When Bécassine brings automation to Coq

Valentin Blot ${ }^{12}$ Louise Dubois de Prisque ${ }^{12}$, Chantal Keller ${ }^{2}$, Pierre Vial ${ }^{12}$
${ }^{1}$ Deducteam (Inria Paris-Saclay) ${ }^{2}$ LMF (Gif-sur-Yvette)
This work is funded by Nomadic Labs

November 4, 2021

A Few words about Coq

- Coq: proof assistant based on type theory and the Curry-Howard isomorphism

Formulas $=$ types, proofs $=$ programs

- Four Colors Theorem
- Feit-Thomson Theorem
- CompCert (certified compiler)
- These successes are possible because of its design
- Strong type-checking within Coq
- Rich specification language
- Highly trusted (small logical kernel)

Coq in motion, Sniper in action

```
Goal forall (A : Type) (l : list A) (n : nat), length \(1=\mathrm{Sn} \rightarrow 1 \neq[]\).
Proof. intros A 1 n H H'. rewrite H' in H. discriminate. Qed.
```


Coq in motion, Sniper in ACtion

```
Goal forall (A: Type) (l : list A) (n : nat), length \(=\mathrm{Sn} \rightarrow 1 \neq[]\).
Proof. intros A 1 n H H'. rewrite H' in H. discriminate. Qed.
```


Let us admit

```
Lemma search_app : forall (A: Type) (x: A) (l1 12: list A),
    search x (l1 ++ 12) = (search x l1)|(search x l2).
```


Coq in motion, Sniper in ACtion

```
Goal forall (A: Type) (l : list A) (n : nat), length l = S n ->l f [].
Proof. intros A l n H H'. rewrite H' in H. discriminate. Qed.
```


Let us admit

```
Lemma search_app : forall (A: Type) (x: A) (l1 l2: list A),
    search x (l1 ++ 12) = (search x l1)| (search x l2).
```

```
Goal forall (A : Type) (x: A) (l1 12 13: list A),
    search \(\mathrm{x}(11++12++13)=\) search \(\mathrm{x}(13++12++11)\).
Proof. intros A H x 1112 13. rewrite !search_app.
rewrite orb_comm with (b1 := search x 13).
rewrite orb_comm with (b1 := search x 12) (b2 := search x 11).
rewrite orb_assoc. reflexivity . Qed.
```


Coq in motion, Sniper in Action

```
Goal forall (A: Type) (l : list A) (n : nat), length l = S n ->l f [].
Proof. intros A l n H H'. rewrite H' in H. discriminate. Qed.
```


Let us admit

```
Lemma search_app : forall (A: Type) (x: A) (l1 l2: list A),
search x (l1 ++ 12) = (search x l1)| (search x l2).
```

```
Goal forall (A : Type) (x: A) (l1 12 13: list A),
    search x (l1 ++ 12++13) = search x (13 ++ 12 ++ l1).
Proof. intros A H x l1 l2 13. rewrite !search_app.
rewrite orb_comm with (b1 := search x l3).
rewrite orb_comm with (b1 := search x l2) (b2 := search x l1).
rewrite orb_assoc. reflexivity . Qed.
```


Coq lacks automation

- The user must be very specific
- Difficult for the beginner/non-formal method specialist

- May discourage new users (e.g., maths, industry)

Coq in motion, Sniper in ACtion

Coq lacks automation

- The user must be very specific
- Difficult for the beginner/non-formal method specialist
- May discourage new users (e.g., maths, industry)

Motivation: improving the automation of Coq

Coq (Proof assistant)	First-order provers
Very expressive logic	Limited expressivity
Checks proofs	Finds proofs
Highly trustable	Less so

- Coq difficult to automatize
- Even the first-order part of the proofs
- FOL highly automated outside Coq
- Line of software development:
call external solvers to handle the first-order parts of the proofs (avoid redundant code!)
- Partial transformations from Coq logic to FOL

Plan

(1) Coq vs. automated provers

Why trust Coq?

Trusting Coq:
- Typing system
strong normalization/consistency
- Implementation of the typing rules

Why trust Coq?

Trusting Coq:

- Typing system
strong normalization/consistency
- Implementation of the typing rules

Why trust Coq?

