR

a ◦ φa ◦ (ΨL
a)
−1.

Let k0 · c0 ∈ suppmut(L
Θ(a0·)). We set p0 = (a0, k0 · c0) and p = Ψ−1(p0). Since

Θ(θ) = Θ(φ(θ)), we have lab(φa0(k0 · c0)) = lab(k0 · c0).
By induction on |k0·c0|, we show then that, for all k0·c0 ∈ supp(LΘ(a0)), φa0(k0·c0) =

k0 · c0.

Lemma B.4.

• If θL→̃θR and θL is an axiom thread, then θR is an argument thread.

• If θL	→̃θR and θR is an argument thread, then θL is an axiom thread.

Proof.

• Assume that θL : eL
a→ eR : θR with θL axiom thread, e1 = (a · 1, k · c). Then

let (a0, c0) = Asc(eL). The 3rd point of Remark 13.8 implies Pol((a0, c0)) = 	
and (a0, c0) is the polar inverse of an axiom edge. In particular, c0 is of the form
k0 ∈ N \ {0, 1}. Then, by Lemma 13.5, there is i > 0 such that k · c = 1i · k0 or
k · c = 1i ·k0. Since k, k0 > 2, we have i = 0, k = k0 and c = ε. Thus, by definition
of →, we have e2 = a · k′ with k′ = φa(k).

• Assume that θL : eL
	 a→ eR : θR with e1 negative and e2 = a · k′ ∈ suppmut(P ).

Thus, there is k > 2 and c ∈ N∗ such that e1 = (a · 1, k · c). Let e0 := Asc(e1).
Since eL is negative, then e0 = (a0, k0 · c0) for some a0, k0, c0 with t(a0) = λx (for
some x), k0 > 2 and c0 ∈ N∗, so that e0→pi (a∗, c0) =: e∗ for some a∗ ∈ Ax.P
By Lemma 13.5, there is i > 0 such that k0 · c0 = 1i · k or k0 · c0 = 1i · k. Since
k, k0 > 2, we have i = 0, k = k0 and c0 = ε. In particular, e∗ = (a∗, ε) i.e. e∗ is
an axiom referent and θL is an axiom thread.
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B.4 Residuation for Mutable Edges and Threads

In Sec. B.4, we detail the constructions suggested in Sec. 13.5. In particular, we define
residuation for edges and edges threads.

B.4.1 Edges and Residuation

Let us observe now that a distinction should be made between residuation for nodes
and residuation for edges. Consider an operable derivation P �C ` t : T (coming along
with the usual notations) and assume that t|b = (λx.r)s, t b→ t′ (so that t′|b = r[s/x]),
P

b→ P ′ so that P ′ is a residual operable derivation of P . We use the same metavariable
conventions as in Sec. B.1.1 i.e. metavariable a will now denote only positions in A s.t.
a = b. Metavariables α and c range over N∗. For instance, α 6= a means that a 6= b.
Abusively, when a = b, then a is an app-rule typing the root of the redex and (Sk)k∈K
(resp. (S′k)k∈K′) denotes the left key (resp. the right key) of the app-rule (note that
(Sk)k∈K and (S′k)k∈K′ depend on P and a), cf. p. 294.

If a ∈ N∗ and k′ ∈ N \ {0, 1} are such that a = b and a · k′ ∈ supp(P ), then P (a)
is a judgment of the form Dk′ ` s : Sk′ , more precisely, a · k points to a node of P
labelled with a judgment typing the argument s of the reduced redex. After reduction,
this judgment will be located at position a · ak where k = ρ−1

a (k′). Thus, it was natural
to define Resb(a · k′) as a · ak in Sec. B.1.1 (paradigm ♣). This point of view that used
throughout Sec. 13.2 to define residuation for derivation.

But, as seen in Sec. 13.3.3, we also use a · k to denote the edge of P from a to a · k.
This is an edge that joins the app-rule of the redex to an argument derivation of the
redex. When we reduce the redex at position b, this edge is destroyed and should not
have a residual. This leads us to make a distinction between residuation for nodes (as
in Sec. 13.2) and residuation for edges. Quasi-residuation for mutable edges should be
then defined properly. For that, we proceed as in Sec. 12.4.1 except that residuation
must take interfaces into account in system Sop.

If k ∈ Trλ(a), ak is the unique position s.t. pos(a · 10, x, k) = a · 10 · ak (see a2 and
a7 in Fig. 13.2).

We define now the quasi-residuation QResEb on E(P ) (note that QResEb depends on P
and in particular, on the interface on P , but that the notation does not mention them).

• Argument edges: Let α ∈ suppmut(P ).

– If α = b · 2 (i.e. α is an argument edge of the redex), then α is destroyed, so
that QResEb(α) is left undefined

– If α 6= b · 2, then α is moved during reduction. We set QResEb(α) = Resb(α).

• Axiom edges: Let (α, ε) ∈ AxP .

– If t(α) = x (assuming Barendregt convention), then (α, ε) corresponds to an
axiom root of a type assigned to the variable of the redex. This axiom root
is destroyed during reduction, so that QResEb(α)

– If t(α) = y 6= x, then (α, ε) is moved during reduction and we set QResEb(α, ε) =
(Resb(α), ε).

• Inner Edges: Let (α, c) ∈ bisuppmut(P ) with α ∈ AxP .

