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Outline

Context
Non-idempotent

intersection types

Using type A once or twice
not the same

Rigid vs. non-rigid
paradigms

Proof red.
deterministic vs. non-deterministic

Question 1 Rigid collapses on non-rigid

(A,A,B) and (A,B,A) collapse on [A,A,B]

Is this collapse surjective?

Question 2
In rigid fw., red. paths

captured by permutations

(A,B,A) 7→ (A,A,B)

Is it possible to capture red.
paths without perm. ?

All this in a coinductive fw. (no productivity)!
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Resource calculi (intuitions)

Girard (87), Boudol (93), Kfoury (96), Ehrhard-Régnier (03)

Bag arguments: t [u1, . . . , un] (and not t u)

Linear substitution and reduction:
if t = x [x, y] then x [u1, u2] gives u1 [u2, y] or u2 [u1, y].

Taylor expansion of a λ-term (linearization):
TE of t u = formal series involving t̃[ ], t̃[ũ], t̃[ũ, ũ], t̃[ũ, ũ, ũ]. . .

Adequation: Böhm tree and Taylor expansion.

Tsukada, Ong, Asada (LiCS17 and LiCS18)
 “compositional enumeration problem”

Rigid bags: t (u1, . . . , un)

Isomorphisms to identify equivalent bags.

Deterministic reduction.

Adequation.
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Plan

1 Non-idempotent intersection types

2 System S (Sequential Interection)

3 Encoding Reduction Paths

4 Perspectives
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Terminal states and execution/reduction strategies

2 + 3× 5︸ ︷︷ ︸ −→ 2 + 15︸ ︷︷ ︸ −→ 17

Reducible (non-terminal)
states

Terminal state

Let f(x) = x× x× x. What is the value of f(3 + 4)?

Kim (smart)

f(3 + 4) → f(7)
→ 7× 7× 7
→ 49× 7
→ 343

Lee (not so)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 7× (3 + 4)× (3 + 4)
→ 7× 7× (3 + 4)
→ 7× 7× 7
→ 49× 7
→ 343

Thurston (don’t be Thurston)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 3× (3 + 4)× (3 + 4) + 4× (3 + 4)× (3 + 4)
→ dozens of computation steps
. . . . . . . . . . . . . . . . . . . . .
→ 343
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Terminal states and execution/reduction strategies
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Terminal states and execution/reduction strategies

Initial state Terminal state

Infinite path
(keeps running,

never reaches the terminal state)

Reduction strategy

Choice of a reduction path.

Can be complete (w.r.t.
termin.).

Must be certified.
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Terminal states and execution/reduction strategies

Initial state Terminal state

Reduction strategy

Infinite path
(keeps running,

never reaches the terminal state)

Reduction strategy

Choice of a reduction path.

Can be complete (w.r.t.
termin.).

Must be certified.
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Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

t can reach a
terminal state

t is typable

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!
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Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!
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Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types: no ∧ on the right h.s. of → (e.g., (A ∧B)→ A, not A→ (B ∧ C))
 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)
 subtyping or permutation rules e.g.,

Γ, x : A1 ∧A2 ∧ . . . ∧An ` t : B ρ ∈ Sn

Γ, x : Aρ(1) ∧ . . . ∧Aρ(n) ` t : B
perm

Idempotency? A ∧A ∼ A (Coppo-D) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset)  no need for perm rules etc.

[A,B,A] = [A,B,A] 6= [A,B] [A,B,A] = [A,B] + [A]
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System R0 (Gardner-de Carvalho)

(Strict Types) τ, σ := o ∈ O | I → τ
(Intersection Types) I := [σi]i∈I

Strict types  syntax directed rules:

x : [τ ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening)

In app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ ]) + (x : [σ, τ ]) = x : [σ, σ, τ ]; y : [τ ]
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Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.
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Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
normalizes t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious
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Properties (R0)

Weighted Subject Reduction
Reduction preserves types and environments, and. . .
. . . head reduction strictly decreases the nodes of the deriv. tree (size).

Subject Expansion
Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ-term. Then equivalence between:

1 t is typable (in R0)

2 t is HN

3 the head reduction strategy terminates on t ( certification!)

Bonus (quantitative information)

If Π types t, then size(Π) bounds the number of steps of the head red. strategy on t
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Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs
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Outline

Context
Non-idempotent

intersection types

Using type A once or twice
not the same

Rigid vs. non-rigid
paradigms

Proof red.
deterministic vs. non-deterministic

Question 1 Rigid collapses on non-rigid

(A,A,B) and (A,B,A) collapse on [A,A,B]

Is this collapse surjective?

Question 2
In rigid fw., red. paths

captured by permutations

(A,B,A) 7→ (A,A,B)

Is it possible to capture red.
paths without perm. ?