Trusting Coq:

- Typing system
strong normalization/consistency
- Implementation of the typing rules

- Tactics (automation), e.g., Ltac
- Plugins (incl. SMTCoq and MetaCoq)
- Machine learning

Why trust Coq?

Trusting Coq:

- Typing system
strong normalization/consistency
- Implementation of the typing rules

- Tactics (automation), e.g., Ltac
- Plugins (incl. SMTCoq and MetaCoq)
- Machine learning

This part does not need to be trusted

Why trust Coq?

Trusting Coq:

- Typing system
strong normalization/consistency
- Implementation of the typing rules

Coq

- IDEs
- Tactics (automation), e.g., Ltac
- Plugins (incl. SMTCoq and MetaCoq)
- Machine learning

This part does not need to be trusted

Coq Logic vs. First-Order Logic

Coq

based on the Calculus of Inductive
Constructions (CIC)

First-order logic (FOL)

- functions and relations
- basic datatypes (bool, int, float)
- boolean equality
- quantification over objects
incl. linear integer arithmetics, etc

In CIC but not in FOL:

- Higher-order computation (functions are first-class objects):

$$
\operatorname{map} f[x 1 ; \ldots ; x n]:=[f \mathrm{x} 1 ; \ldots ; \mathrm{f} \text { xn }]
$$

map f is a function on lists

- Higher-order quantification
forall (A B C : Type) ($f: A \rightarrow B$) $(g: B \rightarrow C),(\operatorname{map} g) \circ(\operatorname{map} f)=\operatorname{map}(g \circ f)$
- Dependent types, e.g., Vec A n is definable
the type of lists of length n whose elements have type A

Coq Logic vs. First-Order Logic

Coq
based on the Calculus of Inductive
Constructions (CIC)

First-order logic (FOL)

- functions and relations
- basic datatypes (bool, int, float)
- boolean equality
- quantification over objects
incl. linear integer arithmetics, etc

Coq Logic vs. First-Order Logic

Coq

based on the Calculus of Inductive
Constructions (CIC)

First-order logic (FOL)

- functions and relations
- basic datatypes (bool, int, float)
- boolean equality
- quantification over objects
incl. linear integer arithmetics, etc

Zoom on Coq inductives

- Inductive types

Inductive list (A: Type) : Type :=
[] : list A| _ : _ : \rightarrow list A \rightarrow list A

- Fixpoints and pattern-matching:

$$
\begin{aligned}
& \text { Fixpoint length }\{\mathrm{A}: \text { Type }\}(\mathrm{l}: \text { list } \mathrm{A}):=\text { match } 1 \text { with } \\
& \quad[] \Rightarrow 0 \mid \mathrm{a}:: \quad 10 \Rightarrow 1+\text { length } 10
\end{aligned}
$$

- Generic (non-boolean) Leibniz equality on any type

Leibniz equality is a dependent type

The problem of reification

- When we make two programs interact, we need an interface

```
Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
Proof.
    induction l as [|a tl].
    right; reflexivity.
    left; exists a; exists tl; reflexivity.
Qed.
```


A Coq Theorem and its proof

```
1:(input (#1:(= op_3 #2:(op_1 op_4 op_5))))
2: (input (#3:(forall ( (RelName10 Tindex_1) (RelName11 Tindex_2) ) #4:(=> #5:(= op_3 #6:(op_1 RelName11 R
3:(tmp_betared (#7:(forall ( (@vr10 Tindex_1) (@vr11 Tindex_2) ) #8:(=> #9:(= op_3 #10:(op_1 @vr11 @vr10)
4:(tmp_qnt_tidy (#11:(forall ( (@vr14 Tindex_1) (@vr16 Tindex_2) ) #12:(=> #13:(= op_3 #14:(op_1 @vr16 @v
5:(forall inst (#15:(or (not #11) #16:(=> #1 false))))
6:(false ((not false)))
7:(implies_pos ((not #16) (not #1) false))
```


Excerpt of an smt2 certificate

The problem of reification

- When we make two programs interact, we need an interface

```
Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
Proof.
    induction l as [|a tl].
    right; reflexivity.
    left; exists a; exists tl; reflexivity.
Qed.
```


