
Non-Idempotent Typing Operators,
beyond the λ-Calculus

Soutenance de thèse

Pierre VIAL
IRIF (Univ. Paris Diderot and CNRS)

December 7, 2017

Non-idempotent typing operators P. Vial 0 1 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now")

x =

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = 1

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = 2

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = 3

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = 4

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = . . .

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = 100

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x = . . .

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x =

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x =

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x =

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Certification and logic in computer science

x = 1

while (x > 0):

x = x + 1

transfer(1 000 000 000 $, calyon, my-account)

print("I’m rich now") x =

The core of this thesis

Termination or productivity (via source codes)

Paths to terminal states.

For that, using types (data descriptors).

Productivity:
O. S.

2, 3, 5, 7,. . . (primes)

Backtracking:

' Classical logic.

Non-idempotent typing operators P. Vial 1 Presentation 2 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Formal logic (valar morghulis)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

∀x, H (x)⇒M (x)

H (S)⇒M (S) H (S)

M (S)

Formalization

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 Presentation 3 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Turing and computability

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Gödel, 1931:
∃ unprovable state-
ments

Provable 6= True

primitive recursive
functions (poor)

Can computation
save mathematics?

What is an algo. ?

What is effectively
computable?

Turing machines (1936)

TM are universal

f effectively computable
iff f implementable in a TM

 A prog. language L is Turing-complete
if L has the same computational power as TMs.

Theorem (Turing, 1936)

The Entscheidungsproblem has a negative answer

The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 Presentation 4 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

Computation as rewriting

The λ-calculus

One primitive.

Functional paradigm.

Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

O : zero S : successor

Thus: S O ' 1 S S O ' 2 S S S S S O ' 5.

Addition

n+ O→ n (terminal case) n + Sm→ Sn + m (inductive case)

S S S O + S S O → S S S S O + S O → S S S S S O + O → S S S S S O

3 + 2 → 4 + 1 → 5 + 0 → 5

Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the λ-calculus.

Non-idempotent typing operators P. Vial 1 Presentation 5 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r

x

x

x

s

Redex:
(λx.r)s
Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r

x

x

x

s

Redex:
(λx.r)s
Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r

x

x

x

s

Redex:
(λx.r)s
Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r

x

x

x

s

Redex:
(λx.r)s

Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r
x

x

x

s

Redex:
(λx.r)s

Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r
x

x

x

s

Redex:
(λx.r)s
Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

λ-calcul (Church, 1928)

Term construction (inductive grammar)

x

x

Variable

λx

t

λx.t

Abstraction

@

t u

t u

Application

x

x y

@

λy

@

Example: x(λy.x y)

λx

@

r

x

x

x

s

s
s

s

Redex:
(λx.r)s

Reduct:
r[s/x]

Redex (reducible expression):
 computation via substitution

producing a reduct

Non-idempotent typing operators P. Vial 1 Presentation 6 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→

autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→

autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→

autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→

autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)

→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)→ autoapp(autoapp)

→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)

→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Higher-order functions and their (possible) dangers

Let app2(f, x) := f(f(x)).
app2 takes a function f as an argument.
app2 is a higher-order function.

Autoapplication is defined by:

autoapp(f)→ f(f)

Auto-autoapplication:

autoapp(autoapp)→ autoapp(autoapp)→ autoapp(autoapp)
→ autoapp(autoapp)→ .

Remember

Some programs that do not terminate are still meaningful: the streams.

Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13. . . (the list of primes).

Contribution:
characterizing productive streams.

Non-idempotent typing operators P. Vial 1 Presentation 7 /46

Terminal states and execution/reduction strategies

2 + 3× 5︸ ︷︷ ︸ −→ 2 + 15︸ ︷︷ ︸ −→ 17

Reducible (non-terminal)
states

Terminal state

Let f(x) = x× x× x. What is the value of f(3 + 4)?

Kim (smart)

f(3 + 4) → f(7)
→ 7× 7× 7
→ 49× 7
→ 343

Lee (not so)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 7× (3 + 4)× (3 + 4)
→ 7× 7× (3 + 4)
→ 7× 7× 7
→ 49× 7
→ 343

Thurston (don’t be Thurston)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 3× (3 + 4)× (3 + 4) + 4× (3 + 4)× (3 + 4)
→ dozens of computation steps
. .
→ 343

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

2 + 3× 5︸ ︷︷ ︸ −→ 2 + 15︸ ︷︷ ︸ −→ 17

Reducible (non-terminal)
states

Terminal state

Let f(x) = x× x× x. What is the value of f(3 + 4)?

Kim (smart)

f(3 + 4) → f(7)
→ 7× 7× 7
→ 49× 7
→ 343

Lee (not so)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 7× (3 + 4)× (3 + 4)
→ 7× 7× (3 + 4)
→ 7× 7× 7
→ 49× 7
→ 343

Thurston (don’t be Thurston)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 3× (3 + 4)× (3 + 4) + 4× (3 + 4)× (3 + 4)
→ dozens of computation steps
. .
→ 343

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

2 + 3× 5︸ ︷︷ ︸ −→ 2 + 15︸ ︷︷ ︸ −→ 17

Reducible (non-terminal)
states

Terminal state

Let f(x) = x× x× x. What is the value of f(3 + 4)?

Kim (smart)

f(3 + 4) → f(7)
→ 7× 7× 7
→ 49× 7
→ 343

Lee (not so)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 7× (3 + 4)× (3 + 4)
→ 7× 7× (3 + 4)
→ 7× 7× 7
→ 49× 7
→ 343

Thurston (don’t be Thurston)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 3× (3 + 4)× (3 + 4) + 4× (3 + 4)× (3 + 4)
→ dozens of computation steps
. .
→ 343

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

2 + 3× 5︸ ︷︷ ︸ −→ 2 + 15︸ ︷︷ ︸ −→ 17

Reducible (non-terminal)
states

Terminal state

Let f(x) = x× x× x. What is the value of f(3 + 4)?

Kim (smart)

f(3 + 4) → f(7)
→ 7× 7× 7
→ 49× 7
→ 343

Lee (not so)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 7× (3 + 4)× (3 + 4)
→ 7× 7× (3 + 4)
→ 7× 7× 7
→ 49× 7
→ 343

Thurston (don’t be Thurston)

f(3 + 4) → (3 + 4)× (3 + 4)× (3 + 4)
→ 3× (3 + 4)× (3 + 4) + 4× (3 + 4)× (3 + 4)
→ dozens of computation steps
. .
→ 343

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

Initial state Terminal state

Infinite path
(keeps running,

never reaches the terminal state)

Reduction strategy

Choice of a reduction path.

