Pierre VIAL
IRIF (Unwv. Paris Diderot and CNRS)

December 7, 2017

typing P. Vial 0 1 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1
transfer(1 000 000 000 $, calyon, my-account) _ 1
print("I’m rich now") Xr =

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1
transfer(1 000 000 000 $, calyon, my-account) _ 2
print("I’m rich now") Xr =

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1
transfer(1 000 000 000 $, calyon, my-account) _ 3
print("I’m rich now") Xr =

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1
transfer(1 000 000 000 $, calyon, my-account) _ 4
print("I’m rich now") Xr =

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

Non-idempotent typing operators P. Vial 1 PRESENTATION

x = 100

2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

e Termination or productivity (via source codes)

e Paths to terminal states.

e For that, using types (data descriptors).

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

e Termination or productivity (via source codes)

e Paths to terminal states.

e For that, using types (data descriptors).

Productivity:
e O.S.

e 2,3, 5,7, ..(primes)

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

CERTIFICATION AND LOGIC IN COMPUTER SCIENCE

x =1
while (x > 0):
x=x+1

transfer(1 000 000 000 $, calyon, my-account)
print("I’m rich now")

e Termination or productivity (via source codes)

e Paths to terminal states.

e For that, using types (data descriptors).

Productivity:
e O.S.

e 2,3, 5,7, ..(primes)

Backtracking:

~ Classical logic.

Non-idempotent typing operators P. Vial 1 PRESENTATION 2 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Ve, H(x) = M ()
H(8) = A (8)

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Ve, A (x) = M ()
H(8) = A (8)
A (8)

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Ve, A (x) = M ()
H(8) = A (8)
A (8)

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

Ve, A (x) = M ()
H(S) = M ()
WAE)

H(S)

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. is a man. Therefore, is mortal.

All ringtus are delgo. is a ringtu. Therefore, is delgo.

Va, 7 (x) = M (z)
H(S) = M(S) H(S)
A (3)

Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

Non-idempotent typing operators P. Vial 1 PRESENTATION 3 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Godel, 1931:
3 wunprovable state-
ments

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Godel, 1931
3 unprovable state- [Provable # True J
ments

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic

procedure to decide whether it is true or not?

Godel, 1931
3 unprovable state- [Provable # True J
ments

[primitive recursive]

functions (poor)

Non-idempotent typing operators P. Vial 1 PRESENTATION

4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Godel, 1931
3 unprovable state- [Provable # True J
ments

primitive recursive Can computation
functions (poor) save mathematics?

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Godel, 1931
3 unprovable state- [Provable # True J
ments

| e What is an algo. ?

primitive recursive Can computation What i tivel
functions (poor) save mathematics? ° at is effectively

computable?

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Godel, 1931
3 unprovable state- [Provable # True]
ments

| e What is an algo. ?

primitive recursive Can computation What i tivel
functions (poor) save mathematics? ° at is effectively

computable?

Turing machines (1936)

TM are universal

£ effectively computable
iff £ implementable in a TM

~» A prog. language L is Turing-complete
if £ has the same computational power as TMs.

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

TURING AND COMPUTABILITY

Entscheidung (1928): given a symbolic statement, is there an algorithmic
procedure to decide whether it is true or not?

Theorem (Turing, 1936)

o The Entscheidungsproblem has a negative answer

o The halting problem is undecidable: there does not exist a general method
deciding whether any program terminates or not.

