Representing permutations without permutations The expressive power of sequential intersection

Pierre VIAL Équipe Gallinette Inria (LS2N CNRS)

June 10, 2018

OUTLINE

Context	Non-idempotent intersection types	Rigid vs. non-rigid paradigms
	Using type A once or twice not the same	Proof red. deterministic vs. non-deterministic
Question 1	(Rigid collapses on non-rigid) (A, A, B) and (A, B, A) collapse	Is this collapse surjective? So on $[A, A, B]$
Question 2	In rigid fw., red. paths captured by permutations $(A, B, A) \mapsto (A, A, B)$	Is it possible to capture red. paths without perm. ?
	All this in a coinductive fw	v. (no productivity)!

RESOURCE CALCULI (INTUITIONS)

Girard (87), Boudol (93), Kfoury (96), Ehrhard-Régnier (03)

- Bag arguments: $t[u_1, \ldots, u_n]$ (and not tu)
- Linear substitution and reduction: if t = x [x, y] then $x \rightsquigarrow [u_1, u_2]$ gives $u_1 [u_2, y]$ or $u_2 [u_1, y]$.
- Taylor expansion of a λ-term (linearization): TE of t u = formal series involving t
 [], t
 [ũ], t
 [ũ, ũ], t
 [ũ, ũ, ũ]...
- Adequation: Böhm tree and Taylor expansion.

Tsukada, Ong, Asada (LiCS17 and LiCS18)

 \rightsquigarrow "compositional enumeration problem"

- **Rigid** bags: $t(u_1,\ldots,u_n)$
- Isomorphisms to identify equivalent bags.
- Deterministic reduction.
- Adequation.

1 Non-idempotent intersection types

2 System S (Sequential Interection)

3 Encoding Reduction Paths

• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

Kim (smart)	Lee (not so)
$\begin{array}{rrrr} f(3+4) & \rightarrow & f(7) \\ & \rightarrow & 7 \times 7 \times 7 \\ & \rightarrow & 49 \times 7 \\ & \rightarrow & 343 \end{array}$	$ \begin{array}{rcl} f(3+4) & \rightarrow & (3+4) \times (3+4) \times (3+4) \\ & \rightarrow & 7 \times (3+4) \times (3+4) \\ & \rightarrow & 7 \times 7 \times (3+4) \\ & \rightarrow & 7 \times 7 \times 7 \\ & \rightarrow & 49 \times 7 \\ & \rightarrow & 343 \end{array} $

Thurston	(dor	i't be Thurston)
f(3+4)	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \cdots \\ \rightarrow \end{array}$	$(3 + 4) \times (3 + 4) \times (3 + 4)$ $3 \times (3 + 4) \times (3 + 4) + 4 \times (3 + 4) \times (3 + 4)$ dozens of computation steps

Reduction strategy

- Choice of a reduction path.
- Can be **complete** (w.r.t. termin.).
- Must be **certified**.

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

Proof: by the "circular" implications:

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

Proof: by the "circular" implications:

Computation causes duplication.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Comparative (dis)advantages

- Insanely difficult to type a particular program.
- Whole type system **easier** to study!
 - Easier proofs of termination!
 - Easier proofs of characterization!
 - Easier to certify a reduction strategy!

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types: no \land on the right h.s. of $\rightarrow (e.g., (A \land B) \rightarrow A, \text{ not } A \rightarrow (B \land C))$ \rightsquigarrow no intro/elim. rules for \land

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types: no \land on the right h.s. of $\rightarrow (e.g., (A \land B) \rightarrow A, \text{ not } A \rightarrow (B \land C))$ \rightsquigarrow no intro/elim. rules for \land

•
$$(A \wedge B) \wedge C \sim A \wedge (B \wedge C), A \wedge B \sim B \wedge A$$
 (assoc. and comm.)
 $\sim subtyping \text{ or permutation rules e.g.,}$

$$\frac{\Gamma, x : A_1 \wedge A_2 \wedge \ldots \wedge A_n \vdash t : B \qquad \rho \in \mathfrak{S}_n}{\Gamma, x : A_{\rho(1)} \wedge \ldots \wedge A_{\rho(n)} \vdash t : B} \text{perm}$$