Can be complete

Must be certified.

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Terminal states and execution/reduction strategies

Initial state Terminal state

Reduction strategy

Infinite path
(keeps running,

never reaches the terminal state)

Reduction strategy

Choice of a reduction path.

Can be complete

Must be certified.

Non-idempotent typing operators P. Vial 1 Presentation 8 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters : int→ String 5 : int

toLetters(5) : String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters : int→ String 5 : int

toLetters(5) : String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters : int→ String 5 : int

toLetters(5) : String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Types

Principle

Types = data descriptors, following a grammar.

Types provide certifications of correction.

Primitive types:

5: int (integer) ”Leopard”: String (string of characters)

Compound types:

length : String→ int (function)

Example

Let toLetters : int→ String be the program:

toLetters(2) = ”two” toLetters(10) = ”ten”

toLetters(5) toLetters(”Leopard”)

Correct!
Returns ”five”

Incorrect!
The arg. ”Leopard” is not an int.

toLetters :

int→ String

5 :

int

toLetters(5) :

String

Typing certificate

A→ B A

B

Proof

This analogy goes further!

Curry-Howard correspondence!

Non-idempotent typing operators P. Vial 1 Presentation 9 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types λ-calculus

Does not capture
classical logicHarness higher-order comput. in

a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types

λ-calculus

Does not capture
classical logicHarness higher-order comput. in

a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types

λ-calculus

Does not capture
classical logic

Harness higher-order comput. in
a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types

λ-calculus

Does not capture
classical logic

Harness higher-order comput. in
a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types

λ-calculus

Does not capture
classical logic

Harness higher-order comput. in
a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types λ-calculus

Does not capture
classical logic

Harness higher-order comput. in
a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types λ-calculus

Does not capture
classical logicHarness higher-order comput. in

a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types λ-calculus

Does not capture
classical logicHarness higher-order comput. in

a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Curry-Howard (50s)

Programming languages Logic

Type Formula

Simply Typed Program Proof

Reduction Step Cut-Elimination Step

Termination Termination

toLetters : int→ String 5 : int

toLetters(5) : String

A→ B A

B

Simple types λ-calculus

Does not capture
classical logicHarness higher-order comput. in

a limited way.

Many progs. in terminal state
not typable.

Polymorphic Types

Intersection Types

extensions

Intersection Types

Get classical logic with
call−cc (Griffin, 90)

Contribution

Non-idempotent typing operators P. Vial 1 Presentation 10 /46

Cut-Elimination (animation)

Goal: having a one-block proof

Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

ψ

A

A
•

A
•

Φ

B

Initial proof of F (using two lemmas)

A
•

A
•

A
•A

•

B
•

B
•

B
•

Π

F

Φ
ψ

ψ

B

ψ

ψ

ψψ

B
•

B
•

B
•

Π

F

After one cut-elim. step (one lemma)

ψ

ψ

ψ ψ

Φ
ψ

ψ

Φ
ψ

ψ
Φ

ψ

ψ

Π

F

Number of occurrences:

ψ : 1
Φ : 1
Π : 1

Non-idempotent typing operators P. Vial 1 Presentation 11 /46

Cut-Elimination (animation)

Goal: having a one-block proof

Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

ψ

A

A
•

A
•

Φ

B

Initial proof of F (using two lemmas)

A
•

A
•

A
•A

•

B
•

B
•

B
•

Π

F

Φ
ψ

ψ

B

ψ

ψ

ψψ

B
•

B
•

B
•

Π

F

After one cut-elim. step (one lemma)

ψ

ψ

ψ ψ

Φ
ψ

ψ

Φ
ψ

ψ
Φ

ψ

ψ

Π

F

Number of occurrences:

ψ : 6
Φ : 1
Π : 1

Non-idempotent typing operators P. Vial 1 Presentation 11 /46

Cut-Elimination (animation)

Goal: having a one-block proof

Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

ψ

A

A
•

A
•

Φ

B

Initial proof of F (using two lemmas)

A
•

A
•

A
•A

•

B
•

B
•

B
•

Π

F

Φ
ψ

ψ

B

ψ

ψ

ψψ

B
•

B
•

B
•

Π

F

After one cut-elim. step (one lemma)

ψ

ψ

ψ ψ

Φ
ψ

ψ

Φ
ψ

ψ
Φ

ψ

ψ

Π

F

Number of occurrences:

ψ : 10
Φ : 3
Π : 1

Non-idempotent typing operators P. Vial 1 Presentation 11 /46

Cut-Elimination (animation)

Goal: having a one-block proof
Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

ψ

A

A
•

A
•

Φ

B

Initial proof of F (using two lemmas)

A
•

A
•

A
•A

•

B
•

B
•

B
•

Π

F

Φ
ψ

ψ

B

ψ

ψ

ψψ

B
•

B
•

B
•

Π

F

After one cut-elim. step (one lemma)

ψ

ψ

ψ ψ

Φ
ψ

ψ

Φ
ψ

ψ
Φ

ψ

ψ

Π

F

After two cut-elim. steps

Number of occurrences:

ψ : 10
Φ : 3
Π : 1

Non-idempotent typing operators P. Vial 1 Presentation 11 /46

Cut-Elimination (animation)

Goal: having a one-block proof

Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

ψ

A

A
•

A
•

Φ

B

Initial proof of F (using two lemmas)

A
•

A
•

A
•A

•

B
•

B
•

B
•

Π

F

Φ
ψ

ψ

B

ψ

ψ

ψψ

B
•

B
•

B
•

Π

F

After one cut-elim. step (one lemma)

ψ

ψ

ψ ψ

Φ
ψ

ψ

Φ
ψ

ψ
Φ

ψ

ψ

Π

F

Number of occurrences:

ψ : 10
Φ : 3
Π : 1

Non-idempotent typing operators P. Vial 1 Presentation 11 /46

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

Some reduction strategy
terminates on t

t can reach a
terminal state

t is typable

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Non-idempotent typing operators P. Vial 1 Presentation 12 /46

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

Some reduction strategy
terminates on t

t can reach a
terminal state

t is typable

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Non-idempotent typing operators P. Vial 1 Presentation 12 /46

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

Some reduction strategy
terminates on t

t can reach a
terminal state

t is typable

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Non-idempotent typing operators P. Vial 1 Presentation 12 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

 Possibly many certificates for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 Presentation 13 /46

Contents

Gardner/de Caravalho’s non-idempotent type system.

