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Development of System S and comparison with System R0

The main contribution of my PhD is the introduction of an intersection type system that I
named System S, because it resorts to sequences to represent intersection. Here, a sequence of
types is meant as family of types indexed by a family of integers. For instance, sequence type
(Tk)k∈{2,3,8}, with T2 = S, T3 = T and T8 = S, is an intersection of two occurrences of type
S (placed on tracks 2 and 8) and one occurrence of type T (placed on track 3). This sequence
type is also denoted (2·S, 3·T, 8·S).

This system has a quantitative flavour and is closely related to System R0, that was in-
dependently introduced by Gardner and de Carvalho in 1994 and 2007 respectively. System
R0 uses multisets to represent intersection e.g. in R0, the multiset [σ, τ, σ] will represent the
intersection of two occurrences of the type σ and one occurrence of τ . This multiset is distinct
from [σ, τ ] and the multiplicity of a type in an intersection matters in System R0. From the
algebraic perspective, the intersection operator of R0 is non idempotent. A bit similarly, the
intersection type (2·S, 3·T, 8·S) of System S explicitly contains two occurrences of S.

Let us recall some fundamental properties of System R0:

• As the other intersection type systems, System R0 is designed to satisfy both Subject
Reduction (if Γ ` t : τ and t →β t′, then Γ ` t′ : τ) and Subject Expansion (if Γ ` t′ : τ
and t →β t′, then Γ ` t : τ). Subject Expansion usually cannot be satisfied in a simply
type system, and is one of the main reasons why intersection type systems are able to
characterize normalizability whereas simply type systems only ensures it.

• System R0 is relevant meaning that weakening is forbidden. Concretely, this means
that, from the perspective of β-reduction, derivations behave really similarly to λ-terms.
This explains why Subject Reduction and Subject Expansion are proven very elegantly
in System R0.

• If Π is a R0-derivation typing a term t and we reduce a redex of t that is typed in Π, then
we obtain a reduct t′ and a derivation Π′ typing t′ that is strictly smaller than Π. By
smaller, we mean that Π contains less rules than Π does. Since the number of rules that
a derivation contain is a natural number, we cannot keep on reducing indefinitely typed
redexes in a term. This argument may be made more precise and yield many termination
properties (e.g. a term is head normalizing iff head reduction terminates), using only
a simple arithmetical argument. In contrast, in idempotent intersection type system or
higher-order intersection type systems, termination properties are usually proven resorting
to far more technical realizability argument.

System S naturally features “pointers” e.g. the integer 2 and 8 to distinguish the two occur-
rences of S (hence the vocable “rigidity”). We have a “disjoint union” operator ] for sequences
e.g. (2·S, 3·T )] (8·S) = (2·S, 3·T, 8·S). In contrast, with multisets, we have [σ, τ ]+ [σ] = [σ, σ, τ ],
but, in this equality, we have no way to relate one occurrence of σ in [σ, σ, τ ] to [σ, τ ] rather
than [σ] and vice versa.

Contrary to system R0, S is coinductive: we allow infinite type and infinite sequences. As
it turns out, it is particularly fit to study infinite λ-calculus or non-terminating λ-terms. We
name R the coinductive version of system R0.
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Klop’s Problem

Klop’s Problem is the following: can we characterize the set of hereditary head normalizing
(HHN) terms with a type system? Hereditary head normalization is a coinductive predicate:
a term t is HHN if it reduces to a head normal form λx1 . . . xp.x t1 . . . tq and t1, . . . , tq are also
HHN. Thus, roughly speaking, hereditary head normalization is the coinductive version of weak
normalization. Tatsuta proved in 2007 that the set of HHN terms is not recursively enumerable.
Since in an inductive type system, the set of typable terms is recursively enumerable, Tatsuta
concluded that an inductive type system could not characterize the set of HHN terms. However,
System S features a coinductive type grammar and it turns out that:

Theorem (Vial, LICS17). A term t is hereditary head normalizing iff it is unforgetfully typable
in System S by means of an approximable derivation.

A derivation is unforgetful when it guarantees that every part of a normal form is typed (whereas
some derivations may type only its head variable). Unforgetfulness is a criterion well-known for
usual, inductive intersection type systems, whereas approximability is a validity criterion used
to discard some unsound typing derivation. Indeed, due to the presence of coinductive types,
it is easy to type some very unsound terms in System S, as Ω = ∆,∆ where ∆ = λx.x x. An
interesting point is that approximability cannot be formulated in System R, the coinductive
version of System R0, but only in System S. We may wonder now if we can characterize
infinitary strong normalization.

System S can also be used to characterize the set of hereditary permutation, which gives a
positive answer to TLCA Problem # 20 (Tatsuta proved that the answer to this problem was
negative in the inductive setting).