Non-idempotent typing operators P. Vial 1 PRESENTATION 4 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n +Sm — Sn + m (inductive case)

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + S\m — Sn + m (inductive case)
A

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + %m — Sn + m (inductive case)
A

Sss0+ss0 — SSSS0+S0 — SSSSS0+0 — SSSSSO
3+2 — 4+1 — 5+0 — 5

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + %m — Sn + m (inductive case)
A

Sss0+SsSs0 — SSSS0+S0 — SSS8SSS0+0 — SSSSSO
3+2 — 4+1 — 5+0 — 5

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + %m — Sn + m (inductive case)
A

Sss0+SsSs0 — SSSS0+S0 — SSSSS0+0 — SSSSSO
3+2 — 4+1 — 5+0 — 5

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + %m — Sn + m (inductive case)
A

Sss0+Ss0 — SSSS0+S0 — SSS8SSS0+0 — SSSSSO
3+2 — 4+1 — 5+0 — 5

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

COMPUTATION AS REWRITING

@ One primitive.

e Functional paradigm.

@ Turing complete.

Allows to emulate many rewriting systems e.g.:

Example (implementing natural numbers)

0 : zero S : successor

Thus: S0~1 SS0~2 SSSSS0~5.

n+ 0 — n (terminal case) n + %m — Sn + m (inductive case)
A

Sss0+SsSs0 — SSSS0+S0 — SSSSS0+0 — SSSSSO

e Most structures (tabs, strings, pair of integers) can be implemented in this
fashion or in the A-calculus.

Non-idempotent typing operators P. Vial 1 PRESENTATION 5 /46

A-cALCUL (CHURCH, 1928)

Term construction (inductive grammar)

®

T Ax.t tu
Variable Abstraction Application

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Term construction (inductive grammar)

i ¢ u
T Ax.t tu
e 0 Variable Abstraction Application

@
OB
O,

Example: z(\y.zy)

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Term construction (inductive grammar)

®

T Ax.t tu
Variable Abstraction Application

Redex (reducible expression):
~» computation via substitution
producing a reduct

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Redex:
(Ax.r)s

Term construction (inductive grammar
O

®

T Ax.t tu
Variable Abstraction Application

Redex (reducible expression):
v ~» computation via substitution
producing a reduct

()
@

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Redex:
(Ax.r)s

Term construction (inductive grammar
O

®

T Ax.t tu
Variable Abstraction Application

Redex (reducible expression):
~» computation via substitution
producing a reduct

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Term construction (inductive grammar
O

®

T Ax.t tu
Variable Abstraction Application

Redex (reducible expression):
~» computation via substitution
producing a reduct

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

A-cALCUL (CHURCH, 1928)

Reduct:
rs/x]

WVT ®

Variable Abstraction Application

Term construction (inductive grammar
O

Redex (reducible expression):
~» computation via substitution
producing a reduct

Non-idempotent typing operators P. Vial 1 PRESENTATION 6 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

Non-idempotent typing operators P. Vial 1 PRESENTATION 7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

e Autoapplication is defined by:
autoapp(f) — £(f)

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

e Autoapplication is defined by:
autoapp(f) — £(f)

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

e Autoapplication is defined by:
autoapp(f) — £(f)

e Auto-autoapplication:

autoapp(autoapp) —

Non-idempotent typing operators P. Vial 1 PRESENTATION 7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

e Autoapplication is defined by:
autoapp(f) — £(f)

e Auto-autoapplication:

autoapp(autoapp) — autoapp(autoapp)

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

e Autoapplication is defined by:
autoapp(f) — £(f)

e Auto-autoapplication:

autoapp(autoapp) — autoapp(autoapp) — autoapp(autoapp)

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.
e Autoapplication is defined by:
autoapp(f) — £(f)
e Auto-autoapplication:

autoapp(autoapp) — autoapp(autoapp) — autoapp(autoapp)
— autoapp(autoapp)

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

e Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.
e Autoapplication is defined by:
autoapp(f) — £(f)
e Auto-autoapplication:

autoapp(autoapp) — autoapp(autoapp) — autoapp(autoapp)
— autoapp(autoapp) —iiiiiiiiian.n.

Non-idempotent typing operators P. Vial 1 PRESENTATION

7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

Autoapplication is defined by:
autoapp(f) — £(f)
e Auto-autoapplication:

autoapp() — autoapp(autoapp) — autoapp(autoapp)
— autoapp(autoapp) —iiiiiiiiian.n.