Contribution 1:

Quantitative types for the λµ-calculus (a classical calculus)

Certificates of reduction strategies.

Contribution 2:

Positive answer to Klop’s Problem.

Certification of an infinitary reduction strategy. Introduction of a
new type system: system S (standing for sequences).

Contribution 3:

Around the expressive power of unconstrained infinitary
intersection types.

Non-idempotent typing operators P. Vial 1 Presentation 14 /46

Plan

1 Presentation

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 15 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 16 /46

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
terminates on t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 17 /46

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
terminates on t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 17 /46

From Intersection Types to Quantitative Types

Types are built by means of base types, arrow (→) and intersection (∧).

ACI Axioms =

Associativity (A ∧D) ∧ C ∼ A ∧ (D ∧ C)
Commutativity A ∧D ∼ D ∧A
Idempotence A ∧A ∼ A

Traditional Intersection Types Quantitative Types
Coppo & Dezani 80 Gardner 94 - Kfoury 96

ACI (Idempotent) AC (Non-idempotent)

Types are sets: A ∧A ∧ C is {A,C} Types are multisets: A ∧A ∧ C is [A,A,C]

Qualitative properties Quantitative properties

Remark (non-idem. case):

[A,A,C] 6= [A,C] i.e. A ∧A ∧ C � A ∧ C .

[A,B] + [A] = [A,A,B] i.e. ∧ is multiset sum.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 18 /46

From Intersection Types to Quantitative Types

Types are built by means of base types, arrow (→) and intersection (∧).

ACI Axioms =

Associativity (A ∧D) ∧ C ∼ A ∧ (D ∧ C)
Commutativity A ∧D ∼ D ∧A
Idempotence A ∧A ∼ A

Traditional Intersection Types Quantitative Types
Coppo & Dezani 80 Gardner 94 - Kfoury 96

ACI (Idempotent) AC (Non-idempotent)

Types are sets: A ∧A ∧ C is {A,C} Types are multisets: A ∧A ∧ C is [A,A,C]

Qualitative properties Quantitative properties

Remark (non-idem. case):

[A,A,C] 6= [A,C] i.e. A ∧A ∧ C � A ∧ C .

[A,B] + [A] = [A,A,B] i.e. ∧ is multiset sum.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 18 /46

Types and Rules (System R0)

(Strict Types) τ, σ := o ∈ O | I → τ
(Intersection Types) I := [σi]i∈I

Strict types syntax directed rules:

x : [τ] ` x : τ
ax

Γ;x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

System R0

Remark

Relevant system (no weakening)

In app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 19 /46

Properties (R0)

Weighted Subject Reduction
Reduction preserves types and environments, and. . .
. . . head reduction strictly decreases the nodes of the deriv. tree.

Subject Expansion
Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ-term. Then equivalence between:

1 t is typable (in R0)

2 t is HN

3 the head reduction strategy terminates on t (certification!)

Bonus (quantitative information)

If Π types t, then sizeΠ bounds the number of steps of the head. red. strategy on t.

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 20 /46

Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN): there is a path from t to a head normal form.

Weak normalization (WN): there is at least one path from t to normal
form (NF).

Strong normalization (SN): there is no infinite path starting at t.

Normalization

SN ⇒ WN ⇒ HN.

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 21 /46

Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN): there is a path from t to a head normal form.

Weak normalization (WN): there is at least one path from t to normal
form (NF).

Strong normalization (SN): there is no infinite path starting at t.

Normalization

SN ⇒ WN ⇒ HN.

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 21 /46

Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN): there is a path from t to a head normal form.

Weak normalization (WN): there is at least one path from t to normal
form (NF).

Strong normalization (SN): there is no infinite path starting at t.

Normalization

SN ⇒ WN ⇒ HN.

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 21 /46

Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN): there is a path from t to a head normal form.

Weak normalization (WN): there is at least one path from t to normal
form (NF).

Strong normalization (SN): there is no infinite path starting at t.

Normalization

SN ⇒ WN ⇒ HN.

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 21 /46

Characterizing Weak and Strong Normalization

any arg. can be left untyped

non-erasable args must be typed

all args must be typed

HN System R0 sz(Π) bounds the number of
head reduction steps

WN System R0

+ unforgetfulness criterion
sz(Π) bounds the number
of leftmost-outermost red.
steps (and more)

SN Modify system R0

with choice operator
sz(Π) bounds the length of
any reduction path

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 22 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotence !

Non-idempotent typing operators P. Vial 2 Non-idempotent intersection types 23 /46

Plan

1 Presentation

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 24 /46

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

Captures continuations

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 25 /46

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

Captures continuations

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 25 /46

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

Captures continuations

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 25 /46

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

Captures continuations

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 25 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} =

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} =

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} =

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} =

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} = [α](x (µγ.[α]xu))u

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} = [α](x (µγ.[α]xu))u

call−cc := λy.µα.[α]y(λx.µβ.[α]x)

: ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} = [α](x (µγ.[α]xu))u

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The λµ-calculus

Syntax: Variables x and names α

(Objects) o ::= t | c
(Terms) t, u ::= x | λx.t | tu | µα.c
(Commands) c ::= [α]t

Basic Meta-Operations:

t[u/x] (subst.)

c{u//α} replaces every occurrence of [α]v inside t by [α]v u.

Example:

[α](x (µγ.[α]x)){u//α} = [α](x (µγ.[α]xu))u

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A (simple typing)

Operational Semantics:

(λx.t)u →β t[u/x] substitution
(µα.c)u →µ µα.c{u//α} replacement

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 26 /46

The Typing System

Principles

Extend non-idempotent types to classical logic.

Problem 1:
finding quantitative descriptors
suitable to classical logic

Problem 2:
guaranteeing a decrease in
measure (weighted s.r.)

 resort to non-idempotent
union types (below right)

Not obvious! The number of
nodes does not work (see later).

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

A, C and non-I e.g., 〈σ1, σ2〉 ∨ 〈σ1〉 = 〈σ1, σ2, σ1〉

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 27 /46

The Typing System

Principles

Extend non-idempotent types to classical logic.

Problem 1:
finding quantitative descriptors
suitable to classical logic

Problem 2:
guaranteeing a decrease in
measure (weighted s.r.)

 resort to non-idempotent
union types (below right)

Not obvious! The number of
nodes does not work (see later).