A Coq Theorem and its proof

The problem of reification

- When we make two programs interact, we need an interface

```
Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
Proof.
    induction l as [|a tl].
    right; reflexivity.
    left; exists a; exists tl; reflexivity.
Qed.
```


A Coq Theorem and its proof

```
Need for reification (or quoting)
mranslating programs of a language \mathcal{L}}\mathrm{ into another
language }\mp@subsup{\mathcal{L}}{}{\prime}\mathrm{ .
```


The problem of reification

- When we make two programs interact, we need an interface

```
Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = nil}.
Proof.
    induction l as [|a tl].
    right; reflexivity.
    left; exists a; exists tl; reflexivity.
Qed.
```


A Coq Theorem and its proof

```
Need for reification (or quoting)
\(\rightsquigarrow\) translating programs of a language \(\mathcal{L}\) into another
language \(\mathcal{L}^{\prime}\).
e.g., forall (A: Set), A \(\rightarrow \mathrm{A}\) (type)
    \(\rightsquigarrow\) Prod (name "A") Set_reif (Prod unnamed A (dB 0) (dB 1))
        \(=\) reif. with de Bruijn indexes
```


Plugging in Provers: Autarkic approach

Plugging in Provers: Autarkic approach

Plugging in Provers: Autarkic approach

- Horizontal arrows: some OCaml

Plugging in Provers: Autarkic approach

- Horizontal arrows: some OCaml
- Any arrow may fail (reification, solving...)

Plugging in Provers: Autarkic approach

- Horizontal arrows: some OCaml
- Any arrow may fail (reification, solving...)
- Autarkic approach: each certificate is checked on the run

Plugging in Provers: Autarkic approach

Plugging in Provers: Autarkic approach

In our case:

- Plugin $=$ SMTCoq
- Automated provers = SMT solvers, e.g., veriT
- Under the carpet: casting Leibniz equality into boolean eq. (decidable types only)

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

Problem 1

Avoid harmless polymorphism
and higher-order

- forall (A : Type) (11 12 : list A),
length (11 ++ 12) = length 11 + length 12
- $f=g$ with f, g : nat $->$ nat
instead of \forall (x : nat), $\mathrm{f} x=\mathrm{g} \mathrm{x}$

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

Problem 1

Avoid harmless polymorphism and higher-order

- forall (A : Type) (11 12 : list A),
length (11 ++ 12) = length 11 + length 12
- $f=g$ with f, g : nat \rightarrow nat
instead of $\forall(x: n a t), f x=g x$

Problem 2

Some info. is lost during goal reification
type constructors uninterpreted e.g.,

- $\mathrm{S} n=\mathrm{S} n^{\prime} \rightarrow n=n^{\prime}$ is forgotten
- nothing known about List.length

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

Problem 1

Avoid harmless polymorphism and higher-order

- forall (A : Type) (11 12 : list A),
length $(11++12)=$ length $11+$ length 12
- $f=g$ with f, g : nat \rightarrow nat
instead of $\forall(x: n a t), f x=g x$

Problem 2

Some info. is lost during goal reification
type constructors uninterpreted e.g.,

- $\mathrm{S} n=\mathrm{S} n^{\prime} \rightarrow n=n^{\prime}$ is forgotten
- nothing known about List.length

$$
\begin{array}{|l}
\begin{array}{l}
\rightsquigarrow \text { Sniper } \\
\text { - eliminates harmless polymorphism } \\
\text { - helps the first-order provers interpret symbols } \\
\text { (constructors and functions) }
\end{array}
\end{array}
$$

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

Problem 1

Avoid harmless polymorphism and higher-order

```
- forall (A : Type) (l1 12 : list A),
    length (11 ++ 12) = length 11 + length }1
- f = g with f,g: nat -> nat
            instead of }\forall(\textrm{x}: nat), f x = g x
```


Problem 2

Some info. is lost during goal reification
type constructors uninterpreted e.g.,

- $\mathrm{S} n=\mathrm{S} n^{\prime} \rightarrow n=n^{\prime}$ is forgotten
- nothing known about List.length

[^0]

BÉCASSINE COMES INTO PLAY

BÉCASSINE COMES INTO PLAY

- Question. Why aren't we happy with this?