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types: no \land on the right h.s. of $\rightarrow (e.g., (A \land B) \rightarrow A, \text{ not } A \rightarrow (B \land C))$ $\rightarrow \text{ no intro/elim. rules for } \land$

•
$$(A \wedge B) \wedge C \sim A \wedge (B \wedge C), A \wedge B \sim B \wedge A$$
 (assoc. and comm.)
 $\rightarrow subtyping \text{ or permutation rules e.g.,}$

$$\frac{\Gamma, x : A_1 \wedge A_2 \wedge \ldots \wedge A_n \vdash t : B \qquad \rho \in \mathfrak{S}_n}{\Gamma, x : A_{\rho(1)} \wedge \ldots \wedge A_{\rho(n)} \vdash t : B} \text{perm}$$

Idempotency? A ∧ A ~ A (Coppo-D) or not (Gardner 94-de Carvalho 07)
 idem: typing = qualitative info non-idem: qual. and quant.

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types: no \land on the right h.s. of $\rightarrow (e.g., (A \land B) \rightarrow A, \text{ not } A \rightarrow (B \land C))$ $\rightarrow \text{ no intro/elim. rules for } \land$

•
$$(A \wedge B) \wedge C \sim A \wedge (B \wedge C), A \wedge B \sim B \wedge A$$
 (assoc. and comm.)
 $\rightarrow subtyping \text{ or permutation rules e.g.,}$

$$\frac{\Gamma, x : A_1 \wedge A_2 \wedge \ldots \wedge A_n \vdash t : B \qquad \rho \in \mathfrak{S}_n}{\Gamma, x : A_{\rho(1)} \wedge \ldots \wedge A_{\rho(n)} \vdash t : B} \text{perm}$$

- Idempotency? $A \wedge A \sim A$ (Coppo-D) or not (Gardner 94-de Carvalho 07) idem: typing = qualitative info non-idem: qual. and quant.
- Collapsing $A \land B \land C$ into [A, B, C] (multiset) \rightsquigarrow no need for perm rules etc. $[A, B, A] = [A, B, A] \neq [A, B]$ [A, B, A] = [A, B] + [A]

System \mathscr{R}_0 (Gardner-de Carvalho)

Strict types \rightsquigarrow syntax directed rules:

$$\frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash i : \tau} (\Gamma_i \vdash u: \sigma_i)_{i \in I}} \text{app}$$

Remark

- **Relevant** system (no weakening)
- In app-rule, pointwise multiset sum *e.g.*,

$$(x:[\boldsymbol{\sigma}];y:[\boldsymbol{\tau}]) + (x:[\boldsymbol{\sigma},\boldsymbol{\tau}]) = x:[\boldsymbol{\sigma},\boldsymbol{\sigma},\boldsymbol{\tau}];y:[\boldsymbol{\tau}]$$

• t is head normalizing (HN) if \exists reduction path from t to a HNF.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.
Head Normalization (λ)

• The head reduction strategy: reducing head redexes while it is possible.

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

SE is usually not verified by simple or polymorphic type systems

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

SE is usually not verified by simple or polymorphic type systems

PROPERTIES (\mathscr{R}_0)

• Weighted Subject Reduction

- Reduction preserves types and environments, and...
- ... head reduction strictly decreases the nodes of the deriv. tree (size).

• Subject Expansion

• Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ -term. Then equivalence between:

- t is typable (in \mathscr{R}_0)
- 2 t is HN
- \bigcirc the head reduction strategy terminates on t (\rightsquigarrow certification!)

Bonus (quantitative information)

If Π types t, then size(Π) bounds the number of steps of the head red. strategy on t

OUTLINE

Context	Non-idempotent intersection types	Rigid vs. non-rigid paradigms
	Using type A once or twice not the same	Proof red. deterministic vs. non-deterministic
Question 1	Rigid collapses on non-rigid (A, A, B) and (A, B, A) collapse	Is this collapse surjective? (A, A, B)
Question 2	In rigid fw., red. paths captured by permutations $(A, B, A) \mapsto (A, A, B)$	Is it possible to capture red. paths without perm. ?
	All this in a coinductive fw. (no productivity)!	