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

A, C and non-I e.g., 〈σ1, σ2〉 ∨ 〈σ1〉 = 〈σ1, σ2, σ1〉

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 27 /46

The Typing System

Principles

Extend non-idempotent types to classical logic.

Problem 1:
finding quantitative descriptors
suitable to classical logic

Problem 2:
guaranteeing a decrease in
measure (weighted s.r.)

 resort to non-idempotent
union types (below right)

Not obvious! The number of
nodes does not work (see later).

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

A, C and non-I e.g., 〈σ1, σ2〉 ∨ 〈σ1〉 = 〈σ1, σ2, σ1〉

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 27 /46

The Typing System

Principles

Extend non-idempotent types to classical logic.

Problem 1:
finding quantitative descriptors
suitable to classical logic

Problem 2:
guaranteeing a decrease in
measure (weighted s.r.)

 resort to non-idempotent
union types (below right)

Not obvious! The number of
nodes does not work (see later).

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

A, C and non-I e.g., 〈σ1, σ2〉 ∨ 〈σ1〉 = 〈σ1, σ2, σ1〉

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 27 /46

The Typing System

Principles

Extend non-idempotent types to classical logic.

Problem 1:
finding quantitative descriptors
suitable to classical logic

Problem 2:
guaranteeing a decrease in
measure (weighted s.r.)

 resort to non-idempotent
union types (below right)

Not obvious! The number of
nodes does not work (see later).

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

A, C and non-I e.g., 〈σ1, σ2〉 ∨ 〈σ1〉 = 〈σ1, σ2, σ1〉

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 27 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Some Typing Rules (System Hλµ)

Features

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

Two new rules (manipulation on the right-h.s.):

Γ ` t : U | ∆
Γ ` [α]t : # | ∆ ∨ {α : U}

save
Γ ` c : # | ∆

Γ ` µα.c : ∆(α)∗ | ∆ \\α
restore

where ∗ = choice operator.

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 28 /46

Properties and contributions (1)

Weighted Subject Reduction

with size(Π) =

number of nodes of Π +
size of the type arities of all the names of commands +
multiplicities of arguments in all the app. nodes of Π.

Subject Expansion

Theorem (Kesner, Vial, FSCD17)

Let t be a λµ-term. Then equivalence between:

1 t is typable (in Hλµ)

2 t is HN

3 the head reduction strategy terminates on t (thus, h.r.strat. certified!).

Bonus (quantitative information)

size(Π) bounds the number of steps of the head. red. strategy on t.

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 29 /46

Contributions (2)

Theorem (Kesner,Vial, FSCD17)

System Sλµ characterizing SN for the λµ-calculus.

sz(Π) bounds the length of any reduction sequence starting at t.

Extension (small-step operational semantics for the λµ-calculus)

Processing substitution and replacement one occurrence at a time.
In λ: (x y x x)[s/x] s y s s (1 big step)
In λex (x y x x)[s/x] s y x x s y x s s y s s (3 small-steps)

Characterization of SN (extension of Sλµ).

Non-idempotent typing operators P. Vial 3 Resources for Classical Logic 30 /46

Plan

1 Presentation

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 31 /46

Klop’s Problem

HN, WN, SN,. . . have been statically characterized by various ITS.

Klop’s Problem: can the set of ∞-WN terms be characterized by an ITS ?
Def: t is ∞-WN iff its Böhm tree does not contain ⊥

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

YES, with ITS = sequential + validity criterion.

But. . . what is infinitary normalization?

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 32 /46

Klop’s Problem

HN, WN, SN,. . . have been statically characterized by various ITS.

Klop’s Problem: can the set of ∞-WN terms be characterized by an ITS ?
Def: t is ∞-WN iff its Böhm tree does not contain ⊥

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

YES, with ITS = sequential + validity criterion.

But. . . what is infinitary normalization?

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 32 /46

Klop’s Problem

HN, WN, SN,. . . have been statically characterized by various ITS.

Klop’s Problem: can the set of ∞-WN terms be characterized by an ITS ?
Def: t is ∞-WN iff its Böhm tree does not contain ⊥

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

YES, with ITS = sequential + validity criterion.

But. . . what is infinitary normalization?

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 32 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

→ → → → → . . .→ fn(Yf)→ . . .→∞ fω

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@f

@f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Yf not WN

Yf is ∞-WN

∞-NF: fω = f(fω)

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Yf not WN

Yf is ∞-WN

∞-NF: fω = f(fω)

Unproductive reduction: ∆ = λx.x x, Ω = ∆ ∆ (i.e. autoapp(autoapp))

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 33 /46

Infinite Terms

Infinite λ-terms.

Infinite NF e.g., fω.

Productive reduction sequence of infinite length (strongly converging
reduction sequence)

Yf → f(Yf) . . . ok not Ω→ Ω . . .

A term t is ∞-WN if ∃ a reduction path to an ∞-NF.

Hereditary head reduction strategy:
from lower (root) to upper levers.

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 34 /46

Towards Infinitary Typing

Idea

To characterize ∞-WN, let us unforgetfully type infinite normal forms
 no part of an ∞-NF must be left untyped. . .

Need to consider infinite derivations with a coinductive type grammar
(R0 R).

Problem 1: how do we per-
form infinite subject reduc-
tion/expansion?

Actually, this is difficult only for SE

(extra-slide available)

Problem 2: the coinductive
type grammar allows to define
ρ = [ρ]ω → o.

Using ρ, we may type Ω with o
(unsound derivations)

Solution (for both problems): resort to a validity criterion called
approximability.

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 35 /46

Towards Infinitary Typing

Idea

To characterize ∞-WN, let us unforgetfully type infinite normal forms
 no part of an ∞-NF must be left untyped. . .

Need to consider infinite derivations with a coinductive type grammar
(R0 R).

Problem 1: how do we per-
form infinite subject reduc-
tion/expansion?

Actually, this is difficult only for SE

(extra-slide available)

Problem 2: the coinductive
type grammar allows to define
ρ = [ρ]ω → o.

Using ρ, we may type Ω with o
(unsound derivations)

Solution (for both problems): resort to a validity criterion called
approximability.

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 35 /46

Towards Infinitary Typing

Idea

To characterize ∞-WN, let us unforgetfully type infinite normal forms
 no part of an ∞-NF must be left untyped. . .

Need to consider infinite derivations with a coinductive type grammar
(R0 R).

Problem 1: how do we per-
form infinite subject reduc-
tion/expansion?

Actually, this is difficult only for SE

(extra-slide available)

Problem 2: the coinductive
type grammar allows to define
ρ = [ρ]ω → o.

