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Abstract— Recent works have championed a rigid description
of resources: whereas in non-rigid paradigms (e.g., standard
Taylor expansion or non-idempotent intersection types), bags of
resources are multisets and invariant under permutation, in the
rigid ones, permutations must be processed explicitly and can be
allowed or disallowed. Rigidity enables a fine-grained control of
reduction paths and their effects on, e.g., typing derivations. We
previously introduced [14], [16] a very constrained coinductive
type system (system S) in which permutation is completely
disallowed. This raises the question of the possible loss of
expressivity in system S w.r.t. reduction paths, compared to the
usual multiset framework or a rigid one allowing permutations.
To address this problem, we introduce an extension of system
S called Sop, which features isomorphisms of types and allows
retrieving the refinement type system of Asada-Ong-Tsukada
using list types and permutations. Then, by proving that every
Sop-typing has an isomorphic representation in system S, we show
that not only every non-idempotent derivation (i.e. every point
of the infinitary relation model) can be represented by a rigid,
permutation-free derivation, but also that any dynamic behavior
may be captured in this way. In other words, we prove that
system S has full expressive power over multiset or permutation-
inclusive intersection.

I. DETERMINISM, RIGIDITY AND REDUCTION PATHS

A. Resources for the λ-Calculus

The attempts at giving a quantitative account of resource
consumption by functional programs originates from Girard’s
Linear Logic [9]. In his wake, several works were proposed to
capture the same ideas. In this introduction, we mainly focus
on two of them:
• The resource calculus, notably by Ehrhard-Regnier [5]:

instead of having applications of the form t u (one
function, one argument), applications are of the form
t [u1, . . . , un] (one function, several argument), where
[u1, . . . , un] is a multiset (also called a bag). Substi-
tution of a variable x with a bag [u1, . . . , un] in a
term t is linearly processed: it occurs only if there
are exactly n free occurrences of x in t. In that case,
each occurrence of x is replaced by one ui. Since the
elements of a multiset can be permuted, this operation
is non-deterministic e.g., if n = 2 and t = x [x, y],
then the considered substitution can output u1 [u2, y] or
u2 [u1, x]. Thus, the redex (λx.t)[u1, u2] reduces in two
ways: there are reduction choices. The usual untyped
λ-calculus can be embedded into the resource calculus
via the Taylor expansion, which can be understood as
a linearization of λ-terms. However, since one does not

know how many times a function may use its argument,
the Taylor expansion v 7→ ṽ represents an application t u
of the usual λ-calculus by a formal series involving t̃ [ ],
t̃ [ũ], t̃ [ũ, ũ], t̃ [ũ, ũ, ũ]. . . The semantics of the resource
calculus is compatible with that of the λ-calculus in that,
the computation of the Taylor expansion and that of the
Böhm tree of a term commute (adequation).

• Non-idempotent intersection types, notably by Gard-
ner [8] and de Carvalho [4]: intersection type systems,
introduced by Coppo-Dezani [3], feature a type construc-
tion ∧ (intersection). In the non-idempotent setting, ∧ can
be seen as a free operator. Gardner-de Carvalho’s original
system G features an explicit permutation rule allowing
to permute types in the context:

Γ;x : A1 ∧ . . . ∧An ` t : B ρ ∈ Sn

Γ;x : Aρ(1) ∧ . . . ∧Aρ(n) ` t : B

where Sn is the set of permutations of {1, . . . , n}. A
later presentation of system G, that we call system R0

here (see Sec. II-A for details), represents intersection
with multisets i.e. the lists A1 ∧ . . . ∧ An are induc-
tively collapsed to [A1, . . . , An]. Since [A1, . . . , An] =
[Aρ(1), . . . , Aρ(n)], the perm-rule becomes obsolete and
system R0 is syntax-directed, meaning that a given judg-
ment may be the conclusion of a unique rule. Syntax-
direction makes type system more readable and closer
to the syntax of the λ-calculus. Indeed, system R0

features only three typing rules, corresponding to the
three constructors of the λ-calculus (x, λx or @).
Because of non-idempotency and relevance (no weak-
ening), system R0 is linear. Moreover, it characterizes
head normalization: a term is R0-typable iff it is head
normalizing (HN). Variants of system R0 give character-
izations of weak, strong or weak head normalization (see
[2] for a survey). Most interestingly, non-idempotency
makes the termination property of system R0 (if t is R0-
typable, then t is HN) straightforward to prove and the
size of R0-derivations gives upper bounds on the length
of normalizing reduction sequences (quantitativity). From
the semantic point of view, the typing judgments of R0

correspond to the points of the relational model of the
λ-calculus [1], which is one of the simplest to handle,
for the reasons mentioned above.

Contrary to [12], we are mainly interested in non-idempotent
intersection type systems and not in the Taylor expansion, but



they are related in that, an R0-typing of a term t naturally
gives an element of the Taylor expansion of t that does not
reduce to the null sum.

B. Rigidity and Determinism

In this article, we address problems of expressivity related
to rigidity in the resource frameworks. We present this feature
now. First, as noted above, the linear substitution of a variable
with the elements of a multiset bag is non-deterministic.
For system R0, this entails that subject reduction is non-
deterministic (this is further discussed with Fig. 1): we say
that system R0 gives rise to different reduction choices.

In [14], we characterized a form of infinitary weak normal-
ization by using non-idempotent types. This required using
a coinductive (meaning infinitary) grammar of types. How-
ever, coinductive grammars give rise to unsound derivations
e.g., typings of Ω := ∆ ∆ (with ∆ = λx.x x), the auto-
autoapplication. To recover soundness, coinductive type gram-
mars must come together with a validity criterion. We called
the one that we introduced in [14] approximability. It turns
out (Sec. IV.E. of [14]) that approximability cannot be defined
with multiset intersection. This led us to introduce system S

(see Sec. II-C), a rigid variant of system R0: multisets are
coinductively replaced by sequences of types i.e. families of
types annotated with integers. For instance, (2·S, 3·T, 8·S) is
a sequence type that features two occurrences of type S and
one occurrence of T . We have a “disjoint union” operator
] for sequences e.g., (2·S, 3·T ) ] (8·S) = (2·S, 3·T, 8·S),
so that the occurrences of S annotated with 2 can be iden-
tified on each side of the equality (tracking). In contrast,
[σ, τ ] + [σ] = [σ, σ, τ ], but, in this equality, we have no way
to relate one occurrence of σ in [σ, σ, τ ] to [σ, τ ] rather than
[σ] and vice versa (tracking is impossible with multisets). The
lack of tracking is the main cause of non-determinism. In other
words, one may say that intuitively, a framework is rigid when
it enables tracking and determinism. Multiset equality can be
seen as lax whereas sequential equality is syntactical (and thus,
highly constraining). The syntactic nature of sequences entails
that subject reduction is deterministic in system S (Fig. 4).

In their recent works [11], [12], Asada, Ong and Tsukada
proposed another rigid framework, featuring rigid resource
calculus and a rigid Taylor expansion, also satisfying ad-
equation. Their approach has several aims, notably giving a
precise account of the weight of reduction paths in proba-
bilistic programming: rigidity makes it possible to enumerate
reduction paths statically (what is referred to as the composi-
tional enumeration problem). This rigid calculus is interpreted
in generalized species of structures, which are a special case
of cartesian closed bicategories featuring non-trivial isomor-
phisms. These isomorphisms generalize the perm-rule and
enable the encoding of convoluted reduction paths. However,
without perm-rule or type isomorphisms, subject reduction
fails in the presence of list types, which is their main draw-
back. The reason for this failure is that reduction moves
subterms in the subject and thus reorganizes the way types
are concatenated or built. But this is not a problem with

multisets, which are permutation invariants, or with sequences,
which are not impacted by the concatenation order since ] is
commutative e.g., (2·S, 3·T ) ] (8·S) = (8·S) ] (2·S, 3·T ). In
particular, system S satisfies subject reduction and expansion
without needing a permutation rule.

Thus, system S has apparently the best features: it is rigid
and enjoys type invariance under conversion without burdening
derivations with permutations. Yet, the lack of permutations in
system S makes that it may seem dynamically poor: there is
no way to implement more than one reduction choice in a
S-derivation.

There is another problem arising from the lack of permu-
tation of system S: in [16], we proved that every λ-term is
R-typable, where R is the coinductive extension of R0. This
entails that every term has a non-empty interpretation in the
infinitary relational model. Our proof of this result, which uses
tracking, can be only obtained by working in system S instead
of R and then, noticing that sequences collapse to multisets
when tracks are erased (e.g., (2·S, 3·T, 8·S) onto [S, T, S]).
However, this does not exclude the possibility that there are R-
derivations (i.e. points of the infinitary relational model) that
are not the collapse of any S-derivation. In other words, this
rises the question: can every R-derivation be represented with
a S-derivation (question 1)? Due to the syntactical equality
used in the application rule of system S and the absence
of productivity, this turns out to be a difficult problem (see
Sec. II-E). We will prove that the answer is yes.