– If α 6= b · 1, then we set QResEb(α, c) = QResb(α, c) (which is defined).
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– If α = a · 1 with a = b. Then T(a · 1) = (Sk)k∈K → T where T = T(a) and
(Sk)k∈K is the left key of the app-rule at position a. Let (S′k)k∈K′ the right
key of this app-rule.

∗ If c = 1 · c0, then c points inside T . Since (a, c0)→asc (a · 1, c), we set
QResEb(a · 1, c) = QResb(a, c0) = (a, c0).
∗ If c = k with k > 2, then, since (a · 1, k) points to an axiom tracks of the

variable x of the redex, which is destroyed. So we leave QResEb(a · 1, k)
undefined.
∗ If c = k · c0 with k > 2 and c0 6= ε, then c points inside (Sk)k∈K . Since

(a · 1, k · c0)
a→ (a · k′, c′0) with k′ · c0 = φa(k · c0), we set QResEb(a · 1, c) =

Resb(a · k′, c′0) = (a · ak, c′0).

Remark B.7.

• Note again that QResEb and QResb are not always equal e.g., if a = b and a · k ∈
suppmut(P ), then QResb(a · k′) = Resb(a · k) = a · ak (with ρa(k) = k′), but
QResEb(a · k) is not defined. This is because a · k denotes the edge from a to a · k
in QResEb(a · k) and not the node at position a · k, as in QResb(a · k).

• The last case can also be used (with minor adaptation) to extend quasi-residuation
for all right bipositions that are not of the form (a · 1, ε).

Remark B.8 (Edges without Quasi-Residuals). Note that QResEb(e) is undefined only
in the 3 followings cases: (1) e is an axiom root associated to the variable of the redex
(i.e. e = pos(a · 0, x, k) (2) e in the root of the source of the abstraction of the redex
(i.e. e = (a · 1, k)) (3) e is an argument edge of the redex i.e. e = a · k (with k > 2).
By definition, we have e→pi e

′ and e
a→ e′′ with e = (a · 1, k), e′ = pos(a · 0, x, k) and

e′′ = a · k. Moreover, observe that e′′ does not have ascendants or descendants and that
e and e2 do not have descendant i.e. thr(e) = thr(e′) = {e, e′}. This justifies the first
equivalence in Lemma 13.12 and that of Lemma 13.13 below.

B.4.2 Residuals of Edges Threads

In this section, we define residuation for edge threads and give some of its properties.
Relations→asc and→pi and thus ≡ are compatible with reduction. By case analysis

(still guided by Fig. 13.2):

• Assume e1 = (α, c)→asc e2. If α 6= a, a · 1, then QResEb(e1)→asc QRes
E
b(e2). If

α = a, a · 1, then QResb(e1) = QResb(e2).

• If e1 = (α, k · c)→pi e2. If α 6= a · 1, then QResEb(e1)→pi Resb(e2). If α = a · 1 and
c = k > 2, then nor QResb(e1) or QResb(e2) are defined. If α = a ·1 and c 6= k ∈ N,
then e1 would not have QResb(e1) = QResb(e2).

This entails, by induction on ≡:

Lemma B.5. If e1 ≡ e2, then QResEb(e1) is defined iff QResEb(e2) is. In that case,
QResEb(e1) = QResEb(e2).

Lemma 13.12 allows us to define (quasi)-residuals for edge threads. We set Resb(θ) =
thr′(QResb(e)) for any e : θ (where thr′(·) denotes threads in P ′).
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Assume that e1 → e2. Then, by case analysis, QResEb(e1) is defined iff QResEb(e2). In
that case, either QResEb(e1) → QResEb(e2) (→ is taken w.r.t. P ′, the reduced derivation)
or QResEb(e1) = QResEb(e2). This entails, since :

Lemma B.6. Let P be an operable derivation whose interface is φ. Assume that
θ1 → θ2.

• Then Resb(θ1) is defined iff Resb(θ1) is.

• In that case, Resb(θ1)→̃Resb(θ2) or Resb(θ1) = Resb(θ2).

• Moreover, Resb(θ1) = Resb(θ2) iff θ1 : e1
a→ e2 : θ2 for some e1 = (a · 1, k · c), e2 =

(a · k′, c′) with a ∈ supp@(P ), a = b and c 6= ε. In particular, θ1 is not an axiom
thread.

Proof. The first part is justified by case analysis. The second part of the claim stems from
the same case analysis: we notice that QResEb(e1) = QResEb(e2) iff there are a ∈ supp@(P ),
k > 2, c ∈ N∗ such that a = b, c 6= ε, (e1 = (a · 1, k · c) or e1 = (a · 10 · ak, c)) and
e2 = (a · k′, c′) with φa(k · c) = k′ · c′. We then observe that thr((a · 1, k · c)) =
thr((a · 10 · ak, c)) = {(a · 1, k · c), (a · 10 · ak, c)}

Likewise, (strict) brotherhood is compatible with residuation: a case analysis shows
that if e1 and e2 are (strict) brother edges, then QResb(e1) is defined iff QResb(e2) is,
and that in that case, QResb(e1) and QResb(e2) also are brother edges. This entails:

Lemma B.7. Let P be a hybrid derivation and θ1, θ2 be two strict brother threads.
Then Resb(θ1) is defined iff Resb(θ2) is.
In that case, Resb(θ1) = Resb(θ2).
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