Complete unsoundness or typing the untyped

As noted above, Systems S or R can type unsound terms e.g. Ω is typable in those systems. It
turns out that, if we discard the validity criterion that we named approximability, we have:

Theorem (Vial). Every λ-term is typable in system R (or in System S). Moreover, if a term
t is of order, then it is typable with a type variable.

The order of a λ-term t is the supremal integer n such that t→∗β λx1 . . . xn.t′. It is thus a
semantical information about t. In a type system enjoying Subject Expansion, a typable term
that is not of order 0 may only be typed with an arrow type (and not with a type variable),
because typing an abstraction usually produces an arrow. Thus, systems R and S are able to
“capture” the order of any λ-term. This work provides a new model for the pure (untyped, so
to say) λ-calculus, whose equational theory still needs to be studied.

If a type system is able to type any term, we say that it is completely unsound. When
a type system is not relevant and features coinductive types, then complete unsoundness is
usually straightforward and proven by reasoning by induction on the structure of the terms.
Systems R and S are both relevant (weakening is forbidden) and complete unsoundness turns
out to be a difficult problem. Indeed, in order to prove that some set of terms is typable, the
usual technique is the following: typing a set of terms whose some parts are stabilized (i.e.
normalized) and then proceed by subject expansion. Normal forms are usually easy to type
because they are made of “blocks” of the form λx1 . . . xp.x t1 . . . tq: we assign then to x an
arrow type that is “fed” with the types of t1, . . . , tq.

In contrast, systems S and R do not ensure any form of “stabilization” and this usually
technique cannot be applied. One of the main contribution of my PhD consists in importing
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logical methods to bypass the need for stabilization and prove the complete unsoundness of S
and R. System R is actually unfit to formulate the proof of complete unsoundness and, as for
Klop’s Problem, it seems unavoidable to work with System S.

The Collapse of S onto R

If we forget about tracks, a sequence collapse on a multiset e.g. (2 ·S, 3 ·T, 8 ·S) collapses on
[S, T, S]. If this collapse is performed coinductively, then any derivation of S will collapse on a
derivation of R. We may ask if the converse is true: is any derivation of R the collapse of some
S-derivation ? That is: is the collapse of System S onto System R surjective ? The answer is
positive:

Theorem (Vial). Every R-derivation is the collapse of a S-derivation and we can encode in
system S any dynamical behaviour of System R.

This is also a problem in which no form of stabilization is ensured and we must also resort
to logical methods to prove this theorem. This work also features an auxiliary type system (a
variant of System S) that encodes “reduction choices” that exist with multiset intersection.

Resource types for classical natural deduction (joint work with Delia
Kesner)

With Delia Kesner, we designed quantitative type systemHλµ
and Sλµ

for λµ-calculus, featuring
intersection and union types and extending system R0, such that:

Theorem (Kesner,Vial, FSCD17). • A λµ-term t is head normalizing iff it is typable in
Hλµ .

• A λµ-term t is strongly normalizing iff it is typable in Sλµ
.

As in other non-idempotent frameworks, those type systems provide upper bounds for the
length of some normalizing reduction sequences (e.g. the head reduction sequence for head nor-
malizing terms) and relies on simple arithmetical arguments to prove termination. Along with
those type systems, we also developed an explicit substitution and replacement classical calculus
that extends λµ, as well as extensions of Hλµ

and Sλµ
with the expected type characterizations.

Polyadic Approximations, Fibrations and Intersection Types (joint work
with Damiano Mazza and Luc Pellissier)

Starting from an exact correspondence between affine approximations and non-idempotent in-
tersection types, we have developed a general framework for building intersection types systems
characterizing normalization properties in the finite case. This construction, which uses in a
fundamental way Mellis and Zeilbergers “type systems as functors” viewpoint, allows us to
recover equivalent versions of every well known intersection type system (including Coppo and
Dezanis original system, as well as its non-idempotent variants independently introduced by
Gardner and de Carvalho).

An intersection type system is then defined as a colored operads (i.e. a symmetric multi-
category with possibly more than one object) endowed endowed with 2-arrows, that is, arrows
between arrows: a multimorphisms generalizes the notion of typed judgment Γ ` t : B, where t
is now thought as a multimorphisms from Γ to B. Intuitively, there is a 2-arrow from Γ ` t : B
to Γ ` t′ : B if the latter judgment is obtained from the former by subject reduction steps.
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An intersection type system is built from a given restriction of the λ-calculus (e.g. the set of
λ-terms endowed with head reduction) and a given subset of the simply typed polyadic calculus
by a pull-back construction. This framework enables to almost automatically build new systems
of intersection types in this way. The proofs of the termination properties (i.e. properties of the
form “if t is typable, then t is normalizing”) in most known type systems are now subsumed by
the proof of strong normalization of the propositional multiplicative exponential linear logic.
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