@ Some programs that do not terminate are still meaningful: the streams.

e Keep on producing terminated values.

Example: The program printing 2, 3, 5,
7, 11, 13... (the list of primes).

Non-idempotent typing operators P. Vial 1 PRESENTATION 7 /46

HIGHER-ORDER FUNCTIONS AND THEIR (POSSIBLE) DANGERS

Let app, (£, x) := £(£(x)).
o app, takes a function f as an argument.
e app, is a higher-order function.

Autoapplication is defined by:
autoapp(f) — £(f)
e Auto-autoapplication:

autoapp() — autoapp(autoapp) — autoapp(autoapp)
— autoapp(autoapp) —iiiiiiiiian.n.

@ Some programs that do not terminate are still meaningful: the streams.

e Keep on producing terminated values.

Example: The program printing 2, 3, 5, Contribution:
7, 11, 13... (the list of primes). characterizing productive streams.

Non-idempotent typing operators P. Vial 1 PRESENTATION 7 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

2+3x5 — 2415 — 17
N—~r— N—— A

Reducible (non-terminal) Terminal state
states

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TERMINAL STATES AND EXECUTTON/REDLKHHON’STRATECHES

2+3x5 — 2415 — 17
N—~r— N—— A

Reducible (non-terminal) Terminal state
states

o Let f(z) =z x x . What is the value of f(3 +4)?

Non-idempotent typing operators P. Vial 1 PRESENTATION

8 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

2+3x5 — 2415 — 17
N—~r— N—— A

Reducible (non-terminal) Terminal state
states

o Let f(z) =z x x . What is the value of f(3 +4)?

f(3+4)

(3+4)x(3+4)x (3+4)
TX(3+4)x(3+4)
7X7x(3+4)

TXTXT

49 x 7

L4 L ddid

343

Thurston (don’t be Thurston)

f(3+4) (3+4) x(3+4)x(3+4)
3x(34+4)x(3+4)+4x(3+4)x(3+4)
dozens of computation steps

Ll

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

2+3x5 — 2415 — 17
N—~r— N—— A

Reducible (non-terminal) Terminal state
states

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

Initial state Terminal state

" Infinite path
(keeps running,
never reaches the terminal state)

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TERMINAL STATES AND EXECUTION/REDUCTION STRATEGIES

Initial state Terminal state

" Infinite path
(keeps running,
never reaches the terminal state)

Reduction strategy

e Choice of a reduction path.
e Can be complete
e Must be certified.

Non-idempotent typing operators P. Vial 1 PRESENTATION 8 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Primitive types:

5: int (integer) [”Leopard”: String (string of Characters)]

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Primitive types:

5: int (integer) [”Leopard”: String (string of Characters)]

Compound types:

[length : String — int (function)]

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Let toLetters : int — String be the program:

toLetters(2) = "two” toLetters(10) = "ten”

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Let toLetters : int — String be the program:

toLetters(2) = "two” toLetters(10) = "ten”

toLetters(5) toLetters(”Leopard”)

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

e Types = data descriptors, following a grammar.

e Types provide certifications of correction.

Let toLetters : int — String be the program:

toLetters(2) = "two” toLetters(10) = "ten”
toLetters(5) toLetters(”Leopard”)
Correct! Incorrect!
Returns " five” The arg. ”Leopard” is not an int.

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

toLetters(5) toLetters(”Leopard”)
Correct! Incorrect!
Returns " five” The arg. ”Leopard” is not an int.

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

tolLetters : int — String 5:int
toLetters(5) : String

Typing certificate

toLetters(5) toLetters(”Leopard”)
Correct! Incorrect!
Returns " five” The arg. ”Leopard” is not an int.