The question of the collapse allows us to properly address
the description of the dynamical expressivity of system S: a
derivation of system S has only one reduction path whereas
a R-derivation may have an infinity. Observe that there is
no obvious reason why there is a way to represent every
reduction path in the non-deterministic setting (using multiset)
by appropriately choosing the right S-representation. This
rises this second question: given a reduction path rp of R-
derivations Π0, Π1. . . , is there a S-derivation whose unique
reduction path collapses derivation-wise on every element of
rp (question 2)? It turns out that this is also true.

C. Contributions and Challenges

Contributions: We prove that sequential intersection surjec-
tively collapses to multiset intersection by answering positively
to the two questions above. The main contributions of this
article are the following:
• We introduce a sequence type system Sop, which allows

implementing reduction paths by means of type isomor-
phisms.

• System Sop allows retrieving a system that is equivalent
to Tsukada-Asada-Ong rigid refinement type system [12],
using list types and permutations.

• We prove that every Sop-derivation is isomorphic to a S-
derivation i.e. a derivation with sequence types without
permutation rules or type isomorphisms.

• Concomitantly, we use Sop to show every point of the
infinitary relational model is the collapse of a sequential
derivation without permutation.



Once again, subject reduction is not satisfied with list
intersection (i.e. without permutation/isomorphisms). On an-
other hand, isomorphisms of types enables the description
of reduction paths, as shown in [12]. Our article shows that
sequence types provide the best of both worlds (multiset and
list intersections): one can also endow sequence types with
isomorphisms to directly encode reduction path which is the
motivates introducing Sop, but it is not necessary since:
• Subject reduction holds with sequences without permu-

tation rule.
• Theorem 6 (every Sop derivation is isomorphic to an S-

derivation) implies that any reduction path can directly
be encoded without using type isomorphisms when one
chooses a suitable rigid representative.

Structure of the paper and challenges: in Sec. II, we compare
various type system and present the problematic of this article
and its difficulties in more details. In Sec. III, we present sys-
tem Sop and the way reduction and residuation are processed
in the presence of type isomorphisms. In Sec. IV, we prove
the main theorems.

The most difficult point establishing Theorem 6 is deal-
ing with the lack of productivity. In a finitary/productive
framework (for the notion of productivity, see e.g., [6]), this
could be possible by studying first the derivations typing
a (partial) normal form, for which representation is usually
easily ensured, and then proceeding by subject expansion (see
Sec. II-E). However, as already noted, typability in system R
does not imply any kind of normalization (every term can be
R-typed), even an infinitary one. We then refine the technique
that we developed in [16] to study typing derivations without
hypothesis of normalization. This technique involves threads,
which are special sets of markers in the derivation (these
markers exist thanks to rigidity) and a first order theory T
pertaining to these threads. We then prove that Theorem 6 by
proving that (a) it is true iff T is consistent and (b) proving that
that T is consistent. The consistence of T relies on a reduction
strategy on threads instead of terms. The main stage of this
proof are presented in Sec. IV.

All our results are valid for the infinitary calculus Λ001 [10],
but we handle here the case of the finite λ-calculus to lighten
the presentation. See the webpage of the author or Chapter 11
and 13 of [15] for complete proofs and details.

II. NON-IDEMPOTENT INTERSECTION AND RIGID
PARADIGMS

A. Multiset Intersection
Let us recall Gardner and de Carvalho’s non-idempotent

intersection type system [4], [8] in its non-rigid version. The
set of R0-types is inductively defined by:

σ, τ ::= o ∈ O | [σi]i∈I → τ

We call I := [σi]i∈I a multiset (intersection) type. Intersec-
tion ∧ corresponds to the multiset-theoretic sum +. We assume
I to be finite, the empty multiset type is denoted by [ ].

An R0-context (Γ or ∆) is a total function from V (the
set of term variables) to the set of multiset types. The domain

Πr

τ

ax
x : σ

ax
x : σ

λx
[σ, σ]→ τ

@
τ

Π1
s

σ

Π2
s

σ

reduces into
Π1,2
r[s/x]

τ

Π1
s

s : σ

s : σ

Π2
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Π2,1
r[s/x]

τ

Π2
s

s : σ

s : σ

Π1
s

Fig. 1. Non-Determinism of Subject Reduction (Multiset Intersection)

of Γ is given by {x |Γ(x) 6= [ ]}. The intersection of contexts
+i∈IΓi is defined point-wise. We write Γ; ∆ instead of Γ+∆
when dom(Γ) ∩ dom(∆) = ∅. Given a multiset type [σi]i∈I ,
we write x : [σi]i∈I for the context Γ s.t. Γ(x) = [σi]i∈I and
Γ(y) = [ ] for all y 6= x. An R0-judgment is a triple Γ ` t : σ
where Γ is an R0-context, t a term and σ an R0-type. The
set of R0-derivations is defined by the following rules:

ax
x : [τ ] ` x : τ

Γ;x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ

Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I
app

Γ + (+i∈I∆i) ` t u : τ

Here is an example of R0-derivation, that we call Πex (the
left-hand sides of ax-rules are omitted):

ax
x : [o, o′, o]→ o′

ax
x : o

ax
x : o′

ax
x : o

app
x : [o′, [o, o′, o]→ o′, o, o] ` xx : o′

app
` λx.xx : [o′, [o, o′, o]→ o′, o, o]→ o′

We write Π �R0 Γ ` t : τ to mean that the R0-derivation
Π concludes with the judgment Γ ` t : τ and �Γ ` t : τ
to mean that Γ ` t : τ is derivable. No weakening is allowed
(relevance). System R0 enjoys both subject reduction and ex-
pansion, meaning that types are invariant under (anti)reduction
(if t → t′, then �Γ ` t : τ iff �Γ ` t′ : τ ). A fundamental
feature of this system is that a term is head normalizing iff it
is R0-typable.

The app-rule of R0 is based upon multiset equality and
can be restated as follows:
Γ ` t : [σi]i∈I → τ (∆i ` u : σ′i)i∈I′ [σi]i∈I = [σ′i]i∈I′

Γ + (+i∈I′∆i) ` t u : τ
app

System R0 has a coinductive version that we call system R.
To define R, we just interpret the rules of the type grammar
coinductively: in system R, [σi]i∈I can be of infinite cardinal-
ity (I is assumed to be countable). Moreover, there may be an



infinite number of nestings e.g., in the R-type φo satisfying
φo = [φo] → o for a given o ∈ O . Note that φo allows us to
type Ω with o: using ax-rule concluding with x : [φo] ` x : φo,
we easily obtain x : [φo]ω ` xx : o, then ` ∆ : φo and
finally ` Ω : o ([σ]ω contains infinitely many occurrences of
σ). The derivable R-judgments correspond to the points of
the infinitary relation model, which has interesting properties:
every λ-term has a non-empty denotation (not only solvable
terms as in the finite case) and its arity can be captured by
this model (Theorems 1 and 2 of [16]). It also gives linear
representations of every λ-term. A formal definition of R-
types may be found at the end of Sec. II-C.

For the time being, let us understand why subject reduction
is not deterministic in system R0: in Fig. 1, a redex (λx.r)s
is typed with τ and in r, x is assigned twice the type σ in
two different places. Then, to obtain a derivation Π′ typing the
reduct r[s/x], we just replace each axiom rule by an argument
derivation Πi

s (i = 1, 2) concluding with s : σ. There are two
possibilities (reduction choices) represented on the bottom of
the figure. In general, we write Π

b→β Π′ if Π′ is a derivation
obtained from Π by reducing a redex at position b.

B. Tracks and Labelled Trees

Let us now recall the formalism that we use for possibly
infinite labelled trees and sequences [14]. Let N∗ be the set
of finite words on N, the operator · denotes concatenation, ε
the empty word and 6 the prefix order e.g., 2 · 1 · 3 · 7 ∈ N∗,
2 · 1 6 2 · 1 · 3 · 7. As a letter of N, a natural number is called
a track and, for reasons to appear, a track k > 2 is called
an argument track (argument tracks are mutable, Sec. IV-A).
The collapse k of a track k is defined by k = min(k, 2).
This notation is extended letter-wise on N∗ e.g., 0·5·1·3·2 =
0·2·1·2·2. The support of term is defined by induction as
expected: supp(x) = {ε}, supp(λx.t) = {ε} ∪ 0 · supp(t)
and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If a ∈ N∗
and a ∈ supp(t), we denote by t|a the subterm of t rooted at
position a whereas t(a) is the constructor (@, x or λx) of t at
position a e.g., t|0 = y x and t(0 ·1) = y with t = λx.y x. The
applicative depth ad(a) of a is the number of argument tracks
that it contains e.g., ad(0·3·2·1·1) = 2 and ad(0·1·0·0·1) = 0.