Using ρ, we may type Ω with o
(unsound derivations)

Solution (for both problems): resort to a validity criterion called
approximability.

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 35 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others

(black ⊆ black+red)

x : [[

o

]→ o] ` x : [

o

]→ o

x : [[o]→ o]

; y : [o]

` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others

(black ⊆ black+red)

x : [[o]→ o] ` x : [o]→ o y : [o] ` y : o

x : [[o]→ o]; y : [o] ` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others (black ⊆ black+red)

x : [[o]→ o] ` x : [o]→ o y : [o] ` y : o

x : [[o]→ o]; y : [o] ` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others (black ⊆ black+red)

x : [[o]→ o] ` x : [o]→ o y : [o] ` y : o

x : [[o]→ o]; y : [o] ` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

•

•

•
•

•

•
•
•

•

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others (black ⊆ black+red)

x : [[o]→ o] ` x : [o]→ o y : [o] ` y : o

x : [[o]→ o]; y : [o] ` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

•

•

•
•

•

•
•
•

• Πf

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Approximability (intuitions)

A derivation is a set of symbols, that satisfies some grammar.

Some derivations are included in others (black ⊆ black+red)

x : [[o]→ o] ` x : [o]→ o y : [o] ` y : o

x : [[o]→ o]; y : [o] ` x y : o

Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for
all finite selection of symbols B0, there is a finite derivation Πf included in Π
and containing B0.

Π

•

•

•
•

•

•
•
•

• Πf

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 36 /46

Sequential intersection

Solution

Resorting to sequential intersection ! (approximability becomes definable)

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · τ)
vs. [σ, τ, σ] = [σ

?

, τ] + [σ

?

]

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 37 /46

Sequential intersection

Solution

Resorting to sequential intersection ! (approximability becomes definable)

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · τ)
vs. [σ, τ, σ] = [σ

?

, τ] + [σ

?

]

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 37 /46

Sequential intersection

Solution

Resorting to sequential intersection ! (approximability becomes definable)

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · τ)
vs. [σ, τ, σ] = [σ

?

, τ] + [σ

?

]

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 37 /46

Sequential intersection

Solution

Resorting to sequential intersection ! (approximability becomes definable)

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · τ)
vs. [σ, τ, σ] = [σ

?

, τ] + [σ

?

]

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 37 /46

Sequential intersection

Solution

Resorting to sequential intersection ! (approximability becomes definable)

Strict Types:
Sk, T ::= o ∈ O | (k · Sk)k∈K → T

Sequence Types (k · Sk)k∈K

Example: (7 · o1, 3 · o2, 2 · o1)→ o

→

o

1

o1

2

o2

3

o1

7

7, 3, 2, 1 = “tracks”

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · τ)
vs. [σ, τ, σ] = [σ

?
, τ] + [σ

?
]

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 37 /46

Derivations of S

x : (k · T) ` x : T
ax

C; x : (Sk)k∈K ` t : T

C ` λx.t : (Sk)k∈K → T
abs

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K

C] (]k∈KDk) ` t u : T
app

System S features pointers (called bipositions).

Approximability is definable in S

Problem 3 solved!

Every S-derivation collapses on a R-derivation.

Theorem

Given t, the set of the S-derivations typing t is a complete partial order (c.p.o.).

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 38 /46

Characterization of infinitary WN

Proposition (Vial, LICS17)

In System S:

SR: typing is stable by productive ∞-reduction.

SE: approximable typing stable by productive ∞-expansion.

Theorem (Vial, LICS17)

A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable
derivation Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Last bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LICS07]).

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 39 /46

Characterization of infinitary WN

Proposition (Vial, LICS17)

In System S:

SR: typing is stable by productive ∞-reduction.

SE: approximable typing stable by productive ∞-expansion.

Theorem (Vial, LICS17)

A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable
derivation Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Last bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LICS07]).

Non-idempotent typing operators P. Vial 4 Infinite types and productive reduction 39 /46

Plan

1 Presentation

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Non-idempotent typing operators P. Vial 5 Infinite types and unproductive reduction 40 /46

Two questions arising from Klop’s problem

Question 1 (the set of typable terms)

What is the set of typable terms in system R and S? (without approximability
condition)

Theorem (Vial)

Every term is typable in systems R and S (non-trivial).

One can extract from R-typing the order (arity) of any λ-term.

In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and R)

Every S-derivation collapses on a R-derivation.
But is the converse true?

Theorem (Vial)

Every R-derivation is the collapse of a S-derivation.

One can encode any reduction choice in system R b.m.o. a S-derivation.

Non-idempotent typing operators P. Vial 5 Infinite types and unproductive reduction 41 /46

Two questions arising from Klop’s problem

Question 1 (the set of typable terms)

What is the set of typable terms in system R and S? (without approximability
condition)

Theorem (Vial)

Every term is typable in systems R and S (non-trivial).

One can extract from R-typing the order (arity) of any λ-term.

In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and R)

Every S-derivation collapses on a R-derivation.
But is the converse true?

Theorem (Vial)

Every R-derivation is the collapse of a S-derivation.

One can encode any reduction choice in system R b.m.o. a S-derivation.

Non-idempotent typing operators P. Vial 5 Infinite types and unproductive reduction 41 /46

Two questions arising from Klop’s problem

Question 1 (the set of typable terms)

What is the set of typable terms in system R and S? (without approximability
condition)

Theorem (Vial)

Every term is typable in systems R and S (non-trivial).

One can extract from R-typing the order (arity) of any λ-term.

In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and R)

Every S-derivation collapses on a R-derivation.
But is the converse true?

Theorem (Vial)

Every R-derivation is the collapse of a S-derivation.

One can encode any reduction choice in system R b.m.o. a S-derivation.

Non-idempotent typing operators P. Vial 5 Infinite types and unproductive reduction 41 /46

Difficulties

In the productive cases
(HN,WN,SN,∞-WN), in i.t.s., one
types the normal forms and uses
subject expansion.

normalizing terms ⊆ typable terms

Here, no form of
productivity/stabilization.

We develop a corpus of methods
inspired by first order model
theory (last part of the dissertation).

x

[]→ . . .→ []→ o

t1

@ tq

@

o λxp

. . .→ . . .→ . . .→ o

λx1

Non-idempotent typing operators P. Vial 5 Infinite types and unproductive reduction 42 /46

Plan

1 Presentation

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Non-idempotent typing operators P. Vial 6 Conclusion 43 /46

Beyond this thesis

Intersection types via Grothendieck construction
[Mazza,Pellissier,Vial, POPL2018]

Categorical generalization of ITS. à la Melliès-Zeilberger.