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

toLetters : int — String

5:int

toLetters(5) : String

Typing certificate

toLetters(5)

Correct!
Returns " five”

Non-idempotent typing operators P. Vial

A—B A
B
Proof
toLetters(”Leopard”)
Incorrect!
The arg. ”Leopard” is not an int.

|

1 PRESENTATION

9 /46

TYPES

int — String

String

Typing certificate

toLetters(5)

Correct!
Returns " five”

P. Vial

Non-idempotent typing operators

int A— B A
B
Proof
toLetters(”Leopard”)
Incorrect!
The arg. ”Leopard” is not an int.

|

1 PRESENTATION

9 /46

TYPES

toLetters : int — String 5:int A— B A
toLetters(5) : String B
Typing certificate Proof

[This analogy goes further!}

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

TYPES

int — String int A— B A
String B
Typing certificate Proof

[This analogy goes further!}

[Curry—Howard correspondence!

Non-idempotent typing operators P. Vial 1 PRESENTATION 9 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination
toLetters : int — String 5:int A— B A
toLetters(5) : String B

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

Non-idempotent typing operators P. Vial 1 PRESENTATION 10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

lextensions

[Polymorphic Types] [Intersection Types]

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

lextensions

[Polymorphic Types] (Intersection Types)

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

lextensions

[Polymorphic Types] (Intersection Types)

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

lextensions

Does not capture
classical logic

|

[Polymorphic Types] (Intersection Types)

Non-idempotent typing operators P. Vial

1 PRESENTATION

10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Simple types

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable.

lextensions

Does not capture
classical logic

Get classical logic with
call—cc (Griffin, 90)

[Polymorphic Types] (Intersection Types)

Non-idempotent typing operators P. Vial

1 PRESENTATION 10 /46

CURRY-HOWARD (508)

Programming languages Logic
Type Formula
Simply Typed Program Proof
Reduction Step Cut-Elimination Step
Termination Termination

Does not capture
classical logic

@ Harness higher-order comput. in
a limited way.

@ Many progs. in terminal state
not typable. [Get classical logic With]

call—cc (Griffin, 90)

lextensions

| !
[Polymorphic Types] (Intersection Types)—»l Contributionl

Non-idempotent typing operators P. Vial 1 PRESENTATION 10 /46

CUT-ELIMINATION (ANIMATION)

a9
4 B
B
Number of occurrences:

B 4 P o1

I ® 1

W I : 1
A F

Initial proof of F' (using two lemmas)
[GOAL: having a one-block proofj
Non-idempotent typing operators

P. Vial 1 PRESENTATION

11 /46

CUT-ELIMINATION (ANIMATION)

VAR
W/

W

W

Number of occurrences:
v W Y 6
W@ 1I e 1

Im : 1

W

B F

After one cut-elim. step (one lemma)

[GOAL: having a one-block proofj

Non-idempotent typing operators P. Vial 1 PRESENTATION 11 /46

CUT-ELIMINATION (ANIMATION)

Number of occurrences:

P 10
¢ : 3
Im : 1

[GOAL: having a one-block proof}

CUT-ELIMINATION (ANIMATION)

Number of occurrences:

P 10
¢ : 3
Im : 1

After two cut-elim. steps

on-idempotent typing operators P. Vial 1 PRESENTATION 11 /46

CUT-ELIMINATION (ANIMATION)

Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

Non-idempotent typing operators P. Vial 1 PRESENTATION 11 /46

INTERSECTIONS TYPES (CoprPO, DEZANI, 1980)

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Non-idempotent typing operators P. Vial 1 PRESENTATION 12 /46

INTERSECTIONS TYPES (CoprPO, DEZANI, 1980)

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

t is typable

t can reach a Some reduction strategy
terminal state terminates on ¢

Non-idempotent typing operators P. Vial 1 PRESENTATION 12 /46

INTERSECTIONS TYPES (CoprPO, DEZANI, 1980)

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram.

Proof: by the “circular” implications:

t is typable

t can reach a Some reduction strategy
terminal state terminates on ¢

Intersection types

e Perhaps too expressive. . .

e ...but certify reduction strategies!