2 System **S** (Sequential Interection)

MOTIVATIONS

- Multiset intersection:
 - \oplus syntax-direction
 - \ominus non-determinism of proof red.
 - \ominus lack tracking: $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma].$

MOTIVATIONS

- Multiset intersection:
 - \oplus syntax-direction
 - \ominus non-determinism of proof red.
 - \ominus lack tracking: $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$.
- Klop's Problem: can the set of ∞-WN terms be characterized by an ITS ? Def: t is ∞-WN iff its Böhm tree does not contain ⊥

• Tatsuta [07]: an inductive ITS cannot do it.

• Can a coinductive ITS characterize the set of ∞ -WN terms?

MOTIVATIONS

- Multiset intersection:
 - \oplus syntax-direction
 - $\ominus\,$ non-determinism of proof red.
 - \ominus lack tracking: $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$.
- Klop's Problem: can the set of ∞-WN terms be characterized by an ITS ? Def: t is ∞-WN iff its Böhm tree does not contain ⊥
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?
- Answer:
 - Impossible without tracking (need for a validity criterion).

system \mathscr{R} (*i.e.* \mathscr{R}_0 with a coinductive type grammar) does not work • **YES**, with inter. = sequences + validity criterion.

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

$$\begin{array}{l} \displaystyle \frac{C;\,x:(S_k)_{k\in K}\vdash t:T}{C\vdash\lambda x.t:(S_k)_{k\in K}\to T} \texttt{abs} \\ \\ \displaystyle \frac{C\vdash t:\,(S_k)_{k\in K}\to T}{C \uplus (\uplus_{k\in K}D_k)\vdash t\,u:\,T} \texttt{app} \end{array} \end{array}$$

$$\begin{array}{c} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{C \vdash \lambda x.t: (S_k)_{k \in K} \to T} \texttt{abs} \\ \frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus (\uplus_{k \in K} D_k) \vdash t u: S_k)_{k \in K}} \texttt{app} \end{array}$$

• System S features pointers (called bipositions).

$$\begin{array}{c} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{C \vdash \lambda x.t: (S_k)_{k \in K} \rightarrow T} \texttt{abs} \\ \frac{C \vdash t: (S_k)_{k \in K} \rightarrow T}{C \uplus (\forall k \in K} D_k) \vdash t u: S_k)_{k \in K}} \texttt{app} \end{array}$$

• System S features **pointers** (called **bipositions**).

Every S-derivation collapses on a \mathscr{R} -derivation.

$$\begin{array}{c} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{C \vdash \lambda x.t: (S_k)_{k \in K} \to T} \texttt{abs} \\ \frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus (\uplus_{k \in K} D_k) \vdash t u: S_k)_{k \in K}} \texttt{app} \end{array}$$

• System S features **pointers** (called **bipositions**).

Every S-derivation collapses on a \mathscr{R} -derivation.

• Subject reduction is deterministic in $S \ (\neq \mathscr{R})$.

INFINITARY TYPING

Theorem (V,LiCS17)

- A ∞ -term t is ∞ -WN iff t is S-typable in some way. \rightsquigarrow Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

INFINITARY TYPING

Theorem (V,LiCS17)

- A ∞ -term t is ∞ -WN iff t is S-typable in some way. \rightsquigarrow Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the **hereditary permutations** (not possible in the inductive case, Tatsuta [LiCS07]).

INFINITARY TYPING

Theorem (V,LiCS17)

- $A \propto$ -term t is ∞ -WN iff t is S-typable in some way. \rightsquigarrow Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the **hereditary permutations** (not possible in the inductive case, Tatsuta [LiCS07]).

Theorem (V,LiCS18)

- Every term is typable in systems \mathscr{R} and S (non-trivial).
- One can extract from the \mathscr{R} -typing the **order** (arity) of any λ -term.
- In the infinitary relational model, no term has an empty denotation.

• Coinductive typing (without validity criterion): allow to type all normalizing terms + some unproductive terms *e.g.*, Ω.