Type systems = 2-operads (see below).

Type systems as 2-operads

Level 1: Γ ` t : B t = multimorphism from Γ to B.

Level 2: if Γ ` t : B
SR
 Γ ` t′ : B,

t t′ = 2-morphism from t to t′.

Construction of an i.t.s. via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
e.g., e.g., Coppo-Dezani, Gardner, R0, call-by-value + Hλµ (use cyclic

2-operads)

Non-idempotent typing operators P. Vial 6 Conclusion 44 /46

What we did and what we shall do

The λµ-calculus:
Characterization of HN and SN with non-idempotent/quantitative
methods (extension of R0).

Certification of reduction strategies.

Upper bounds on normalizing strategies.

Small-step operational semantics and SN (extension).

Perspectives

Exact bounds on normalizing strategies (à la Bernadet-Lengrand).

Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
λ̄µµ̃).

Studying the model underlying Hλµ.

Klop’s Problem and Infinitary Normalization

Characterizing infinitary weak normalization.

Certifying an infinitary reduction strategy (HHN).

Positive answer to TLCA Problem # 20.

Introduction of system S (sequential intersection, non-idem. flavor).

Introduction of a validity criterion (approximability).

Perspectives

Other forms of ∞-normalization (other calculi, ∞-SN)

Relations between system S and ludics, GoI, indexed LL. . .

Relations with Grellois-Melliès infinitary model of LL.

Non-idempotent typing operators P. Vial 6 Conclusion 45 /46

What we did and what we shall do

The λµ-calculus:
Characterization of HN and SN with non-idempotent/quantitative
methods (extension of R0).

Certification of reduction strategies.

Upper bounds on normalizing strategies.

Small-step operational semantics and SN (extension).

Perspectives

Exact bounds on normalizing strategies (à la Bernadet-Lengrand).

Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
λ̄µµ̃).

Studying the model underlying Hλµ.

Klop’s Problem and Infinitary Normalization

Characterizing infinitary weak normalization.

Certifying an infinitary reduction strategy (HHN).

Positive answer to TLCA Problem # 20.

Introduction of system S (sequential intersection, non-idem. flavor).

Introduction of a validity criterion (approximability).

Perspectives

Other forms of ∞-normalization (other calculi, ∞-SN)

Relations between system S and ludics, GoI, indexed LL. . .

Relations with Grellois-Melliès infinitary model of LL.

Non-idempotent typing operators P. Vial 6 Conclusion 45 /46

What we did and what we shall do

The λµ-calculus:
Characterization of HN and SN with non-idempotent/quantitative
methods (extension of R0).

Certification of reduction strategies.

Upper bounds on normalizing strategies.

Small-step operational semantics and SN (extension).

Perspectives

Exact bounds on normalizing strategies (à la Bernadet-Lengrand).

Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
λ̄µµ̃).

Studying the model underlying Hλµ.

Klop’s Problem and Infinitary Normalization

Characterizing infinitary weak normalization.

Certifying an infinitary reduction strategy (HHN).

Positive answer to TLCA Problem # 20.

Introduction of system S (sequential intersection, non-idem. flavor).

Introduction of a validity criterion (approximability).

Perspectives

Other forms of ∞-normalization (other calculi, ∞-SN)

Relations between system S and ludics, GoI, indexed LL. . .

Relations with Grellois-Melliès infinitary model of LL.

Non-idempotent typing operators P. Vial 6 Conclusion 45 /46

What we did and what we shall do

The λµ-calculus:
Characterization of HN and SN with non-idempotent/quantitative
methods (extension of R0).

Certification of reduction strategies.

Upper bounds on normalizing strategies.

Small-step operational semantics and SN (extension).

Perspectives

Exact bounds on normalizing strategies (à la Bernadet-Lengrand).

Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
λ̄µµ̃).

Studying the model underlying Hλµ.

Klop’s Problem and Infinitary Normalization

Characterizing infinitary weak normalization.

Certifying an infinitary reduction strategy (HHN).

Positive answer to TLCA Problem # 20.

Introduction of system S (sequential intersection, non-idem. flavor).

Introduction of a validity criterion (approximability).

Perspectives

Other forms of ∞-normalization (other calculi, ∞-SN)

Relations between system S and ludics, GoI, indexed LL. . .

Relations with Grellois-Melliès infinitary model of LL.

Non-idempotent typing operators P. Vial 6 Conclusion 45 /46

What we did and what we shall do

The λµ-calculus:
Characterization of HN and SN with non-idempotent/quantitative
methods (extension of R0).

Certification of reduction strategies.

Upper bounds on normalizing strategies.

Small-step operational semantics and SN (extension).

Perspectives

Exact bounds on normalizing strategies (à la Bernadet-Lengrand).

Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
λ̄µµ̃).

Studying the model underlying Hλµ.

Klop’s Problem and Infinitary Normalization

Characterizing infinitary weak normalization.

Certifying an infinitary reduction strategy (HHN).

Positive answer to TLCA Problem # 20.

Introduction of system S (sequential intersection, non-idem. flavor).

Introduction of a validity criterion (approximability).

Perspectives

Other forms of ∞-normalization (other calculi, ∞-SN)

Relations between system S and ludics, GoI, indexed LL. . .

Relations with Grellois-Melliès infinitary model of LL.

Non-idempotent typing operators P. Vial 6 Conclusion 45 /46

Thank you

Thank you for your attention!