Non-idempotent typing operators P. Vial 1 PRESENTATION 12 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION

13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

Initial state
.~ of the prog.

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

STOP

(cannot be
reduced more)

Initial state
.~ of the prog.

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Initial
certificate

STOP
(cannot be
reduced more)

Initial state
,of the prog. = Terminal
state reached!!

Execution

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~> Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

NON-IDEMPOTENCY

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
~~ Possibly many certificates for a subprogram.

~ Size of certificates decreases.

Comparative (dis)advantages

o Insanely difficult to type a particular program.
e Whole type system easier to study!

o Easier proofs of termination!

o Easier proofs of characterization!

o Easier to certify a reduction strategy!

Non-idempotent typing operators P. Vial 1 PRESENTATION 13 /46

CONTENTS

[e Gardner/de Caravalho’s non-idempotent type system.]

(Contribution 1:

e Quantitative types for the Au-calculus (a classical calculus)

o Certificates of reduction strategies.

g J

(Contribution 2:
o Positive answer to Klop’s Problem.

o Certification of an infinitary reduction strategy. Introduction of a
new type system: system S (standing for sequences).

g J

(Contribution 3:

@ Around the expressive power of unconstrained infinitary
intersection types.

Non-idempotent typing operators P. Vial 1 PRESENTATION 14 /46

PLan

© NON-IDEMPOTENT INTERSECTION TYPES

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 15 /46

HEAD NORMALIZATION ()

head variable

@

Head Normal Form Head Reducible Term

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

head variable

Head Normal Form Head Reducible Term

e ¢ is head normalizing (HN) if 3 reduction path from ¢ to a HNF.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

N/
N/
@ O\

head variable " W head redex W
© ©
Head Normal Form Head Reducible Term

e ¢ is head normalizing (HN) if 3 reduction path from ¢ to a HNF.

@ The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

e ¢ is head normalizing (HN) if 3 reduction path from ¢ to a HNF.

@ The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

obvious

the head reduction strategy t is HN
terminates on t (Ipath from ¢ to a HNF)

true but not obvious

e ¢ is head normalizing (HN) if 3 reduction path from ¢ to a HNF.

@ The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

obvious

the head reduction strategy t is HN
terminates on t (Ipath from ¢ to a HNF)

true but not obvious

@ The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

HEAD NORMALIZATION ()

obvious

the head reduction strategy t is HN
terminates on t (Ipath from ¢ to a HNF)

true but not obvious

(Intersection types come to help!)

@ The head reduction strategy: reducing head redexes while it is possible.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 16 /46

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Expansion (SE):
Typing is stable under anti-
reduction.

Subject Reduction (SR):
Typing is stable under reduction.

SE is usually not verified by simple or

polymorphic type systems

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 17 /46

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): i“b_JeCt Fxpansion (iE): _
Typing is stable under reduction. yping 18 stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

typing the n Sy) t is typable SR + extra arg.

term. states
t can reach a Some reduction strategy
terminal state terminates on ¢

obvious

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 17 /46

FrROM INTERSECTION TYPES TO QUANTITATIVE TYPES

Types are built by means of base types, arrow (—) and intersection (A).

Associativity (AND)ANC ~ AN(DACQC)
ACT Axioms = Commutativity AND ~ DANA
Idempotence ANA ~ A

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 18 /46

FrROM INTERSECTION TYPES TO QUANTITATIVE TYPES

Types are built by means of base types, arrow (—) and intersection (A).