A tree A of N∗ is a non-empty subset of N∗ that is
downward-closed for the prefix order (a 6 a′ ∈ A implies
a ∈ A). The support of a term is a tree. A forest is a set of
the form A\{ε} for some tree A such that 0, 1 /∈ A. Formally,
a labelled tree T (resp. labelled forest F ) is a function to
a set Σ, whose domain, called its support supp(T ) (resp.
supp(F )), is a tree (resp. a forest). If F is a labelled forest,
the set of roots of F is defined by Rt(F ) = supp(F ) ∩ N.
The metavariable U denotes either (labelled or not) a tree or a
forest. then U |a is the function defined on {a0 ∈ N∗ | a·a0 ∈
supp(U)} and U |a(a0) = U(a·a0). If U is a tree (resp. forest
and a 6= ε), then U |a is a tree.

Definition 1. Let U1 and U2 be two (labelled or not) trees
or forests. A 01-isomorphism φ from U1 to U2 is a bijection
from supp(U1) to supp(U2) such that:

→ 1

o1

4

→ 1

o2

3

o1o3

8
o2

8

T1 = (8·o2, 4·(8·o3, 3·o1)→ o2)→ o1
→ 1

o1→ 1

o2

2

o3o1

7

5 3

o2

T2 = (5·(7·o1, 2·o3)→ o2, 3·o2)→ o1

Fig. 2. 01-Isomorphic Labelled Trees (S-Types)

• φ is monotonic for the prefix order and preserves length.
• If a·k ∈ supp(U1) with a ∈ N∗ and k = 0, 1, then
φ(a · k) = φ(a)·k.

• For all a ∈ supp(U1), U2(φ(a)) = U1(a) (labelled case).

We write U1 ≡ U2 when U1 and U2 are 01-isomorphic. In
Fig. 2, we see two isomorphic labelled trees (which are two
S-types, Sec. II-C) w.r.t. φ defined by φ(ε) = ε, φ(1) = 1,
φ(4) = 5, φ(4·1) = 5·1, φ(4·3) = 5·7, φ(4·8) = 5·2, φ(8) =
3. Let F and F ′ be two 01-isomorphic (labelled) forests. A
root isomorphism is a function ρ from Rt(F ) to Rt(F ′) such
that, for all k ∈ Rt(F ), F |k ≡ F ′|ρ(k) i.e. a bijection from
Rt(F ) to Rt(F ′) that can be extended to a 01-isomorphic
from F to F ′. Conversely, every isomorphism φ from F to
F ′ induces a root isomorphism from F to F ′, denoted Rt(φ).

C. Rigid Types

Formally, the set of S-types is defined coinductively by:

T, Sk ::= o ‖ F → T
F ::= (k · Sk)k∈K (K ⊆ N \ {0, 1})

The empty sequence type is denoted ( ). The set of top-level
tracks of a sequence type is called its set of roots and we write
e.g., Rt(F ) = {2, 5, 8} when F = (2 · o, 5 · o′, 8 · o). Note that
the disjoint union operator can lead to track conflict e.g., if
F1 = (2 · o, 3 · o′) and F2 = (3 · o′, 8 · o), the union F1 ] F2

is not defined, since Rt(F1) ∩ Rt(F2) = {3} 6= ∅. Thus, ]
is not total, but it is associative and commutative. We often
abbreviate (k · Sk)k∈K into (Sk)k∈K or (Sk)K .

The support of a type (resp. a sequence type), which is a
tree of N∗ (resp. a forest), is defined by mutual coinduction:
supp(o) = {ε}, supp(F → T ) = {ε}∪supp(F )∪1·supp(T )
and supp((Tk)k∈K) = ∪k∈Kk · supp(Tk). For instance,
supp((2 · o, 7 · o′) → o) = {ε, 1, 2, 7}. Thus, types (resp.
sequence types) can naturally be seen as labelled trees (resp.
labelled forests) in the sense of Sec. II-B. See Fig. 2.

When we forget about tracks, a finite rigid type collapses to
an R0-type e.g., (7·o1, 3·o2, 2·o1)→ o, (9·o2, 7·o1, 6·o1)→ o
or (7 · o2, 3 · o1, 2 · o1) → o all collapse to [o1, o2, o1] → o.
The formal definition of R-types (Sec. II-A) as collapses of
rigid types needs the following notion:

Definition 2. Let U1 and U2 be two (sequence) types.
A (sequence) type isomorphism from U1 to U2 is a 01-
isomorphism from U1 to U2.

For instance, in Fig. 2, both T1 and T2 collapse to
[o2, [o1, o3] → o2] → o1. A similar notion of isomorphism
exists in [12], III.A., which is presented inductively.



The set of R-types can be formally defined as the quotient
of the set of S-types by ≡. Multisets types of system R are the
≡-equivalence classes of sequence types and thus, they indeed
allow infinite cardinality and nestings. System R is defined as
R0 (Sec. II-A), except that we use types of R instead of just
finite types of R0. A countable version of the binary operator
+ can be easily defined.

D. Trivial Rigid Derivations

An S-context C (or D) is a total function from V to the
set of S-types. The operator ] is extended point-wise. An
S-judgment is a triple C ` t : T , where C, t and T are
respectively an S-context, a term and an S-type. A sequence
judgment is a sequence of judgments (Ck ` t : Tk [k])k∈K
with K ⊆ N \ {0, 1}. The notation [k] emphasizes that
the index k matters in the syntax, but we often just write
(Ck ` t : Tk)k∈K . For instance, if 5 ∈ K, then the judgment
on track 5 in the sequence is C5 ` t : S5.

The set of S-derivations is defined inductively by:

ax
x : (k · T ) ` x : T

C;x : (Sk)k∈K ` t : T
abs

C ` λx.t : (Sk)k∈K → T

C ` t : (Sk)k∈K → T (Dk ` u : Sk [k])k∈K
app

C ] (]k∈KDk) ` t u : T

The app-rule can be applied only if there are no track conflicts
in the context C ] (]k∈KDk). In an ax-rule concluding with
x : (k ·T ) ` x : T , the track k is called the axiom track of this
axiom rule. In order to gain space, we write k ` x : T (with
k > 2, x ∈ V and T an S-type) instead of x : (k · T ) ` x : T
in ax-rules. Consider the S-derivation Pex of Fig. 3. In the
ax-rule concluding with x : (5·o) ` x : o, the axiom track is
5. As hinted at before, S-derivations collapse to R-derivations
e.g., Pex collapses to Πex from Sec. II-A. Moreover:

Proposition 1 ([14]). Systems R and S enjoy subject reduction
and expansion.

The app-rule of system S can be restated as follows:

C` t : (Sk)K→T (Dk`u : S′k)k∈K′ (Sk)K = (S′k)K′
app

C ] (]k∈KDk) ` t u : T

Thus, in system S, the app-rule requires that, for an application
t u to be typed, (Sk)k∈K , the source of the arrow type given
to t must be syntactically equal to the sequence type (S′k)k∈K′

given to u (compare with Sec. II-A). A consequence of the
rigidity is that subject reduction is deterministic in system S,
as hinted at by Fig. 4 (compare with Fig. 1).

Let us give S some high-level inputs on pointers in system
S (again, see Sec. III. and IV. of [14] for complements). We
define the support of a S-derivation, and also the key notions
of biposition and bisupport: the support of P � C ` t : T
is defined inductively by supp(P ) = {ε} if P is an ax-rule,
supp(P ) = {ε} ∪ 0 · supp(P0) if t = λx.t0 and P0 is the
subderivation typing t0, supp(P ) = {ε} ∪ 1 · supp(P1)∪k∈K
k ·supp(Pk) if t = t1 t2, P1 is the left subderivation typing t1
and Pk the subderivation typing t2 on track k. The Pk (k ∈ K)

Pr

T

ax
x : (`·S)

ax
x : (k·S)

λx

(k · S, ` · S)→T
@

T

P 1
s

S [k]

P 2
s

S [`]

reduces into

Pr[s/x]

s : S

P 2
s

s : S

P 1
s

Fig. 4. Deterministic Subject Reduction (Sequential Intersection, S-case)

are called argument derivations. For instance, supp(Pex) =
{ε, 0, 0·1, 0·2, 0·3, 0·8}, Pex(0 · 1) = x : 4·((8·o, 3·o′, 2·o) →
o′) ` x : (8·o, 3·o′, 2·o) → o′ and Pex(0·3) = x : (2·o′) ` x :
o′. If a ∈ supp(P ), then P (a) is a judgment C ` t : T . We
denote C and T by CP (a) and TP (a) e.g., CPex(1 · 2) = x :
(9 · o) and TPex(1 · 2) = o.