Problem 1

Avoid harmless polymorphism and higher-order

```
- forall (A : Type) (l1 12 : list A),
    length (11 ++ 12) = length 11 + length }1
- f = g with f,g: nat -> nat
            instead of }\forall(\textrm{x}: nat), f x = g x
```


Problem 2

Some info. is lost during goal reification
type constructors uninterpreted e.g.,

- $\mathrm{S} n=\mathrm{S} n^{\prime} \rightarrow n=n^{\prime}$ is forgotten
- nothing known about List.length

[^1]
Plan

(1) Coq vs. automated provers
(2) Sniper

Sniper (Principles)

Sniper is a two-fold tactic.

First Step. The tactic scope

- Eliminates harmless higher-order and polymorphism in the goal if needed
- Produces and proves first-order auxiliary statements in the local context (currently 6 transformations,)

Second step. The transformed goal and the auxiliary statement are sent to the SMT solver veriT, via SMTCoq.

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

Inductive list (A : Type) : Type :=
nil : list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list A. (* _ : : _ *)

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

Inductive list (A : Type) : Type :=
nil : list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list $\mathrm{A} .\left(*_{\text {_ }}: \mathrm{O}_{\mathrm{Z}}\right.$)

- Constructors are pairwise disjoints (D_{T})
$\forall \mathrm{x} 1,[] \neq \mathrm{x}:$: 1

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

Inductive list (A : Type) : Type :=
| nil : list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list $\mathrm{A} .\left(*_{\text {_ }}: \mathrm{:}_{\text {_ }}\right.$)

- Constructors are pairwise disjoints (D_{T}) $\forall \mathrm{x} 1,[] \neq \mathrm{x}:$: 1
- Constructors are injective (I_{T}) $\forall x$ y $1 l^{\prime}, x:: 1=y: l^{\prime} \rightarrow x=y \wedge l=1 \prime$

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

Inductive list (A: Type) : Type :=
| nil : list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list $\mathrm{A} .\left(*_{\text {_ }}::_{\text {_ }}\right.$)

- Constructors are pairwise disjoints $\left(D_{\mathrm{T}}\right)$

```
* l, [] = x::1
```

- Constructors are injective (I_{T}) $\forall x$ y l l', $\mathrm{x}:: \mathrm{l}=\mathrm{y}: \mathrm{l}^{\prime} \rightarrow \mathrm{x}=\mathrm{y} \wedge \mathrm{l}=1$ '
- Every term of this type is generated by one of the constructors $\left(G_{\mathrm{T}}\right)$

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T?

Inductive list (A : Type) : Type :=
| nil: list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list $\mathrm{A} .\left(*_{\text {_ }}::_{\text {_ }}\right.$)

- Constructors are pairwise disjoints $\left(D_{\mathrm{T}}\right)$

$$
\forall x \quad 1, \quad[] \neq x:: 1
$$

- Constructors are injective (I_{T})

```
\forallx y l l', x::l = y::l' }->\textrm{x}=\textrm{y}\wedge \=l'
```

- Every term of this type is generated by one of the constructors $\left(G_{\mathrm{T}}\right)$ $\forall(1: l i s t ~ A), \exists \mathrm{x}$ l', $\mathrm{l}=\mathrm{x}:: \mathrm{l}$ ' $\vee \mathrm{l}=$ []

$$
\begin{aligned}
& \text { Problem. } \\
& T \mapsto D_{T}, I_{T}, G_{T} \text { cannot be defined in Coq or in Ltac }
\end{aligned}
$$

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

```
Inductive list (A : Type) : Type :=
| nil : list A (* [] *)
    cons: A }->\mathrm{ list A }->\mathrm{ list A. (* _ :: _ *)
```

- Constructors are pairwise disjoints $\left(D_{\mathrm{T}}\right)$

$$
\forall x \operatorname{l,}[] \neq x:: 1
$$

- Constructors are injective (I_{T})

```
\forallx y l l', x::l = y::1' }->\textrm{x}=\textrm{y}\wedge \=1'
```

- Every term of this type is generated by one of the constructors $\left(G_{\mathrm{T}}\right)$ $\forall(\mathrm{l}:$ list A), $\exists \mathrm{x}$ l', $\mathrm{l}=\mathrm{x}:: \mathrm{l}, ~ \vee \mathrm{l}=[\mathrm{l}$

$$
\begin{aligned}
& \text { Problem. } \\
& T \mapsto D_{T}, I_{T}, G_{T} \text { cannot be defined in Coq or in Ltac }
\end{aligned}
$$

Solution. Gain direct access to the syntax of Coq terms

Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T ?