Associativity (AND)ANC ~ AAN(DAC)

ACT Axioms = Commutativity AND ~ DAA
Idempotence ANA ~ A
Traditional Intersection Types Quantitative Types
Coppo & Dezani 80 Gardner 94 - Kfoury 96
ACI (Idempotent) AC (Non-idempotent)
Types are sets: ANAANC is {A,C} | Types are multisets: AN AANC is [A, A, C]
Qualitative properties Quantitative properties

Remark (non-idem. case):
o [AJA,Cl#[A,Clie. ANANC » ANC .
o [A,B]+[A] =[A, A, B] i.e. A is multiset sum.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 18 /46

TYPES AND RULES (SYSTEM %)

(Strict Types) T,0 = 0€0|L—T
(Intersection Types) 7 [oilier

Strict types ~» syntax directed rules:

Dz [oilier bt T
L abs
N R I'E Azt [oilicr = 7

TFt:loi)ier =7 (Ti Fw:oi)ier
F+i€IFi Ftu:T

app

System %

Remark
e Relevant system (no weakening)

e In app-rule, pointwise multiset sum e.g.,

(@:lohy: [T+ (@:lo,7]) =z :[o,0, 7]y [7]

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

19 /46

PROPERTIES (%)

e Weighted Subject Reduction

o Reduction preserves types and environments, and. ..
e ...head reduction strictly decreases the nodes of the deriv. tree.

e Subject Expansion
e Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a A-term. Then equivalence between:
Q t is typable (in o)
Q@ tis HN

@ the head reduction strategy terminates on t (~ certification!)

Bonus (quantitative information)

If IT types t, then sizell bounds the number of steps of the head. red. strategy on t.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 20 /46

HEAD vS WEAK AND STRONG NORMALIZATION

Let t be a A-term.

e Head normalization (HN): there is a path from ¢ to a head normal form.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 21 /46

HEAD vS WEAK AND STRONG NORMALIZATION

Let t be a A-term.

e Head normalization (HN): there is a path from ¢ to a head normal form.

e Weak normalization (WN): there is at least one path from t to normal
form (NF).

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 21 /46

HEAD vS WEAK AND STRONG NORMALIZATION

Let t be a A-term.

e Head normalization (HN): there is a path from ¢ to a head normal form.

e Weak normalization (WN): there is at least one path from t to normal
form (NF).

e Strong normalization (SN): there is no infinite path starting at ¢.

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 21 /46

HEAD vS WEAK AND STRONG NORMALIZATION

Let t be a A-term.

e Head normalization (HN): there is a path from ¢ to a head normal form.

e Weak normalization (WN): there is at least one path from t to normal
form (NF).

e Strong normalization (SN): there is no infinite path starting at ¢.

SN = WN = HN.

Nota Bene: y 2 HNF but not WN (Az.y)? WN but not SN

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 21 /46

CHARACTERIZING WEAK AND STRONG NORMALIZATION

HN

WN

SN

System Zo
[any arg. can be left untyped]

System Zo
+ unforgetfulness criterion

[non-erasable args must be typed]

Modify system %o
with choice operator

[all args must be typed]

sz(II) bounds the number of
head reduction steps

sz(II) bounds the number
of leftmost-outermost red.
steps (and more)

sz(IT) bounds the length of
any reduction path

Non-idempotent typing operators P. Vial

2 NON-IDEMPOTENT INTERSECTION TYPES 22 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
'k Az.r:fo1,02,01] = 7 AfFs:or Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Lk Azor:fo1,00,00] = 7 AfFs:or Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Pk Az.r:fo,02,001] > 7 Afks:or Agbsior Abbs:og
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. Iy 11, Hlf
05 z:[o1,00,01] Fr:7
abs
Pk Az.r:fo,02,001] > 7 AfFs:or Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxioq
- ax :
z:[o1] Fxioq : [By relevance and non-idempotence !]