A (right) biposition of an S-derivation P is a pair (a, c),
where a ∈ supp(P ) and c ∈ supp(TP (a)), where the
judgment of P at position a is C ` u : T . In that case, P (a, c)
denotes TP (a)(c) e.g., Pex(1, ε) = o′, Pex(0·1, 8) = o because
TPex(0 · 1) = (8·o, 3·o′, 2·o)→ o′. In this article, we just need
to think of bipositions as pairs pointing to type symbols (o ∈ O
or →) or to labelled edges that are nested in a given rigid
derivation. We will do so when informally discussing Fig. 7.

E. The Question of Representability

From the introduction, we recall that we will give a positive
answer to this question:

Question: Is every R-derivation the collapse of an S-
derivation ?

Attempt 1 (induction on proof structure): if we try to
proceed by induction on the structure of an R-derivation Π,
we are quickly stuck. For instance, assume that

• Π =
Πλx.r�Γ ` λx.r:[σi]i∈I→τ (Πi�∆i ` s:σi)i∈I

Γ + (+i∈I∆i) ` (λx.r)s : τ
• Πλx.r and the Πi are all S-representable.

The second assumption means that there are S-derivations
Pλx.r �C ` λx.r : (Sk)k∈K → T and (Pi �Di ` s : S′i)i∈I′

that respectively collapse to Πλx.r and the Πi. But Pλx.r and
the Pi can be used to represent Π only if (1) we can ensure
that the Sk and the S′i are syntactically equal and (2) we can
avoid track conflicts.

For point (1), notice that, given a term t that is R-typable
with type τ , there may be some S-types T that collapse to τ
such that t is not S-typable with T e.g., if S = σ = S′, but
S 6= S′, then T := (2·S)→ S′ collapses to τ := [σ]→ σ and
I := λx.x can be R-typed with τ and S-typed with (2·S)→ S
or (5·S′)→ S′, but not with T .

Thus, some typing constraints could a priori forbid that we
can equalize the Sk and the S′i since it is difficult to describe
the S-types of r and s that collapse to τ or σi.



Pex =

ax
4 ` x : (8·o, 3·o′, 2·o)→ o′

ax
9 ` x : o [2]

ax
2 ` x : o′ [3]

ax
5 ` x : o [8]

app
x : (2·o′, 4·(8·o, 3·o′, 2·o)→ o′, 5·o, 9·o) ` xx : o′

abs
` λx.xx : (2·o′, 4·(8·o, 3·o′, 2·o)→ o′, 5·o, 9·o)→ o′

Fig. 3. An S-derivation

Attempt 2 (expanding normal forms): a fundamental
method of intersection types is to type/study normal forms
and then use subject expansion to extend the properties
of the type system to every term that can be reduced to
a normal form. Can we do the same here? Since system
R types every term, it does not ensure any form of
normalization/productivity, and the method alluded to cannot
work in the general case (it does though in the finite one).

The solution is then to reuse the method that we developed
in [16], which allows us dealing with non-normalizing terms.
The remainder of the paper is then dedicated to answering yes
to the above question i.e. proving:

Theorem 2 (Representation). Every R-derivation is the col-
lapse of an S-derivation.

The above discussion suggests that system S is too
constraining for the question of representability to be
addressed directly and that we should relax the app-rule. This
motivates the definition of hybrid derivations by replacing,
in system S, the app-rule by:

C` t : (Sk)K → T (Dk`u : S′k)k∈K′ (Sk)K ≡ (S′k)K′

C ] (]k∈KDk) ` t u : T
apph

We call this modified system Sh. We thus relax the syntactic
equality of app into equality up to sequence type isomorphism
(Def. 2). The notations of system S generalize to system
Sh e.g., supp(P ), bisupp(P ), TP and so on. If, in an
Sh-derivation P , the above apph-rule occurs at position a,
one denotes (Sk)k∈K by LP (a) (standing for “Left”) and
(S′k)k∈K′ by RP (a) (“Right”). Then, the apph-rule requires
that LP (a) ≡ RP (a) i.e. RP (a) and LP (a) must be isomorphic.
Thus, a hybrid derivation P is trivial (i.e. just an S-derivation)
when for all a ∈ supp@(P ) := {a ∈ supp(A) | t(a) = @}
(i.e. for all app-rules of P ), LP (a) = RP (a). When P is clear
from the context, we omit it and just write L(a) and R(a).

Fig. 7 gives an example of an Sh-derivation. Note that
all the contexts replaced by . . . can be computed from the
given information e.g., x : (5 · (8·o)→(8·o, 9·o)→o′), y :
(3·o) ` x y : (8·o, 9·o)→o′ and that the apph-rules are correct.
Indeed, L(ε) = (8·o, 9·o) ≡ (3·o, 5·o) = R(ε) and L(1) =
(5·(8·o)→(8·o, 9·o)→o′) ≡ (6·(3·o)→(2·o, 7·o)→o′) = R(1).

Observe that rule apph is no more and no less constraining
than the app-rule of system R since (Sk)k∈K ≡ (S′k)k∈K′ iff
the multiset types (Sk)k∈K and (S′k)k∈K′ are equal, according
to the end of Sec. II-C. Thus, the problem of the collapse is
not difficult in the case of Sh:

Proposition 3. If Π is an R-derivation, then it is the collapse
of an Sh-derivation P .

Proof. By induction on the structure of Π.

III. PSEUDO-SUBJECT REDUCTION AND INTERFACES

In this section, we explore the effect of reduction on system
Sh, which satisfies a relaxed form of subject reduction and
expansion:

Proposition 4 (Pseudo-Subject Reduction and Expansion).
• If t → t′ and �ShC ` t : T , then �ShC ` t′ : T ′ for

some T ′ ≡ T .
• If t → t′ and �ShC ` t′ : T ′, then �ShC ` t : T for

some T ≡ T ′.

Let us now explain how reduction is handled with hybrid
derivations and why the type T of t may be replaced by an
isomorphic type T ′ in Sh after one reduction step. Reduction is
not deterministic in system Sh, so we endow hybrid derivations
with type isomorphisms, which allows us to encode reduction
paths (Sec. III-A and Lemma 5) gives rise to the notion of
operable derivations.

A. Encoding Reduction Choices with Interfaces

In this section, we explain Prop. 4 i.e. reduction in system
Sh. We assume that t|b = (λx.r)s, t

b→ t′ (so that t′|b =
r[s/x]), each axiom rule concluding with x : (k·Sk) ` x :
Sk will be replaced by a subderivation Pk′ � Dk′ ` s : S′k′
satisfying S′k′ ≡ Sk. However, the apph-rule states that there
exists an isomorphism from (Sk)K to (S′k)K′ but does not
specify this isomorphism. This entails that there may be many
ways to produce P ′ typing t′ from P typing t : in system Sh,
there are also reduction choices, as in system R.

All this is illustrated by the left part of Fig. 5: under the
same hypotheses, we assume that a ∈ supp(P ) is such that
a = b (thus, a is the position of a judgment typing the redex to
be fired) and that there are exactly 2 ax-rules typing x above
a, using axiom tracks 2 and 7. Notice that the ax-rule typing
x on track 7 (assigning S7) must be above a·1·0, so that its
position is of the form a·1·0·a7. Likewise for the other ax-rule
assigning S2 on track 2. We omit ax-rules right-hand sides. We
also indicate the position of a judgment between angle brackets
e.g., 〈a·1·0·a7〉 means that judgment x : (7·S7) ` x :S7 is at
position a·1·0·a7.

By typing constraints, there must be two argument deriva-
tions typing s with types isomorphic to S2 and S7. We assume
that those two argument derivations are on track 5 and 8 and



Assumptions: ρa(2) = 8, ρa(7) = 5 (so that
S2 ≡ S′8, S7 ≡ S′5)

Comment: since ρa(2) = 8, ρa(7) = 5, the
argument subderivation P8 (resp. P5) on track
8 (resp. 5) will replace the axiom rule using
track 2 (resp. 7).