Inductive list (A: Type) : Type :=
| nil : list A (* [] *)
cons : A \rightarrow list $\mathrm{A} \rightarrow$ list $\mathrm{A} .\left(*_{\text {_ }}::_{\text {_ }}\right.$)

- Constructors are pairwise disjoints $\left(D_{\mathrm{T}}\right)$

$$
\forall x \operatorname{l,}[] \neq x:: 1
$$

- Constructors are injective (I_{T})

```
\forallx y l l', x::l = y::l' }->\textrm{x}=\textrm{y}^\textrm{l=1
```

- Every term of this type is generated by one of the constructors $\left(G_{\mathrm{T}}\right)$ $\forall(1: l i s t ~ A), \exists \mathrm{x}$ l', $\mathrm{l}=\mathrm{x}:: \mathrm{l}, ~ V \mathrm{l}=[]$

Problem.

$T \mapsto D_{T}, I_{T}, G_{T}$ cannot be defined in Coq or in Ltac
Solution. Gain direct access to the syntax of Coq terms

 Use MetaCoq reification of Coq in Coq

How does the transformations work?

How does the transformations work?
(1) Generation of the reified statements in MetaCoq (e.g., constructors are injective)
(2) Unreify these statements
(3) Proof of these statements with Coq regular tactics (Ltac)
(1) The statements are now in the local context

How does the transformations work?

How does the transformations work?
(1) Generation of the reified statements in MetaCoq (e.g., constructors are injective)
(2) Unreify these statements
(3) Proof of these statements with Coq regular tactics (Ltac)
(1) The statements are now in the local context

Currently implemented transformations

- Make explicit the semantics of symbols
- Eliminate higher-order equalities
- Eliminate prenex polymorphism

Example

Action of scope on a goal


```
A : Type
```


Example

Action of scope on a goal

(1) inductive datatypes

```
A : Type
1: forall B (x y : B) (l l' : list B), x :: l = y :: l' }->\textrm{x}=\textrm{y}^ \ l = l'
1: forall B (x : B) (l : list B), [ ] \not= x :: l
1: forall (n n': nat), S n = S n' }->\textrm{n}=\textrm{n
1: forall (n : nat), O = S n
```


Example

Action of scope on a goal

(1) inductive datatypes
(2) definitions

A: Type

1: forall $B(x: B)(l: l i s t ~ B),[] \neq x:: l$
1: forall (n n': nat), $\mathrm{S} \mathrm{n}=\mathrm{S} \mathrm{n}^{\prime} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end $)$

Example

Action of scope on a goal

(1) inductive datatypes
(2) definitions
(3) expansion

A: Type
1: forall B (x y : B) (l l' : list B), x :: $1=y:: l^{\prime} \rightarrow \mathrm{x}=\mathrm{y} \wedge \mathrm{l}=\mathrm{l}$ '
1: forall B (x : B) (l : list B), [] $\neq \mathrm{x}:: \mathrm{l}$
1: forall (n n': nat), $\mathrm{S} n=\mathrm{S} \mathrm{n}^{\prime} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end $)$
3: forall B l, length B $1=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end) $B 1$

Example

Action of scope on a goal

(1) inductive datatypes
(2) definitions
(3) expansion
(1) fixpoints

A: Type

1: forall B (x : B) (l : list B), [] $\neq \mathrm{x}:: 1$
1: forall (n n': nat), $\mathrm{S} n=\mathrm{S} \mathrm{n}^{\prime} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end)
3: forall B l, length B $1=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end) $B 1$
4: forall B l, length B $1=$ match 1 with \ldots end

Example

Action of scope on a goal
(1) inductive datatypes
(2) definitions
(3) expansion
(1) fixpoints
(6) elimination of pattern matching