Non-idempotent typing operators P. Vial 6 Conclusion 46 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

contrac

` ((A→ B)→ A)→ A |
Focussed Style

Non-idempotent typing operators P. Vial 6 Conclusion 47 /46

Typing call−cc in Hλµ

y : [[[A]→B]→A] ` y : [[A]→B]→A |

x : [A] ` x : A |
x : [A] ` [α]x : # | α : A

x : [A] ` µβ.[α]x : B | α : A

` λx.µβ.[α]x : [A]→ B | α : A

 λx.µβ.[α]x : [[A]→B] | α : A

y : [[[A]→B]→A] ` y(λx.µβ.[α]x) : A | α : A

y : [[[A]→B]→A] ` [α]y(λx.µβ.[α]x) : # | α : 〈A,A〉
y : [[[A]→B]→A] ` µα.[α]y(λx.µβ.[α]x) : 〈A,A〉 |
` λy.µα.[α]y(λx.µβ.[α]x) : [[[A]→B]→A]→ 〈A,A〉 |

Non-idempotent typing operators P. Vial 6 Conclusion 48 /46

Typing call−cc in Hλµ

y : [[[A]→B]→A] ` y : [[A]→B]→A |

x : [A] ` x : A |
x : [A] ` [α]x : # | α : A

x : [A] ` µβ.[α]x : B | α : A

` λx.µβ.[α]x : [A]→ B | α : A

 λx.µβ.[α]x : [[A]→B] | α : A

y : [[[A]→B]→A] ` y(λx.µβ.[α]x) : A | α : A

y : [[[A]→B]→A] ` [α]y(λx.µβ.[α]x) : # | α : 〈A,A〉
y : [[[A]→B]→A] ` µα.[α]y(λx.µβ.[α]x) : 〈A,A〉 |
` λy.µα.[α]y(λx.µβ.[α]x) : [[[A]→B]→A]→ 〈A,A〉 |

Non-idempotent typing operators P. Vial 6 Conclusion 48 /46

Infinite formulas are unsound

Let A be any formula.
We then set RA := (((. . .)→ A)→ A)→ A i.e. RA = RA → A.

x :

RA `

x :

RA

i.e. RA → A x :

RA `

x :

RA

x :

RA `

xx :

A

`

λx.x x :

RA → A

i.e. RA

RA ` RA RA ` RA
RA ` A

`

λx.x x :

RA

`

Ω :

A

Non-idempotent typing operators P. Vial 6 Conclusion 49 /46

Infinite formulas are unsound

Let A be any formula.
We then set RA := (((. . .)→ A)→ A)→ A i.e. RA = RA → A.

x :

RA `

x :

RA i.e. RA → A

x :

RA `

x :

RA

x :

RA `

xx :

A

`

λx.x x :

RA → A i.e. RA

RA ` RA RA ` RA
RA ` A

`

λx.x x :

RA

`

Ω :

A

Non-idempotent typing operators P. Vial 6 Conclusion 49 /46

Infinite formulas are unsound

Let A be any formula.
We then set RA := (((. . .)→ A)→ A)→ A i.e. RA = RA → A.

x :

RA `

x :

RA

i.e. RA → A x :

RA `

x :

RA

x :

RA `

xx :

A

`

λx.x x :

RA → A

i.e. RA

RA ` RA RA ` RA
RA ` A

`

λx.x x :

RA

`

Ω :

A

Non-idempotent typing operators P. Vial 6 Conclusion 49 /46

Infinite formulas are unsound

Let A be any formula.
We then set RA := (((. . .)→ A)→ A)→ A i.e. RA = RA → A.

x :RA ` x :RA

i.e. RA → A

x :RA ` x :RA

x :RA ` xx :A

` λx.x x :RA → A

i.e. RA

RA ` RA RA ` RA
RA ` A

` λx.x x :RA

` Ω :A

Non-idempotent typing operators P. Vial 6 Conclusion 49 /46

Truncation (Figures)

Γ = f : [[o]→ o]ω (infinite multiplicity)

Π′ B Γ ` fω : o

Every Variable
is Typed

[o]→ o

o

[o]→ o[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π′ B f : [[o]→ o]ω ` fω : o can be truncated into Π′4
[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π′ B f : [[o]→ o]ω ` fω : o can be truncated into Π′4
[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π′ B f : [[o]→ o]ω ` fω : o can be truncated into Π′4

[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π′ B f : [[o]→ o]ω ` fω : o can be truncated into Π′3

[]→ o

oo

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π′ B f : [[o]→ o]ω ` fω : o can be truncated into Π′3

[]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

fω may be replaced by f3(∆f∆f) in Π′3,
yielding Π3

3 :

[]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

fω may be replaced by f3(∆f∆f) in Π′3,
yielding Π3

3 :

[]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π3
3 may be expanded 3 times,

yielding Π3 B∆f∆f :

[]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Back to Π′4, level 4 truncation of Π′ :

[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

fω may be replaced by f4(∆f∆f) in Π′3,
yielding Π4

4 :

[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

fω may be replaced by f4(∆f∆f) in Π′3,
yielding Π4

4 :

[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Π4
4 may be expanded 4 times,

yielding Π4 B∆f∆f :

[]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)

Subject subst. (fin. t., fin. d.)

Expansion (Yf is typed)

Take the join for all trunc.

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)

Subject subst. (fin. t., fin. d.)

Expansion (Yf is typed)

Take the join for all trunc.

[]→ o

o

[o]→ o

o

[o]→ o

o

f

@f

@f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)

Subject subst. (fin. t., fin. d.)

Expansion (Yf is typed)

Take the join for all trunc.

[]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)

Subject subst. (fin. t., fin. d.)

Expansion (Yf is typed)

Take the join for all trunc.

[]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Truncation (Figures)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)

Subject subst. (fin. t., fin. d.)

Expansion (Yf is typed)

Take the join for all trunc.

[]→ o

o

[o]→ o

o

[o]→ o

o

∆f∆f

f

@f

@f

@

Non-idempotent typing operators P. Vial 6 Conclusion 50 /46

Support candidates

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

14

3

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

o
1

o1

4

→ 1

→
3

o1o3

8

Wrong Labels

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

o
1

o1

4

→3

o1

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

→ 1

o1

4

→ 1

o2

3

o1o3

8

Correct Labels

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

Type: (4 · (8·o3, 3·o1)→ o2)→ o1

→ 1

o1

4

→3

o1

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

14

3

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

14

3

Wrong Support

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

14

3

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Support candidates

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4·1, 4·3, 4·8}

14

3

Support:
{ε, 1, 4, 4·3}

Support candidate: a set of positions that is the support of a type

c·k→t1 c (a candidate supp is a tree)

c·k→t2 c·1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C ⊆ N∗. Then ∃T type, C = supp(T) iff C 6= ∅ and C
stable under→t1,→t2.

Non-idempotent typing operators P. Vial 6 Conclusion 51 /46

Bisupport Candidates

We want to show that every term t is typable in S.

Idea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing t and have a proposition of the
form:

Proposition: let t be a term and B a set of bipositions. Then,
∃P derivation, B = bisupp(P) iff B 6= ∅ and B stable under →1, →2, →3,. . . [see

Prop. 12.3, p. 260]

We must find suitable stability conditions.

Then, we show that there is actually a non-empty set that satisfies them.

Non-idempotent typing operators P. Vial 6 Conclusion 52 /46

Bisupport Candidates

We want to show that every term t is typable in S.