C;x : (Sk)k∈K `r :T
0

C`λx.r : (Sk)k∈K→T

1
C ]D5 ]D8 ` (λx.r)s : T 〈a〉

Pr ♥
〈a·1·0·α♥〉

7 ` x : S7

〈a·1·0·a7〉

2 ` x : S2

〈a·1·0·a2〉

P5

D5`s :S′5

5

P8

D8`s :S′8

8

♣

〈a·a2·α♣〉

Subderivation typing the redex

Pr
♥
〈a·α♥〉

C ]D5 ]D8 ` r[s/x] : T ′ 〈a〉

P5

D5`s :S′5

〈a·a7〉

P8

D8` s :S′8
〈a·a2〉

♣

〈a·8·α♣〉

Subderivation typing the reduct
Fig. 5. Subject Reduction and Residuals

conclude with Dk ` s : S′k (k = 5, 8) where e.g., S2 ≡ S′8
and S7 ≡ S′5. If moreover, S2 ≡ S7, then each ax-rule typing
x can be replaced by P5 as well as by P8: there is a reduction
choice. In all cases, the type of r[s/x] may change e.g., if
x : S7 corresponds to the head variable of r, then S7 is
replaced by an isomorphic type S5 (or S8), so T may also
be replaced by an isomorphic T ′.

We now use root type isomorphisms (Sec. II-B, Def. 2) to
retrieve some determinism and represent particular reduction
choices in system Sh. Let P be a hybrid derivation:
• Let a ∈ supp@(P ). A root interface (resp. an interface)

at position a is a root isomorphism (resp. a sequence type
isomorphism) from LP (a) to RP (a).

• Let b ∈ supp(t) such that t(b) = @. A total (root)
interface at position b is a family of (root) interfaces for
all a ∈ supp(P ) s.t. a = b.

• A total interface is the datum for an interface φa for all
a ∈ supp@(P ).

For all a ∈ supp@(P ), we write InterP (a) for the set of
interfaces at pos. a in P . This allows defining:

Definition 3. An operable derivation is a hybrid derivation
endowed with a total interface.

Definition 3 corresponds to a new system Sop, which has
rules ax, abs and an app-rule parametrized with a sequence
type isomorphism φ:

C` t : (Sk)K→T (Dk`u : S′k)K′ φ : (Sk)K
iso.→ (S′k)K′

appφ
C ] (]k∈KDk) ` t u : T

The restriction of Sop to finite types gives a counterpart of [12]
rigid refinement intersection type systems based on sequences
instead of lists and with the difference that we do not specify
a resource calculus (which is implicit here).
Assuming that S2 ≡ S7 in Fig. 5, we have seen above that
the two ax-rules typing x could be indifferently replaced by

P5 or P8. But if a is endowed with the root interface ρa s.t.
ρa(2) = 8 and ρa(7) = 5, then the ax-rule typing x on track 2
must be replaced by P8 and the other one by P5, as on the right
part of the figure. Indeed, a root interface at position b specifies
a reduction choice at position b. Compare this process with
Fig. 4: implicitly, a trivial derivation P is endowed with a
trivial interface (φa is the identity from LP (a) to RP (a) for
all a ∈ supp@(P )) and there is no way, in system S, to specify
that P 1

s should replace x : (` · S) instead of x : (k · S).

B. Residuation
In Sec. III-A, we explained how to capture a one-step

reduction choice with a root interface. To capture every R-
reduction path (of any length 6 ∞) with operable derivation
i.e. with total interfaces (what we do in § III-C), we elaborate
in this section a residuation theory for system Sh.

Root interfaces allow us defining a suitable notion of
residuals for positions (the residual of α ∈ supp(P ), if it
exists, is a α′ ∈ supp(P ′) that may be denoted Res

ρ
b(α
′)

since it depends both on b and (ρ)a=b).
Now, if instead of endowing P with a total root interface

(ρa)a=b at position b, we endow it with a total interface
(φa)a=b at position b, we define below a notion of residuals
for right bipositions, as we did for system S (Sec. IV.D and
Fig. 1 in [14]): the residual of (α, c) may be then denoted
Res

φ
b (α, c).

Interestingly, in that case, residuation can also be defined
for interfaces: more precisely, if P is endowed with a total
interface at position b and α ∈ supp@(P ) is such that α 6= b,
then α has a residual α′ := Res

φ
b (α) w.r.t. φ and there is a

bijection ResI
φ
b (α) from InterP (α) to InterP

′
(α′).

The remainder of Sec. III-B is technical and sketches the
construction of this various notions of residuation (positions,
bipositions, interfaces). We then assume that P � C ` t : T ,
t|b = (λx.r)s and t b→β t′ (thus, t′|b = r[s/x]).



Conventions on metavariables a and α The letter a will stand
for a position of P that corresponds to the root of the redex (i.e.
a ∈ supp(P ) and a = b) and the letter α for other positions
in A := supp(P ) or in N∗. When a = b, Axλ(a) denotes the
axiom rules above a types the variable x of the redex and
we set Trλ(a) = {trP (α0) |α0 ∈ Axλ(a)} = Rt(TP (a · 1)),
so that Trλ(a) is the set of the axiom tracks used above
a to type the variable of the redex. For instance, in Fig. 5,
Axλ(a) = {a·1·0·a2, a·1·0·a7} and Trλ(a) = {2, 7}.

Positions: We first assume that P is endowed with a root
interface (ρa)a=b at position b. We define the residual position
Resb(α) for each α ∈ supp(P ) except when α is of the form
a, a · 1 or a · 1·0 · ak (for some a satisfying a = b). We begin
with discussing the symbols ♥ and ♣ in Fig.5. In Fig. 5, ♥
represents a judgment nested in Pr. Thus, its position must
be of the form a · 1·0 · α♥. After reduction, the app-rule and
abs-rule at positions a and a · 0 have been destroyed and
the position of this judgment ♥ will be a · α♥. We set then
Resb(a · 1·0 · α♥) = a · α♥.

Likewise, ♣ represents a judgment nested in the argument
derivation P8 on track 8 w.r.t. a. Thus, its position must be of
the form a ·8 ·α♣ where a ·8 is the root of P8. After reduction,
P8 will replace the ax-rule typing x on track ρ−1a (8) i.e. 2,
so its root will be at a · a2 (by definition of a2). Thus, after
reduction, the position of judgment ♣ will be a · a2 · α♣. We
set then Resb(a · 8 · α♣) = a · a2 · α♣.

• Paradigm ♣: if α = a · kR · α0 where a = b and kR > 2,
then Resb(α) = a · akL · α0 with kL = ρ−1a (kR).

• Paradigm ♥: if α = a·1·0·α0 where a ∈ supp(P ), a = b
and α0 6= ak, then Resb(α) = a · α0.

• Outside the redex: if b 
 α, then Resb(α) = α

Residuation for positions easily allows defining, from
(ρa)a=b, a unique derivation P ′ � C ` t′ : T ′ with T ≡ T ′,
as expected. Derivation P ′ is denoted Res

ρ
b(P ). The function

Res
ρ
b is a partial injection from supp(P ) to supp(P ′).

Bipositions: when b is endowed with a total interface (φa)a=b
inducing a root interface (ρa)a=b, the residual Resφb (α, γ) of
a bipositions is defined by induction on a (starting at axiom
rules and going downwards). By lack of space, we give only
the base cases. The full construction (which can be found in
Sec. B.1. of [15]) is long but quite natural.

• If α /∈ ∪a=bAxλ(a) i.e. α is an ax-rule that does not type
the variable of the redex, then Res

φ
b (α, γ) = (α′, γ) with

α′ = Res
ρ
b(α).

• If a = b, α ∈ Axλ(a) and ` = tr(α) i.e. α
is an ax-rules typing the variable of the redex, then
Resb(α, γ) = (α′, γ′) with α′ = Res

φ
b (α), `′ = ρα(`)

and `′ · γ′ = ` · φα(γ). An important observation is that
this definition is correct, because γ ∈ supp(TP (α)) iff
` · γ ∈ supp(LP (a)). Moreover, in this case, defining
Resb(α, γ) would not be possible with the datum of
(ρa)a=b only.

Abstraction rule
ax

x : (5·S5) ` x : S5 〈posλa(5)〉

C; x : (Sk)k∈K ` t : T 〈a·0〉
abs

C ` λx.t : (Sk)k∈K → T 〈a〉
Application rule

C ` t : (Sk)k∈K → T 〈a·1〉 (Dk ` u : S′k 〈a·k〉)k∈K′apphC ] (]k∈KDk) ` t u : T 〈a〉

endowed with an interface φa : (Sk)k∈K → (S′k)k∈K′

Fig. 6. Ascendance and Polar Inversion

The construction of Resb(·, ·) induces, for all α ∈ supp(A), a
type isomorphism from TP (α) to TP

′
(α′) with α′ = Res

φ
b (α)

i.e. φ maps types from the initial derivation P to isomorphic
types in the reduct derivation P ′ = Res

φ
b (P ) := Res

ρ
b(P ).

