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A few words about Coq

Coq: proof assistant based on type theory
and the Curry-Howard isomorphism

Formulas = types, proofs = programs

Four Colors Theorem
Feit-Thomson Theorem
CompCert (certified compiler)

These successes are possible because of its design
Strong type-checking within Coq
Rich specification language
Highly trusted (small logical kernel)
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Coq in motion, Sniper in action

Goal forall (A : Type) (l : list A) (n : nat), length l = S n → l 6= [].

Proof. intros A l n H H’. rewrite H’ in H. discriminate. Qed.

Proof. snipe. Qed.

Let us admit
Lemma search_app : forall (A: Type) (x: A) (l1 l2: list A),

search x (l1 ++ l2) = (search x l1) || (search x l2).

Proof. induction l1 ; snipe. Qed.

Goal forall (A : Type) (x: A) (l1 l2 l3: list A),

search x (l1 ++ l2++l3) = search x (l3 ++ l2 ++ l1).

Proof. intros A H x l1 l2 l3. rewrite !search_app.

rewrite orb_comm with (b1 := search x l3).

rewrite orb_comm with (b1 := search x l2) (b2 := search x l1).

rewrite orb_assoc. reflexivity . Qed.

Proof. intros A H. snipe search_app. Qed.

Coq lacks automation

The user must be very specific

Difficult for the beginner/non-formal method specialist

May discourage new users (e.g., maths, industry)
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Motivation: improving the automation of Coq

Coq (Proof assistant) First-order provers

Very expressive logic Limited expressivity

Checks proofs Finds proofs

Highly trustable Less so

Coq difficult to automatize

Even the first-order part of the proofs

FOL highly automated outside Coq

Line of software development:
call external solvers to handle the first-order parts of the proofs

(avoid redundant code!)

Partial transformations from Coq logic to FOL
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Plan

1 Coq vs. automated provers

2 Sniper
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Why trust Coq?

Trusting Coq:
Typing system

strong normalization/consistency

Implementation of the typing rules

Coq
Kernel

Type checker
∼ 6000 loc IDEs

Tactics (automation), e.g., Ltac

Plugins (incl. SMTCoq and MetaCoq)

Machine learning

This part does not need to be trusted

6= First-order provers

whole code has to be trusted

(autom., search, optim.)
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Coq Logic vs. First-Order Logic

Coq
based on the Calculus of Inductive
Constructions (CIC)

First-order logic (FOL)

- functions and relations
- basic datatypes (bool, int, float)
- boolean equality
- quantification over objects

incl. linear integer arithmetics, etc

In CIC but not in FOL:

Higher-order computation (functions are first-class objects):

map f [x1 ; ... ; xn] := [f x1 ; ... ; f xn ]  

map f is a function on lists

Higher-order quantification

forall (A B C : Type) (f : A -> B) (g : B -> C), (map g) o (map f) = map (g o f)

Dependent types, e.g., Vec A n is definable
the type of lists of length n whose elements have type A

Zoom on Coq inductives

Inductive types

Inductive list (A : Type) : Type :=

[ ] : list A | _ :: _ : → list A → list A

Fixpoints and pattern-matching:

Fixpoint length { A : Type } (l: list A) := match l with

[ ] ⇒ 0 | a :: l0 ⇒ 1 + length l0

Generic (non-boolean) Leibniz equality on any type
Leibniz equality is a dependent type
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The problem of reification

When we make two programs interact, we need an interface

A Coq Theorem and its proof

Excerpt of an smt2 certificate

Need for reification (or quoting)

 translating programs of a language L into another
language L′.

e.g., forall (A : Set), A → A (type)

 Prod (name "A") Set_reif (Prod unnamed A (dB 0) (dB 1))

=reif. with de Bruijn indexes
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Plugging in provers: autarkic approach

Coq Automated provers

Coq Goal

G
G must be of first-order

First-Order Formula

F
F is the reif. of G

reification/quoting

Proof Certificate

C
C is a proof certificate of F

First-order prover

Coq Proof
P

P is a proof term of G

unquoting

type-checking

Horizontal arrows: some OCaml

Any arrow may fail (reification, solving. . . )

Autarkic approach: each certificate is checked on the run

6= skeptical approach: whole code of f.o. prover is checked

In our case:

Plugin = SMTCoq

Automated provers = SMT solvers, e.g., veriT

Under the carpet: casting Leibniz equality into boolean eq.
(decidable types only)
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Bécassine comes into play

Coq First-order prover

reification of the goal

proof reconstruction

Question. Why aren’t we happy with this?