All this in a coinductive fw. (no productivity)!
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Plan

1 Non-idempotent intersection types

2 System S (Sequential Interection)

3 Encoding Reduction Paths

4 Perspectives
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Motivations

Multiset intersection:
⊕ syntax-direction
	 non-determinism of proof red.
	 lack tracking: [σ, τ, σ] = [σ

?
, τ ] + [σ

?
].

Klop’s Problem: can the set of ∞-WN terms be characterized by an ITS ?
Def: t is ∞-WN iff its Böhm tree does not contain ⊥

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Answer:
Impossible without tracking (need for a validity criterion).

system R (i.e. R0 with a coinductive type grammar) does not work

YES, with inter. = sequences + validity criterion.
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Sequential intersection

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ) ] (9 · σ)
vs. [σ, τ, σ] = [σ

?

, τ ] + [σ

?

]
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Derivations of S

x : (k · T ) ` x : T
ax

C; x : (Sk)k∈K ` t : T

C ` λx.t : (Sk)k∈K → T
abs

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K

C ] (]k∈KDk) ` t u : T
app

System S features pointers (called bipositions).

Every S-derivation collapses on a
R-derivation.

Subject reduction is deterministic in S (6= R).
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Infinitary Typing

Theorem (V,LiCS17)

A ∞-term t is ∞-WN iff t is S-typable in some way.  Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LiCS07]).

Theorem (V,LiCS18)

Every term is typable in systems R and S (non-trivial).

One can extract from the R-typing the order (arity) of any λ-term.

In the infinitary relational model, no term has an empty denotation.
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The Problem of the Collapse

Coinductive typing (without validity criterion): allow to type all normalizing
terms + some unproductive terms e.g., Ω.

Necessity to replace R (multiset inter.) with S (sequence inter)

But do we lose some derivations?

Question: given Π a R-derivation, is there a S-deriv. P collapsing on Π?

if true, the infinitary relational model is fully described by system S

Easy in the case of normal forms (i.e. when Π types a NF), not in other cases.
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Difficulties

In the productive cases
(HN,WN,SN,∞-WN), in i.t.s., one
types the normal forms and uses
subject expansion.

normalizing terms ⊆ typable terms

Here, no form of
productivity/stabilization.

We develop a corpus of methods
inspired by first order model
theory (last part of the talk).

x

[ ]→ . . .→ [ ]→ o

t1

@ tq

@

o λxp

. . .→ . . .→ . . .→ o

λx1
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Outline

Context
Non-idempotent

intersection types

Using type A once or twice
not the same

Rigid vs. non-rigid
paradigms

Proof red.
deterministic vs. non-deterministic

Question 1 Rigid collapses on non-rigid

(A,A,B) and (A,B,A) collapse on [A,A,B]

Is this collapse surjective?

Question 2
In rigid fw., red. paths

captured by permutations

(A,B,A) 7→ (A,A,B)

Is it possible to capture red.
paths without perm. ?

All this in a coinductive fw. (no productivity)!
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Plan

1 Non-idempotent intersection types

2 System S (Sequential Interection)

3 Encoding Reduction Paths

4 Perspectives
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Deterministic Subject Reduction

From a typing of (λx.r)s . . . to a typing of r[s/x]

Pr

T

ax
x : (7·S)

ax
x : (2·S)

λx

(2 · S, 7 · S)→ T

@
T

P 1

s

S [2]

P 2

s

S [7]

reduces into. . .

Pr[s/x]

s : S

P 2

s
s : S

P 1

s

T
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How to encode reduction paths?

System S: one red. path, poor dynamic behavior.

System R: rich dynamic behavior, impossible to express red. paths (lack of tracking)

Idea 1: use iso. of types (iso of lab. trees)

→ 1

o1

4

→ 1

o2

3

o1o3

8
o2

8

T1 = (8·o2, 4·(8·o3, 3·o1)→ o2)→ o1

→ 1

o1→ 1

o2

2

o3o1

7

5 3

o2

T2 = (5·(7·o1, 2·o3)→ o2, 3·o2)→ o1

Idea 2: replace app (syntactic eq.) with apph (eq. up to iso)

C ` t : (Sk)k∈K → T (Dk ` u : S′k)k∈K′ (Sk)k∈K ≡ (S′k)k∈K′

C ] (]k∈KDk) ` t u : T
apph

Hybrid system Sh: every R-deriv. is a Sh-collapse (easy).
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Pseudo-Subject Reduction in Sh

From a typing of (λx.r)s . . . to a typing of r[s/x]

Pr

T

ax
x : (7·S7)

ax
x : (2·S2)

λx

(2 · S2, 7 · S7)→ T

@
T

P 5

s

S′5 [5]

P 8

s

S′8 [8]

reduces into. . .