Interface isomorphisms: Assume that P is endowed with a
total interface (φa)ab. Then it is easy to check that:
• Resφa is a bijection from supp@(P ) \ {a | a = b} to
supp@(P ′) with P ′ = Res

φ
b (P ).

• For all α ∈ supp@(P ), α′ = Res
φ
b , the function

Resb(·, ·) induces a sequence type isomorphism ResLPb|α
from LP (α) to LP

′
(α′) (resp. ResRPb|α from RP (α) to

RP
′
(α′)) i.e. residuation maps the left-hand sides (resp.

the right-hand sides) of interfaces of the initial derivation
P to isomorphic left-hand sides (resp. right-hand sides)
of interfaces of the reduct derivation P ′.

Then, for each application nodes α ∈ supp@(P ), α′ ∈
supp@(P ′) with α′ = Resb(α) and α 6= b (i.e. α is not
the application of the redex), there is a canonical bijec-
tion ResI

φ
b|α from InterP (α) to InterP

′
(α′) defined by

ResIb|α(ψ) = ResRb|α ◦ ψ ◦ ResL−1b|α, so that the following
diagram commutes:

LP (α) RP (α)

LP
′
(α′) RP

′
(α′)

ψ

ResL
φ
b|α ResR

φ
b|α

ResI
φ
b|α(ψ)

When P is endowed with a total interface (φa) (a ∈
supp@(P )), which gives a unique P ′ = Res

φ
b , the function

ResI allows defining the residual interface of φ on P ′ by
setting, for all α′ ∈ supp@(P ′), α ∈ supp@(P ) with α′ =

Res
φ
b (α) and α 6= b, φ′α′ := ResI

φ̂
α|b(φα) where φ̂ = (φa)a=b.

In others words, φ′α′ = ResR
φ
b|α ◦φα ◦ (ResLφb|α)−1.

C. Capturing Full Reduction Paths

We may now explain why every reduction path starting at
a R-derivation Π may be capture by means of an operable
derivation. Assume that Π0 � Γ ` t : τ and Π0

b0→β
Π1 . . .Πn

bn→β Pn . . . is a reduction sequence of length ` 6∞.



Let P be a hybrid derivation collapsing on Π (Proposition 3).
Then, one builds by induction on n a sequence An ⊆ An+1 ⊆
A := supp(P ) along with interface isomorphisms (φa)a∈An

of P such that, for all n ∈ N, (φa)a∈An
captures the reduction

sequence until step n and gives a residual derivation Pn
collapsing on Πn: we set P0 = P and A0 = ∅ and to
define (φa) for a ∈ An+1 \ An, one first define an interface
(ψa)a=b,a∈supp(Pn) in Pn at position bn capturing the step

Πn
bn→β Πn+1. Then, applying ResI−1 n times on the ψa,

one obtains interface isomorphisms (φa)a∈C in P . We then
set An+1 = An ∪C and Pn+1 = Res

ψ
bn

(Pn). We thus obtain:

Lemma 5 (Representation). Every sequence of reduction
choices of length 6 ω in a derivation Π can be built-in in
an operable derivation P collapsing on Π.

The above lemma epitomizes the use of a rigid paradigm
along with type isomorphism to capture reduction paths in a
non-deterministic system, as shown in [12].

IV. REPRESENTATION THEOREM

In this final section, we sketch the proof of the main
theorem of this article: every R-derivation is the collapse of
an S-derivation. First, we need to render this statement more
handleable by considering isomorphisms of derivations.

Since a hybrid derivation P is a tree of N∗ that is labelled
with rigid judgments, and for all a ∈ supp(P ), TP (a) (which
is a type of t|a in P ) is also a labelled tree of N∗, it is
easy to define the notion of isomorphism from one hybrid
derivation P1 to another P2 by using suitably the notion of
01-isomorphism (Sec. II-B). The formal definition given below
ensures that two hybrid derivations P1 and P2 are isomorphic
iff they collapse to the same R-derivation. An isomorphism
Φ from a Sh-derivation P1 to another P2 is the datum of:
• A 01-isomorphism of unlabelled tree from supp(P1) to
supp(P2), Ψsupp.

• For all axiom rules a ∈ supp(P1), a type isomorphism
Ψa from TP (a) to TP

′
(a′) with a′ = Ψsupp(a).

We do not give the details of the well-foundedness of this
definition, which are not difficult. For instance, one needs to
check that that Ψsupp induces a bijection from the set of axiom
rules of P to that of P , or from supp@(P ) to supp@(P ′).
Moreover, this definition entails that such a Ψ induces, for
all a1 ∈ supp(P1), a sequence type isomorphism ΨL

a1 from
LP1(a1) to LP2(a2) and another from ΨR

a1 from RP1(a1) to
RP2(a2) with a2 = Ψsupp(a1).

From Sec. III-A, we recall that an operable derivation
is a hybrid derivation P endowed with a total interface
(φa)a∈supp@(P ). Some isomorphisms of hybrid derivations
induce isomorphism of operable derivations. Morally, if
P1 and P2 are operably isomorphic then they collapse to
the same R-derivation and encode the same R-reduction
path. Formally, if P1 and P2 are operable derivations (resp.
endowed with (φ1a) and (φ2a)), then an isomorphism Ψ of
hybrid derivations from P1 to P2 is actually an isomorphism
of operable derivations if Ψ commutes with the interfaces

of P1 and P2 i.e. for all ai ∈ supp@(Pi) (i = 1, 2) with
a2 = Ψsupp(a1), the following diagram commutes:

LP1(a1) RP1(a1)

LP2(a2) RP2(a2)

φ1a1

ΨL
a1 ΨR

a2

φ2a2

Now, since we remember that a trivial derivation is endowed
with identity interfaces, Theorem 2 is a consequence of the
following one, that we are going to prove:

Theorem 6. Every operable derivation is isomorphic to a
trivial derivation.

With Lemma 5, this theorem means that any R-derivation Π
and any sequence of reduction choices w.r.t. Π can be encoded
by an S-derivation P , as expected from the Introduction.

A. Getting a Trivial Derivation considering Tracks Threads

The remainder of this paper is dedicated to the proof of
Theorem 6 above holds.

We recall that tracks are numbers that label edges (of types
or of derivations). Let P be an operable derivation. We want
to find a trivial derivation P0 that is isomorphic to P (as
an operable derivation). But roughly speaking, defining an
isomorphism of operable derivation whose domain is P is a
matter of giving new values to the tracks which occur in P i.e.
relabelling the edges of the derivation P . These new values
must be chosen appropriately to:
(1) respect the typing rules of Sh
(2) respect the interface of P and yield a trivial derivation.

In System Sh, tracks 0 and 1 are special (they are dedicated
to the premise of the abs-rule or the left-premise of the apph-
rule and also to the target of →) and their value is fixed
by 01-isomorphisms: as a matter of fact, an isomorphism
of derivation should not relabel the left-hand side of an
application (labelled with 1) into an argument branch (labelled
with k > 2) or the premise of an abstraction (labelled with 0).
But the value of tracks > 2 may be changed (in that, tracks
> 2 are an extra-specification layer on multiset intersection).
That is why we say that they are mutable. We write E(P ) for
the set of edges nested in P whose tracks are mutable. There
are 3 kinds of e ∈ E(P ):
• The edges of the source of arrows nested in types in
TP (a) (inner mutable edges).

• The edges leading to an argument derivation in some
apph-rule (argument edge).

• The axiom edges1 which are labelled with axiom tracks
in contexts.

We abusively designate a mutable edge by its deepest vertex
e.g., the inner edge joining the bipositions (0·1, ε) and (0·1, 8)
(which which is inside TP (0·1)) is denoted (0·1, 8), the
argument edge joining the positions 0 and 0·3 is denoted 0·3.

1the vocable “axiom edge” is improper: the axiom track in an ax-rules
labels the root of a singleton sequence type, not an actual edge in a type/tree.



We now discuss the moves of a type (and its edges) inside
a hybrid derivation by looking at Fig. 7, before explaining in
what this concerns the trivialization of hybrid derivations via
the notions of brotherhood and consumption below.