A: Type

1: forall B (x : B) (l : list B), [] $\neq \mathrm{x}:: \mathrm{l}$
1: forall (n n': nat), $\mathrm{S} n=\mathrm{S} \mathrm{n}^{\prime} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end)
3: forall B l, length B $1=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end) $B 1$
4: forall B l, length B $1=$ match 1 with \ldots end
5: forall B, length B [] $=0$
5: forall B (1: list B) (x : B), length B x :: $1=\mathrm{S}$ (length B 1)

Example

Action of scope on a goal
(1) inductive datatypes
(2) definitions
(3) expansion
(9) fixpoints
© elimination of pattern matching

- applied polymorphic hypotheses

A: Type
1: forall B (x y : B) (l l' : list B), $x:: \quad \mathrm{l}=\mathrm{y}:: \mathrm{l}^{\prime} \rightarrow \mathrm{x}=\mathrm{y} \wedge 1=1$ '
1: forall B (x : B) (l : list B), [] $\neq \mathrm{x}:: 1$
1: forall (n n': nat), $\mathrm{Sn}=\mathrm{Sn} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end $)$
3: forall B l, length B $1=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end) $B 1$
4: forall B l, length B $1=$ match 1 with \ldots end
5: forall B, length B [] $=0$
5: forall B (l : list B) (x : B), length B x :: $1=\mathrm{S}$ (length B l)
6: length A []=0
6: forall (l : list A) (x : A), length x :: $1=\mathrm{S}$ (length A 1)
forall (l : list A) (n : nat), length A $1=\mathrm{Sn} \rightarrow 1 \neq[]$

Example

Action of scope on a goal
(1) inductive datatypes
(2) definitions
(3) expansion
(9) fixpoints
© elimination of pattern matching

- applied polymorphic hypotheses

A: Type
1: forall B (x y : B) (l l' : list B), $x:: \quad \mathrm{l}=\mathrm{y}:: \mathrm{l}^{\prime} \rightarrow \mathrm{x}=\mathrm{y} \wedge 1=1$ '
1: forall $B(x: B)(l: l i s t B),[] \neq x:: l$
1: forall (n n': nat), $\mathrm{Sn}=\mathrm{Sn} \rightarrow \mathrm{n}=\mathrm{n}$ '
1: forall (n : nat), $0 \neq \mathrm{Sn}$
2: length $=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end $)$
3: forall B 1 , length $B 1=($ fun $B \Rightarrow$ fix length $1:=$ match 1 with \ldots end) $B 1$
4: forall B l, length B $1=$ match 1 with \ldots end
5: forall B, length B [] $=0$
5: forall B (l : list B) (x : B), length B x :: $1=\mathrm{S}$ (length B l)
6: length A []=0

forall (1: list A) (n : nat), length A $=\mathrm{Sn} \rightarrow 1 \neq[]$

Conclusion and Future Work

- General methodology: small transformations from a subset of Coq logic to FOL
- Proof of concept: six transformations combined in a tactic (snipe $=$ scope + verit) which calls an external SMT solver.

These transformations are independent from SMTCoq!

Conclusion and Future Work

- General methodology: small transformations from a subset of Coq logic to FOL
- Proof of concept: six transformations combined in a tactic (snipe $=$ scope + verit) which calls an external SMT solver.

These transformations are independent from SMTCoq!

In the Future.

- More complex transformations: (simple) dependent types, dependent pattern matching. .
- Add user-defined tactics
- Benchmarks
+ improving the performance of our tactic

```
Try Sniper!
https://github.com/smtcoq/sniper
```


Conclusion and Future Work

- General methodology: small transformations from a subset of Coq logic to FOL
- Proof of concept: six transformations combined in a tactic (snipe $=$ scope + verit) which calls an external SMT solver.

These transformations are independent from SMTCoq!

In the Future.

- More complex transformations: (simple) dependent types, dependent pattern matching. . .
- Add user-defined tactics
- Benchmarks
+ improving the performance of our tactic

$$
\begin{aligned}
& \text { Try Sniper! } \\
& \text { https://github.com/smtcoq/sniper }
\end{aligned}
$$

[^0]: \rightsquigarrow Sniper

 - eliminates harmless polymorphism
 - helps the first-order provers interpret symbols (constructors and functions)

[^1]: \rightsquigarrow Sniper

 - eliminates harmless polymorphism
 - helps the first-order provers interpret symbols (constructors and functions)