- Coinductive typing (without validity criterion): allow to type all normalizing terms + some unproductive terms e.g., Ω .
- Necessity to replace \mathscr{R} (multiset inter.) with **S** (sequence inter)

- Coinductive typing (without validity criterion): allow to type all normalizing terms + some unproductive terms *e.g.*, Ω.
- Necessity to replace \mathscr{R} (multiset inter.) with **S** (sequence inter)
- But do we lose some derivations?

Question: given Π a \mathscr{R} -derivation, is there a S-deriv. *P* collapsing on Π ?

if true, the infinitary relational model is fully described by system ${\tt S}$

- Coinductive typing (without validity criterion): allow to type all normalizing terms + some unproductive terms *e.g.*, Ω.
- Necessity to replace \mathscr{R} (multiset inter.) with **S** (sequence inter)
- But do we lose some derivations?

Question: given Π a \mathscr{R} -derivation, is there a S-deriv. *P* collapsing on Π ?

if true, the infinitary relational model is fully described by system ${\tt S}$

• Easy in the case of normal forms (*i.e.* when Π types a NF), not in other cases.

DIFFICULTIES

 In the productive cases (HN,WN,SN,∞-WN), in i.t.s., one types the normal forms and uses subject expansion.

normalizing terms \subseteq typable terms

- Here, no form of productivity/stabilization.
- We develop a corpus of methods inspired by **first order model theory** (last part of the talk).

OUTLINE

Context	Non-idempotent intersection types	Rigid vs. non-rigid paradigms
	Using type A once or twice not the same	Proof red. deterministic vs. non-deterministic
Question 1	Rigid collapses on non-rigid (A, A, B) and (A, B, A) collapse	Is this collapse surjective? (A, A, B)
Question 2	In rigid fw., red. paths captured by permutations $(A, B, A) \mapsto (A, A, B)$	Is it possible to capture red. paths without perm. ?
	All this in a coinductive fw	v. (no productivity)!

2 System S (Sequential Interection)

How to encode reduction paths?

- System S: one red. path, poor dynamic behavior.
- System \mathscr{R} : rich dynamic behavior, impossible to express red. paths (lack of tracking)
- Idea 1: use iso. of types (iso of lab. trees)

 \bullet Hybrid system $S_h:$ every $\mathscr{R}\text{-}\mathrm{deriv.}$ is a $S_h\text{-}\mathrm{collapse}$ (easy).

Assume
$$S_2 \not\equiv S_7$$

Assume
$$S_2 \not\equiv S_7$$
 say $S_2 \equiv S'_8, S_7 \equiv S'_5$

Assume
$$S_2 \not\equiv S_7$$
 say $S_2 \equiv S'_8, S_7 \equiv S'_5$

Assume
$$S_2 \not\equiv S_7$$
 say $S_2 \equiv S'_8, S_7 \equiv S'_5$

Assume
$$S_2 \not\equiv S_7$$
 say $S_2 \equiv S'_8, S_7 \equiv S'_5$

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

PSEUDO-SUBJECT REDUCTION IN S_h

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

PSEUDO-SUBJECT REDUCTION IN S_h

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

PSEUDO-SUBJECT REDUCTION IN S_h

Assume
$$S_2 \equiv S_7$$
 s.t. $S_2 \equiv S_7 \equiv S'_5 \equiv S'_8$

 \bullet hybrid deriv. + interfaces for each $\mathtt{app}_h\text{-rule}=\mathtt{operable}\ \mathtt{derivation}$

- hybrid deriv. + interfaces for each app_h -rule = operable derivation
- system S_{op}: deterministic with hard-coded red. paths.
 S-derivations: identity interfaces (trivial op. deriv.)

- hybrid deriv. + interfaces for each app_h -rule = operable derivation
- system S_{op}: deterministic with hard-coded red. paths.
 S-derivations: identity interfaces (trivial op. deriv.)
- Every \mathscr{R} -deriv. Π with a given red. path p can be encoded with a S_0 -deriv. P.

 $multiset \qquad \Pi \ \rightarrow \ \Pi_1 \ \rightarrow \ \Pi_2 \ \rightarrow \ \ldots \ \rightarrow \ \Pi_n \ \rightarrow \ \ldots$

- hybrid deriv. + interfaces for each app_h -rule = operable derivation
- system S_{op}: deterministic with hard-coded red. paths.
 S-derivations: identity interfaces (trivial op. deriv.)
- Every \mathscr{R} -deriv. Π with a given red. path p can be encoded with a S_0 -deriv. P.