Some occurrences of 8 are colored in blue or in red: they
all correspond to the label of an edge that “moves” inside the
derivation. For instance, each red (resp. blue) occurrence of
8 can be identified to the one just below via the typing rules
of system Sh: we say that the former is the ascendant of the
latter. The same can be said about the colored occurrences of
9, 2 and 7. We call a series of ascendants an ascendant (edge)
thread e.g., the set of the red (resp. blue) occurrences of 8
correspond to an ascendant thread (resp. to another).

Moreover, since the abs-rule “calls” all the assigned types
of the bound variable, the top blue occurrence of 8 is called by
the constructor λx and correspond to the top red occurrence of
8. We say that the former occurrence of 8 is the polar inverse
of the latter.

Ascendance and polar inversion induce a congruence be-
tween mutable edges, that we also denote ≡ and that iden-
tifies labelled edges w.r.t. the moves of the types inside P .
Intuitively, two labelled edges e1 and e2 are congruent iff
the typing rules of Sh constrain them to be labelled with
the same track. We denote by ThrE(P ) the quotient set of
E(P ) by � and an element θ ∈ ThrE(P ) is called a mutable
edge thread or simply a thread. A thread is composed of
at most two ascendant threads. An occurrence of a thread
is said to be negative if its top ascendant is in an abs-rule
and positive in every other case (top ascendant in an ax-rule
or argument edge). In Fig. 7, the set of colored occurrences
of 8 (resp. of 9) correspond to a thread: the blue ones are
negative (they ascend to an abstraction) and the red ones are
positive (they ascend to an ax-rule). The colored occurrences
of 2, 3, 5 and 7 are all positive. We denote these threads θi
(i = 2, 3, 5, 7, 8, 9) without ambiguity. If θ is a thread, then
θ⊕ (resp. θ	 is its set of positive (resp. negative) occurrences
e.g., θ	8 = {(12, 5·1·8), (13, 1·5·1·8), (13·0, 5·1·8)}. Formally,
the definition of ascendance and polar inversion requires the
following notation: if P is Sh-derivation typing t(a) = λx and
k > 2 is an axiom track assigned to x above a, then posλa(k)
denotes the unique position α > a·0 such that trP (α) = k.
Remark that P is implicit in posλa(k). For instance, for Pex

(Fig. 3), posλε (9) = 0·2, posλε (2) = 0·3. We then set:
• If t(a) = @ then (a, c)→asc (a·1, 1·c).
• If t(a) = λx, then (a, 1·c) → (a·0, c) and (a, k · c)→pi

(posλa(k), c).
The definition of ascendance and polar inversion are illustrated
by Fig. 6. They are almost the same as those in [16] (except
that an emptiness constant is not needed), whereas the relation
of consumption defined below becomes more involved because
of interfaces. In contrast, threads cannot be defined in system
R: in Πex which concludes with λx.x x : [. . . , o, o] → o′,
there is no way to ascend from one these two occurrences of
o to a unique axiom rule concluding with x : o.

We are interested in finding an isomorphism fulfilling
Theorem 6 and points (1) and (2) at the beginning of this

section. The discussion above explains how to capture point
(1) (respecting the typing rules): two edges of a same thread
should be relabelled with the same value. In other words:

Observation 1. Defining an isomorphism from P is about
specifying a new value Val(θ) for the track of each mutable
edge thread θ of P .

B. Brotherhood and Consumption

We now explain how to capture point (2) of Sec. IV-A i.e.
we also want to “respect” the interface (φa)a∈supp@(P ) of P
(in a sense to be defined) while obtaining a trivial interface
(i.e. using only identity isomorphisms).

Still in Fig. 7, every colored occurrence of 8 occurs beside
a colored occurrence of 9 with the same polarity (each pair
of 8 and 9 is nested in the same sequence type): we say that
θ8 and θ9 are brother threads. Likewise, the orange threads
θ3 and θ5 are brothers, as well as the purple threads θ2 and θ7.

We endow now the derivation of Fig. 7 with an inter-
face: in the apph-rule typing ((λyx.xy)z)(a x), there are
two possible interfaces φ1 from (8·o)→(8·o, 9·o)→o′ to
(3·o)→(2·o, 7·o)→o′: one “maps” 8 onto 2 and 9 onto 7 and
the other 8 onto 7 and 9 onto 2. We consider the second case
(8 into 7,9 into 2). Likewise, at the root apph-rule, there are
two interfaces φε from (8·o, 9·o) to (3·o, 5·o). We assume that
φε maps 8 to 3 and 9 to 5.

We associate to the interface the relation of consumption:
since, intuitively, φ1 associates to the blue track 8 (on the
left-hand side) the track 2 (on the right hand-side), we
say that the thread θ8 (resp. θ2) is left-consumed (resp.
right-consumed) at position 1. Moreover, at position 1, the
consumed occurrence of 8 is negative (blue), so we say that
θ8 is left-consumed negatively, and we write θ8	→̃1

⊕θ2 since
the consumed occurrence of θ2 is positive. The notation →̃1

should mention the interface φ, but we omit it. Likewise,
θ9
	→̃1

⊕θ7, θ8⊕→̃ε
⊕θ3, θ9⊕→̃ε

⊕θ5. We then say e.g., that
θ9 and θ7 face each other at pos. 1. Formally, θL→̃aθR if
there is (a · 1, k · c) ∈ θL and (a · k′, c′) ∈ θR such2 that
φa(k · c) = k′ · c′ . In an S-derivation, this latter equality is
equivalent to k = k′ and c = c′ (see Sec. 3.4 of [16]).

To obtain Theorem 6, we want a trivial interface up to rela-
belling the threads. A derivation is trivial when its interfaces
are only identities. In the light of Obs. 1, we remark that, to
obtain a trivial derivation, we must assign the same new track
value to any pair of threads facing each other. Thus, setting
→̃ := ∪a→̃a:

Observation 2. To obtain a trivial derivation from P , all edge
threads such that θL→̃θR should be relabelled with the same
values i.e. one must have Val(θL) = Val(θR) when θL→̃θR.

As a consequence, if two threads θ and θ′ are congruent
modulo the equivalence closure of →̃, they should also be

2Note that, when k, k′ > 2, k·c ∈ supp(LP (a)) and k′·c′ ∈ supp(RP (a))
e.g., in Fig. 6, k·c ∈ supp((Sk)K) and k′·c′ ∈ supp((S′k)K′ )



ax
5 ` x : (8·o)→(8·o, 9·o)→o′

ax
7 ` y : o [2]

apph
. . . ` x y : (8·o, 9·o)→o′

abs
. . . ` λx.x y : (5·(8·o)→(8·o, 9·o)→o′)→(8·o, 9·o)→o′

abs
` λyx.x y : (7·o)→(5·(8·o)→(8·o, 9·o)→o′)→(8·o, 9·o)→o′

ax
4 ` z : o [3]

apph
. . . ` (λyx.x y)z : (5·(8·o)→(8·o, 9·o)→o′)→(8·o, 9·o)→o′

ax
2 ` a : ( )→(3·o)→(2·o, 7·o)→o′

apph
. . . ` a x : (3·o)→(2·o, 7·o)→o′ [6]

apph
. . . ` ((λyx.xy)z)(a x) : (8·o, 9·o)→o′

ax
4 ` b : o [3]

ax
9 ` b : o [5]

apph
. . . ` (((λyx.xy)z)(a x))b : o′

Fig. 7. Two Brother Threads

assigned the same track value e.g., θ5 and θ7 must receive the
same new label, even if they have no direct relation, because
θ9→̃θ7 and θ9→̃θ5.

To prove Theorem 6, we must then prove that we can satisfy
Obs. 2: the equalities Val(θL) = Val(θR) (for θL→̃θR) ensure
that in the relabelled derivation PVal, every interface is trivial
i.e. PVal is a S-derivation. However, the assignment Val must
be consistent i.e. two brother threads should not be reassigned
the same value e.g., in Fig. 7, θ8 and θ9 (or θ2 and θ7) cannot
receive the same new track value (i.e. Val(θ8) 6= Val(θ9)
must hold).

It is actually not difficult to find a good relabelling Val

transforming the derivation of Fig. 7 into a trivial one: we
replace the singleton sequence judgment typing typing y (resp.
z) with the one concluding with 7 ` y : o [8] (the track of the
argument edge has been changed from 2 to 8), the one typing
z z with the one concluding with 4 ` z : o [7] and the right
part of the derivation with:

. . .

ax
2 ` a : ( )→(8·o)→(8·o, 9·o)→o

apph
. . . ` a x : (8·o)→(8·o, 9·o)→o [5]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ax

4 ` b : o [8]
ax

9 ` b : o [9]

. . .

The tracks 3, 2 and 7 labelling inner edges have been
changed as well as the tracks 3, 6 and 5 labelling argument
edges. No axiom track required to be changed in this example.