Pr[s/x]

s : S′

Ps
s : S′

Ps

T ′

with T ′ ≡ T

Assume S2 6≡ S7 say S2 ≡ S′8, S7 ≡ S′5Assume S2 ≡ S7 s.t. S2 ≡ S7 ≡ S′5 ≡ S′8

with (2·S2, 7·S7) ≡ (5·S′5, 8·S′8)

φ interface
(2·S2, 7·S7)→̃(5·S′5, 8·S′8)

case φ : 2 7→ , 7 7→
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Operable Derivations

hybrid deriv. + interfaces for each apph-rule = operable derivation

system Sop: deterministic with hard-coded red. paths.
S-derivations: identity interfaces (trivial op. deriv.)

Every R-deriv. Π with a given red. path p can be encoded with a S0-deriv. P .

operable P → P1 → P2 → . . . → Pn → . . .
↓ ↓ ↓ ↓

multiset Π → Π1 → Π2 → . . . → Πn → . . .

Actually, main theorem:

trivial P → P1 → P2 → . . . → Pn → . . .
↓ ↓ ↓ ↓

multiset Π → Π1 → Π2 → . . . → Πn → . . .

Enough to prove:

Every operable derivation is isomorphic to a trivial derivation

iso of op-deriv = nested isos of types commuting with interfaces
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Every R-deriv. Π with a given red. path p can be encoded with a S0-deriv. P .

operable P → P1 → P2 → . . . → Pn → . . .
↓ ↓ ↓ ↓

multiset Π → Π1 → Π2 → . . . → Πn → . . .

Actually, main theorem:

trivial P → P1 → P2 → . . . → Pn → . . .
↓ ↓ ↓ ↓

multiset Π → Π1 → Π2 → . . . → Πn → . . .

Enough to prove:

Every operable derivation is isomorphic to a trivial derivation

iso of op-deriv = nested isos of types commuting with interfaces
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Outline

Context
Non-idempotent

intersection types

Using type A once or twice
not the same

Rigid vs. non-rigid
paradigms

Proof red.
deterministic vs. non-deterministic

Question 1 Rigid collapses on non-rigid

(A,A,B) and (A,B,A) collapse on [A,A,B]

Is this collapse surjective?

Question 2
In rigid fw., red. paths

captured by permutations

(A,B,A) 7→ (A,A,B)

Is it possible to capture red.
paths without perm. ?

All this in a coinductive fw. (no productivity)!
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Brother threads

with e.g., φ1 : 8 7→ 2
9 7→ 7

and φε : 8 7→ 5
9 7→ 3

One thread labelled with 8, one with 9, others with 2, 7, 3 and 5.

The threads θ8 and θ9 are brothers.

Positive and negative parts in θ8 and θ9.
Positive: ascend to ax.
Negative: ascend to abs.

Consumption in apph-rules e.g., θ8
	→̃θ2, θ8

⊕→̃θ5
To have a trivial deriv., one must choose a new value lab(θ) for each thread s.t.:

lab(θ8) = lab(θ2), lab(θ9) = lab(θ7), lab(θ8) = lab(θ5), lab(θ9) = lab(θ3)
No overlap: lab(θ8) 6= lab(θ9), lab(θ2) 6= lab(θ7), lab(θ3) 6= lab(θ5)
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Milestones of the main proof

Prop: let P be an op. deriv. If the interface of P does not prove an eq. of the
form lab(θbro1) = lab(θbro2), then P is isomorphic to a trivial deriv.

Ad absurdum, assume that such a proof exist.

1 Proof of the form θbro1 (←̃ ∪ →̃)θ2(←̃ ∪ →̃) . . . θn−1(←̃ ∪ →̃)θbro2

2 Up to a finite number of red. steps, then θ′bro1
⊕→̃θ′2⊕→̃ . . . θ′`−1

⊕→̃θ′bro2 with

` 6 n

3 Lem: if θa⊕→̃θb then ad(θa) < ad(θb) (applicative depth)

4 Then ad(θ′bro1 ) < ad(θ′bro2 ).

Absurd (for two brother threads).

By the above prop:

Every operable deriv. is isomorphic to a trivial deriv.

Theorem
Every R-deriv. Π is the collapse of a S-deriv. P

Every red. path starting from Π can be encoded in such a P .
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Plan

1 Non-idempotent intersection types

2 System S (Sequential Interection)

3 Encoding Reduction Paths

4 Perspectives
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Summary

Any dynamic behavior in R (multiset inter.) can be individually represented in
S (sequence inter.)

Existence of an intermediary system Sop, close to other formalisms (Gardner,
Tsukada et al.)

Every point of the infinitary relational model can studied thtroug a representant
in system S.

Emancipation from productivity.

Want the details?

Phd dissertation, chapter 13

Non-idempotent typing P. Vial 4 Perspectives 32 /33



Thank you

Thank you for your attention!

Save the date(s):
Types Braga 21th june The infinitary relational model
HOR (Floc) Oxford 7th july Some aspects of intersection types (invited talk)
LiCS (Floc) Oxford 9th july The infinitary relational model
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