Idea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing t and have a proposition of the
form:

Proposition: let t be a term and B a set of bipositions. Then,
∃P derivation, B = bisupp(P) iff B 6= ∅ and B stable under →1, →2, →3,. . . [see

Prop. 12.3, p. 260]

We must find suitable stability conditions.

Then, we show that there is actually a non-empty set that satisfies them.

Non-idempotent typing operators P. Vial 6 Conclusion 52 /46

Bisupport Candidates

We want to show that every term t is typable in S.

Idea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing t and have a proposition of the
form:

Proposition: let t be a term and B a set of bipositions. Then,
∃P derivation, B = bisupp(P) iff B 6= ∅ and B stable under →1, →2, →3,. . . [see

Prop. 12.3, p. 260]

We must find suitable stability conditions.

Then, we show that there is actually a non-empty set that satisfies them.

Non-idempotent typing operators P. Vial 6 Conclusion 52 /46

Bisupport Candidates

We want to show that every term t is typable in S.

Idea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing t and have a proposition of the
form:

Proposition: let t be a term and B a set of bipositions. Then,
∃P derivation, B = bisupp(P) iff B 6= ∅ and B stable under →1, →2, →3,. . . [see

Prop. 12.3, p. 260]

We must find suitable stability conditions.

Then, we show that there is actually a non-empty set that satisfies them.

Non-idempotent typing operators P. Vial 6 Conclusion 52 /46

Guidelines of the proof

Reduce the problem (“every term is S-typable”) to a parametrized first order
theory Tt (t ∈ Λ).

Establish a “completeness-like” property:

Prop.: let t ∈ Λ. Then t is S-typable iff Tt is consistent.

How do we prove that Tt cannot be contradictory?

1 Assume ad absurdum that Tt is contradictory for some t. Then, there is a finite
proof C (standing for chain) that Tt is contradictory.

2 If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

3 Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t→ t′ such that C can be residuated into a chain C′ of t′ that does not
interact with redex (C′ is called a normal chain).

4 We prove that C′ cannot exist. So C does not either i.e. there is not proof of
contradiction.

5 Thus, Tt is consistent!

Remark: works for the infinitary λ-calculus!

Non-idempotent typing operators P. Vial 6 Conclusion 53 /46

Guidelines of the proof

Reduce the problem (“every term is S-typable”) to a parametrized first order
theory Tt (t ∈ Λ).

Establish a “completeness-like” property:

Prop.: let t ∈ Λ. Then t is S-typable iff Tt is consistent.

How do we prove that Tt cannot be contradictory?
1 Assume ad absurdum that Tt is contradictory for some t. Then, there is a finite

proof C (standing for chain) that Tt is contradictory.

2 If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

3 Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t→ t′ such that C can be residuated into a chain C′ of t′ that does not
interact with redex (C′ is called a normal chain).

4 We prove that C′ cannot exist. So C does not either i.e. there is not proof of
contradiction.

5 Thus, Tt is consistent!

Remark: works for the infinitary λ-calculus!

Non-idempotent typing operators P. Vial 6 Conclusion 53 /46

Guidelines of the proof

Reduce the problem (“every term is S-typable”) to a parametrized first order
theory Tt (t ∈ Λ).

Establish a “completeness-like” property:

Prop.: let t ∈ Λ. Then t is S-typable iff Tt is consistent.

How do we prove that Tt cannot be contradictory?
1 Assume ad absurdum that Tt is contradictory for some t. Then, there is a finite

proof C (standing for chain) that Tt is contradictory.

2 If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

3 Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t→ t′ such that C can be residuated into a chain C′ of t′ that does not
interact with redex (C′ is called a normal chain).

4 We prove that C′ cannot exist. So C does not either i.e. there is not proof of
contradiction.

5 Thus, Tt is consistent!

Remark: works for the infinitary λ-calculus!

Non-idempotent typing operators P. Vial 6 Conclusion 53 /46

Guidelines of the proof

Reduce the problem (“every term is S-typable”) to a parametrized first order
theory Tt (t ∈ Λ).

Establish a “completeness-like” property:

Prop.: let t ∈ Λ. Then t is S-typable iff Tt is consistent.

How do we prove that Tt cannot be contradictory?
1 Assume ad absurdum that Tt is contradictory for some t. Then, there is a finite

proof C (standing for chain) that Tt is contradictory.

2 If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

3 Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t→ t′ such that C can be residuated into a chain C′ of t′ that does not
interact with redex (C′ is called a normal chain).

4 We prove that C′ cannot exist. So C does not either i.e. there is not proof of
contradiction.

5 Thus, Tt is consistent!

Remark: works for the infinitary λ-calculus!

Non-idempotent typing operators P. Vial 6 Conclusion 53 /46

Order

Theorem (complete unsoundness): in R, every term is typable.
[Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed λ-term t, we set

[[t]] = {τ | ` t : τ is derivable}

Corollary: This yields a non-sensible model that discriminates terms according to
their order:

if t and u are two terms of different orders, then [[t]] 6= [[u]].

First model to do this!

Non-idempotent typing operators P. Vial 6 Conclusion 54 /46

Order

Theorem (complete unsoundness): in R, every term is typable.
[Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed λ-term t, we set

[[t]] = {τ | ` t : τ is derivable}

Corollary: This yields a non-sensible model that discriminates terms according to
their order:

if t and u are two terms of different orders, then [[t]] 6= [[u]].

First model to do this!

Non-idempotent typing operators P. Vial 6 Conclusion 54 /46

Order

Theorem (complete unsoundness): in R, every term is typable.
[Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed λ-term t, we set

[[t]] = {τ | ` t : τ is derivable}

Corollary: This yields a non-sensible model that discriminates terms according to
their order:

if t and u are two terms of different orders, then [[t]] 6= [[u]].

First model to do this!

Non-idempotent typing operators P. Vial 6 Conclusion 54 /46

Order

Theorem (complete unsoundness): in R, every term is typable.
[Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed λ-term t, we set

[[t]] = {τ | ` t : τ is derivable}

Corollary: This yields a non-sensible model that discriminates terms according to
their order:

if t and u are two terms of different orders, then [[t]] 6= [[u]].

First model to do this!

Non-idempotent typing operators P. Vial 6 Conclusion 54 /46

	Presentation
	Non-idempotent intersection types
	Resources for Classical Logic
	Infinite types and productive reduction
	Infinite types and unproductive reduction
	Conclusion