If one tries to directly prove that every operable P has
a consistent assignment Val such that Val(θL) = Val(θR)
when θL→̃θR, one becomes quickly stuck, for the same rea-
sons as in Sec. II-E. We must then try to find another way.
That is why we adapt the method of [16]. In general, we
prove (Proposition 7 below) that a consistent assignment Val
satisfying Obs.2 exists iff there is no proof showing that there
are two brother threads that should be given an equal track
value. Such a proof would be called a brother chain and
would have the form θ0↔̃a0θ1↔̃a1 . . . ↔̃an−1

θn, where θ0 and
θn are two brother threads and ↔̃a is the symmetric closure
of →̃a. This would imply that Val(θ0) and Val(θn) must
be equal, which is illicit (θ0 and θn are brothers). In other
words, a brother chain corresponds to a proof of contradiction

in the first order theory TP whose set of constants is ThrE(P )
and whose axioms are Val(θ1) = Val(θ2) for all θ1, θ2 s.t.
θ1→̃aθ2 for some a ∈ supp@(P ) and Val(θ1) 6= Val(θ2) for
all brother threads θ1, θ2. The consistence of TP is a necessary
condition to ensure the existence of a relabelling Val with the
expected properties. But is it sufficient? The answer is yes and
thus, Proposition 7 below can be interpreted as a completeness
property for theory TP (consistence implies existence). It is
pivotal to obtain Theorem 6. The approach closely follows that
of [16], although here, threads of mutable edges are considered
instead on the whole set of bipositions (see, e.g., Definition
1,2 and Corollary 1 in [16]).

Proposition 7. If TP is consistent, i.e. there are no brother
chains w.r.t. an operable derivation P , then there is a trivial
derivation P∗ isomorphic to P .

Proof sketch. Let ∼φ be the equivalence closure of
∪a∈supp@(P )↔̃a and q be the canonical map from E(P ) to
E(P )φ = E(P )/∼φ. Since E(P ) is countable, let ι be an
injection from E(P )φ to N \ {0, 1}. One checks that the
relabelling ι◦g induces an isomorphism of operable derivations
from P to a certain derivation P∗ which is indeed correctly
defined and trivial (full details in Sec. B.2. of [15]).

To develop the final stages of this theorem, we also need
the following lemmas:

Lemma 8 (Uniqueness of Consumption). Let P be an opera-
ble derivation, ~ ∈ {⊕,	} and θ ∈ ThrE(P ). Then, there is
a most one θ′ such that (θ~→̃θ′ or θ~←̃θ′).

We define the applicative depth of a thread θ as the
maximal applicative depth of a judgment in which it occurs
e.g., in Fig. 7, ad(θ8) = ad(θ9) = 0 and ad(θ7) = 1.
Consumption causes an increase of applicative depth, provided
the left thread is consumed positively:

Lemma 9 (Monotonicity). If θL⊕→̃θR, then ad(θL) < ad(θR).

One may easily understand why Lemma 9 is not valid with
θ	L instead of θ⊕L : a λx at pos. a may “call” an occurrence of
x at a′ whose applicative depth is greater than that of a. Thus,
the negative occurrence of a thread θ does not have a priori
maximal applicative depth in θ (this is not the case in Fig. 7).



C. Collapsing Brother Threads

We now prove the main theorem: according to Prop. 7, in
order to prove Theorem 6, we must prove that brother chains
do not exist. For that, we assume ad absurdum that there is
a brother chain θ0↔̃a0θ1↔̃a1 . . . ↔̃an−1

θn associated to an
operable derivation P , whose interface φ is omitted from the
notations. Details can be found in Sec. 13.5 of [15].

Argument 1 (normal brother chains do not exist):
Using Lemma 8, it is easy to prove that, if no thread is
left-consumed negatively in the chain (in that case, we say
that the chain is a normal brother chain), then it is of the
form θ0

⊕→̃a0θ1
⊕→̃a1 . . . →̃an−1θn By Lemma 9, this entails

that ad(a0) < ad(a1) < ad(a2) . . . < ad(an) Thus, θ0 and
θn cannot be brother, because two brother threads have the
same applicative depth. Contradiction.

Argument 2 (if they existed, brother chains could be
normalized): Argument 1 suggests that we reduce to the
case of normal brother chains, whose non-existence has been
established thanks to Lemma 9. Let us then endeavour to
“normalize” chains when some negative left-consumption.
This happens to be possible, but this requires first that we first
define a notion of residuation, for mutable edges and then for
edge threads. Residuation for edges is mostly similar to that for
bipositions (sketched in Sec. III-B). To define residuation for
threads, we need to prove that edge residuation is compatible
with � (i.e. with ascendance and polar inversion), meaning
that e1 � e2 implies Resb(e1) � Resb(e2). We must also
check that →̃ is stable by residuation. See Sec. 13.5 and B.4
of [15] for the details.

How do we then escape the case θL	→̃aθR? Indeed, when
θL
	→̃aθR, either t|a is a redex and in that case, Resb(θL) =

Resb(θR) (with b = a) or t|a is not a redex and in that

θL
	 is nested in the (Sk)k∈K

u

λx(Sk)k∈K → T

λ3(∗)→(Sk)k∈K→T
@(Sk)k∈K → T

λ2(∗)→(Sk)k∈K→T

λ1(∗)→(∗)→(Sk)k∈K→T
@(∗)→ (Sk)k∈K→ T

@(Sk)k∈K → T

@T

θL
	 is

consumed
here

v
(Svk)k∈Kv

step 1

u1

λx

λ3

@

λ2

@

@

v
u2

λx

λ3

@

@

v

step 2 step 3 step 4

u3

(S′k)K→T ′ λx
@T ′

v
(Svk)Kv

u3[v/x]

T ′′

with (S′k)k∈K′ ≡ (Sk)k∈K
T ′′ ≡ T ′ ≡ T

by pseudo-subj. red.

Fig. 8. Collapsing a Redex Tower

case, the negative occurrences of θL ascend to a λx in 2 k
steps, visiting k @-nodes and k λy-nodes. An example of
this case is represented in Fig. 8 with k = 3. The sequence
type in which θL is nested is colored in blue and by lack of
space, we write λ1, λ2, λ3 instead of λx1, λx2, λx3 and (∗)
for matterless sequence types. The sequence (Sk)k∈K and, in
particular, θL	 are “called” by λx. After 3 reduction steps,
the residual of θL is nested in (S′k)k∈K′ in the left-hand side
of redex, which corresponds to the first case. After a fourth
reduction step, θL has the same residual as θR.

In general, the method that we have just described would
allow us, starting from a brother chain, to obtain a normal
brother chain in a finite number of steps. Since normal brother
chains do not exist by Argument 1, this proves that brother
chains do not exist at all. Thus, by Proposition 7, there is a
trivial derivation P∗ which is isomorphic to P . This concludes
the proof of Theorem 6, which entails Theorem 2.

V. CONCLUSION AND PERSPECTIVES

We introduced a sequential type system Sop, which allows
encoding reduction paths as in other rigid type systems.
The main results of this article (Theorems 2, 6 along with
Lemma 5) state that every (possibly infinitary) multiset-based
derivation is the collapse of a trivial derivation (which means
sequential and permutation-free) and that, moreover, one can
directly represent in the trivial setting every reduction path
in the multiset or operable setting, the latter meaning rigid
with isomorphisms allowing us to encode reduction choices.
This proves that the trivial rigid framework is as expressive
as the non-trivial one and advocates in favor of replacing
multiset intersection with sequential intersection, since it is
no more complicated to use sequences (system S does not use
a permutation rule or type isomorphisms) than multisets, while
having extra-features (parsing, pointing).

Fiore et al. [7] introduced the generalized species of struc-
tures to interpret the λ-calculus, which have been later en-
riched by Tsukada et al. [13] intro weighted generalized
species. The fact that sequential intersection is easier to handle
than list intersection (subject reduction without permutation)
as in [12] suggests a notion of sequential (generalized) species
of structures to interpret the λ-calculus, which would replace
the list comonad P with the sequence functor S on small
categories C defined by:
• The objects of S(C) are sequences (ck)k∈K with e.g.,
K ⊆ N \ {0, 1} and ck object of C for all k ∈ K.

• The morphisms of S(C) are (ρ, (φ)k∈K : (ck)K →
(c′k)K′) with ρ : K → K ′ set-bijection and, for all
k ∈ K, φk C-morphism from ck to c′ρ(k).

This adaptation should demand rethinking some constructions
because for instance, S is not a comonad. We leave this for
the future work.
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