Problem 1
Avoid harmless polymorphism

and higher-order

- forall (A : Type) (l1 l2 : list A),

length (l1 ++ l2) = length l1 + length l2

- f = g with f,g: nat -> nat

instead of ∀(x : nat), f x = g x

Problem 2
Some info. is lost during goal

reification

type constructors uninterpreted e.g.,

- S n = S n′ → n = n′ is forgotten

- nothing known about List.length

 Sniper
- eliminates harmless polymorphism

- helps the first-order provers interpret symbols
(constructors and functions)
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Sniper (Principles)

Sniper is a two-fold tactic.

First Step. The tactic scope

Eliminates harmless higher-order and polymorphism in the goal if needed

Produces and proves first-order auxiliary statements in the local context
(currently 6 transformations,)

Second step. The transformed goal and the auxiliary statement are sent to the
SMT solver veriT, via SMTCoq.

Coq Goal G
New Goal G’
+ aux. statements

F.-O. Formula F
scope SMTCoq

Proof Certificate C

veriT

Coq Proof P
SMTCoq
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Example (scope): facts about inductives datatypes

Question. What should a first-order prover know about an inductive datatype T?

Inductive list (A : Type) : Type :=
| nil : list A (* [] *)
| cons : A → list A → list A. (* _ :: _ *)

Constructors are pairwise disjoints (DT)

∀x l, [] 6= x::l

Constructors are injective (IT)

∀x y l l’, x::l = y::l’→ x=y ∧ l=l’

Every term of this type is generated by one of the constructors (GT)

∀(l:list A),∃x l’, l = x :: l’ ∨ l = []

Problem.

T 7→ DT , IT , GT cannot be defined in Coq or in Ltac

Solution. Gain direct access to the syntax of Coq terms

 Use MetaCoq
reification of Coq in Coq

+ quoting/unquoting mechanisms
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How does the transformations work?

How does the transformations work?

1 Generation of the reified statements in MetaCoq (e.g., constructors are injective)

2 Unreify these statements

3 Proof of these statements with Coq regular tactics (Ltac)

4 The statements are now in the local context

Currently implemented transformations

Make explicit the semantics of symbols

Eliminate higher-order equalities

Eliminate prenex polymorphism
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Example

Action of scope on a
goal

1 inductive datatypes

2 definitions

3 expansion

4 fixpoints

5 elimination of pattern matching

6 applied polymorphic hypotheses

A : Type

1: forall B (x y : B) (l l’ : list B), x :: l = y :: l’ → x = y ∧ l = l’

1: forall B (x : B) (l : list B), [ ] 6= x :: l

1: forall (n n’: nat), S n = S n’ → n = n’

1: forall (n : nat), O 6= S n

2: length = (fun B ⇒ fix length l := match l with ... end)

3: forall B l, length B l = (fun B ⇒ fix length l := match l with ... end) B l

4: forall B l, length B l = match l with ... end

5: forall B, length B [ ] = 0

5: forall B (l : list B) (x : B), length B x :: l = S (length B l)

6: length A []= 0

6: forall (l : list A) (x : A), length x :: l = S (length A l)

forall (l : list A) (n : nat), length A l = S n → l 6= [ ]
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Conclusion and Future Work

General methodology: small transformations from a subset of Coq logic to FOL

Proof of concept: six transformations combined in a tactic (snipe = scope +
verit) which calls an external SMT solver.

These transformations are independent from SMTCoq!

In the Future.

More complex transformations: (simple) dependent types, dependent pattern
matching. . .

Add user-defined tactics

Benchmarks

+ improving the performance of our tactic

Try Sniper!
https://github.com/smtcoq/sniper
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