- hybrid deriv. + interfaces for each app_h -rule = operable derivation
- system S_{op}: deterministic with hard-coded red. paths.
 S-derivations: identity interfaces (trivial op. deriv.)
- Every \mathscr{R} -deriv. Π with a given red. path p can be encoded with a S_0 -deriv. P.

• Actually, main theorem:

- hybrid deriv. + interfaces for each app_h -rule = operable derivation
- system S_{op} : deterministic with hard-coded red. paths. S-derivations: identity interfaces (trivial op. deriv.)
- Every \mathscr{R} -deriv. Π with a given red. path p can be encoded with a S_0 -deriv. P.

• Actually, main theorem:

• Enough to prove:

Every operable derivation is isomorphic to a trivial derivation

iso of op-deriv = nested isos of types commuting with interfaces

OUTLINE

Context	Non-idempotent intersection types	Rigid vs. non-rigid paradigms
	Using type A once or twice not the same	Proof red. deterministic vs. non-deterministic
Question 1	Rigid collapses on non-rigid (A, A, B) and (A, B, A) collapse	Is this collapse surjective? (A, A, B)
Question 2	In rigid fw., red. paths captured by permutations $(A, B, A) \mapsto (A, A, B)$	Is it possible to capture red. paths without perm. ?
	All this in a coinductive fw	v. (no productivity)!

BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.

BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.
- Positive and negative parts in θ_8 and θ_9 .
 - Positive: ascend to ax.
 - Negative: ascend to abs.

BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.
- Positive and negative parts in θ_8 and θ_9 .
 - Positive: ascend to ax.
 - Negative: ascend to abs.
- Consumption in app_h -rules e.g., $\theta_8 \stackrel{\ominus}{\rightarrow} \hat{\theta}_2$, $\theta_8 \stackrel{\oplus}{\rightarrow} \hat{\theta}_5$
BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.
- Positive and negative parts in θ_8 and θ_9 .
 - Positive: ascend to ax.
 - Negative: ascend to abs.
- Consumption in app_{h} -rules e.g., $\theta_{8}^{\ominus} \tilde{\rightarrow} \theta_{2}, \ \theta_{8}^{\oplus} \tilde{\rightarrow} \theta_{5}$
- To have a trivial deriv., one must choose a new value $lab(\theta)$ for each thread s.t.:

BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.
- Positive and negative parts in θ_8 and θ_9 .
 - Positive: ascend to ax.
 - Negative: ascend to abs.
- Consumption in app_{h} -rules e.g., $\theta_{8}^{\ominus} \tilde{\rightarrow} \theta_{2}, \ \theta_{8}^{\oplus} \tilde{\rightarrow} \theta_{5}$
- To have a trivial deriv., one must choose a new value $lab(\theta)$ for each thread s.t.:
 - $lab(\theta_8) = lab(\theta_2), lab(\theta_9) = lab(\theta_7), lab(\theta_8) = lab(\theta_5), lab(\theta_9) = lab(\theta_3)$

BROTHER THREADS

- One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.
- The threads θ_8 and θ_9 are **brothers**.
- Positive and negative parts in θ_8 and θ_9 .
 - Positive: ascend to ax.
 - Negative: ascend to abs.
- Consumption in app_h -rules e.g., $\theta_8 \stackrel{\odot}{\rightarrow} \hat{\theta}_2$, $\theta_8 \stackrel{\oplus}{\rightarrow} \hat{\theta}_5$
- To have a trivial deriv., one must choose a new value $lab(\theta)$ for each thread s.t.:
 - $lab(\theta_8) = lab(\theta_2), lab(\theta_9) = lab(\theta_7), lab(\theta_8) = lab(\theta_5), lab(\theta_9) = lab(\theta_3)$
 - No overlap: $lab(\theta_8) \neq lab(\theta_9), lab(\theta_2) \neq lab(\theta_7), lab(\theta_3) \neq lab(\theta_5)$

• **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.

- **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.
- Ad absurdum, assume that such a proof exist.

- **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.
- Ad absurdum, assume that such a proof exist.
 - $I Proof of the form \theta_{\mathsf{bro}_1}(\tilde{\leftarrow} \cup \tilde{\rightarrow}) \theta_2(\tilde{\leftarrow} \cup \tilde{\rightarrow}) \dots \theta_{n-1}(\tilde{\leftarrow} \cup \tilde{\rightarrow}) \theta_{\mathsf{bro}_2}$

- **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.
- Ad absurdum, assume that such a proof exist.
 - $\textbf{9} \ \text{Proof of the form} \ \theta_{\texttt{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\texttt{bro}_2}$
 - **2** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$

- **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.
- Ad absurdum, assume that such a proof exist.
 - $O Proof of the form \theta_{\mathsf{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\mathsf{bro}_2}$
 - **9** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$
 - **③** Lem: if $\theta_a ⊕ → \hat{\theta}_b$ then $ad(\theta_a) < ad(\theta_b)$ (applicative depth)

- **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.
- Ad absurdum, assume that such a proof exist.
 - $\textbf{9} \ \text{Proof of the form} \ \theta_{\texttt{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\texttt{bro}_2}$
 - **9** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$

 - $\textcircled{O} \ \text{Then } \operatorname{ad}(\theta'_{\operatorname{bro}_1}) < \operatorname{ad}(\theta'_{\operatorname{bro}_2}).$

• **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.

• Ad absurdum, assume that such a proof exist.

- $\textbf{9} \ \text{Proof of the form} \ \theta_{\texttt{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\texttt{bro}_2}$
- **9** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$
- Then $ad(\theta'_{bro_1}) < ad(\theta'_{bro_2})$.

Absurd (for two brother threads).

• **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.

• Ad absurdum, assume that such a proof exist.

- $\textbf{9} \ \text{Proof of the form} \ \theta_{\texttt{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\texttt{bro}_2}$
- **9** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$

• Then $ad(\theta'_{bro_1}) < ad(\theta'_{bro_2})$. Absurd (for two brother threads).

• By the above prop:

Every operable deriv. is isomorphic to a $\ensuremath{\textit{trivial}}$ deriv.

• **Prop:** let *P* be an op. deriv. If the interface of *P* does not prove an eq. of the form $lab(\theta_{bro_1}) = lab(\theta_{bro_2})$, then *P* is isomorphic to a trivial deriv.

• Ad absurdum, assume that such a proof exist.

- $\textbf{9} \ \text{Proof of the form} \ \theta_{\texttt{bro}_1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_2(\tilde{\leftarrow}\cup\tilde{\rightarrow})\dots\theta_{n-1}(\tilde{\leftarrow}\cup\tilde{\rightarrow})\theta_{\texttt{bro}_2}$
- **9** Up to a *finite* number of red. steps, then $\theta'_{bro_1} \oplus \tilde{\rightarrow} \theta'_2 \oplus \tilde{\rightarrow} \dots \theta'_{\ell-1} \oplus \tilde{\rightarrow} \theta'_{bro_2}$ with $\ell \leq n$

• Then $ad(\theta'_{bro_1}) < ad(\theta'_{bro_2})$. Absurd (for two brother threads).

• By the above prop:

Every operable deriv. is isomorphic to a *trivial* deriv.

Theorem

- Every \mathscr{R} -deriv. Π is the collapse of a S-deriv. P
- Every red. path starting from Π can be encoded in such a P.

2 System S (Sequential Interection)

3 Encoding Reduction Paths

SUMMARY

- Any dynamic behavior in \mathscr{R} (multiset inter.) can be individually represented in S (sequence inter.)
- $\bullet\,$ Existence of an intermediary system $S_{op},$ close to other formalisms (Gardner, Tsukada et al.)
- Every point of the infinitary relational model can studied thtroug a representant in system **S**.
- Emancipation from productivity.

Want the details?

• Phd dissertation, chapter 13

Thank you for your attention!

Save the date(s):

Types	Braga	21th june	The infinitary relational model
HOR (FLOC)	Oxford	7th july	Some aspects of intersection types (invited talk)
LICS (FLOC)	Oxford	9th july	The infinitary relational model