— Y aX
x:lo2] Fxion

. 1y I, Iy
05 z:[o1,00,01] Fr:7
abs
'k Az.r:fo1,02,01] = 7 Afksior Axksioa Abbs:o
a

F—i—A‘l‘—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

ax

z:[o2] b z:[og

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
't Az.r:fo1,00,01] = T AtFsiol] Asbs:og A‘{I—s;app
F—i—A‘f—i—Al{—i—AgF()\x.r)s: T

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 23 /46

SUBJECT REDUCTION AND EXPANSION IN %

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

- ax
1::[02}’}—95:

. Iy 11, Hlf
I; x:lo1,02,01)Fr:7
abs

LBz leremort—=T AtFsiol] Asbs:og A‘{I—s;app
F:I:A_(;_:l-—é-lb——i——&z'"_@@TT’)SZT

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES 23 /46

SUBJECT REDUCTION AND EXPANSION IN %

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

Al{}js:al
Afts:o1 :

Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

/'\
—

AfFs:oq

Al{ }—s ezl [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

/'\
—

Al{}js:al

AfFs:on [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7

Non-idempotent typing operators P. Vial 2 NON-IDEMPOTENT INTERSECTION TYPES

23 /46

PLan

© RESOURCES FOR CLASSICAL LOGIC

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 24 /46

THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law (A — B) — A) — A
gives classical logic.

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 25 /46

THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law (A — B) — A) — A
gives classical logic.

o Griffin 90: call—cc and Felleisen’s C-operator typable with Peirce’s Law
(A=B)—A) = A
~+ the Curry-Howard iso extends to classical logic

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 25 /46

THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law (A — B) — A) — A
gives classical logic.

o Griffin 90: call—cc and Felleisen’s C-operator typable with Peirce’s Law
(A=B)—A) = A

~+ the Curry-Howard iso extends to classical logic

o Parigot 92: Ap-calculus = computational interpretation of classical natural
deduction (e.g., vs. Aufi).

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 25 /46

THE LAMBDA-MU CALCULUS

o Intuit. logic + Peirce’s Law (A — B) — A) — A
gives classical logic.

o Griffin 90: call—cc and Felleisen’s C-operator typable with Peirce’s Law
(A=B)—A) = A
~+ the Curry-Howard iso extends to classical logic

o Parigot 92: Ap-calculus = computational interpretation of classical natural
deduction (e.g., vs. Aufi).

o Captures continuations

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 25 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic

26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:

o [af(z (wy.[a]e)){ufa} =

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic

26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:

o [af(z (wy.[a]e)){u)a} =

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic

26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:

o [af(z (wy.[a]e){ufa} =

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic

26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:

o [af(z (wy.[a]e){ufa} = [al(z (ny.[o]z u))u

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic

26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:
o [o](z (py.[o]z){ufa} = [a](z (uy.[olz u))u

e call—cc := A\y.pa.[a]y(Az.uB.[ax)

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:
o [o](z (py.[o]z){ufa} = [a](z (uy.[olz u))u

e call—cc := Ay.pa.[a]y(Az.pufb.fajz) : (A— B) - A) — A (simple typing)

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 26 /46

THE Ap-CALCULUS

Syntax: Variables z and names «

(Objects)) = tlec
(Terms) t,u = x| Azt|tu] poc
(Commands) ¢ = [at

Basic Meta-Operations:
o t[u/z] (subst.)

o c{uj/a} replaces every occurrence of [a]v inside ¢ by [a]v u.

Example:

o [a](z (py.[a]e){ufa} = [o](z (wy.[a]z u))u

e call—cc := Ay.pa.[a]y(Az.pub.fajz) : (A— B) - A) — A (simple typing)
Operational Semantics:

Arzt)u —g tlu/z substitution
B
(pa.c)u =, pa.cf{ufa} replacement

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 26 /46

THE TYPING SYSTEM

Extend non-idempotent types to classical logic.

Problem 1: Problem 2:
finding quantitative descriptors guaranteeing a decrease in
suitable to classical logic measure (weighted s.r.)

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LOoGIC 27 /46

THE TYPING SYSTEM

Extend non-idempotent types to classical logic.

Problem 1: Problem 2:

finding quantitative descriptors guaranteeing a decrease in
suitable to classical logic measure (weighted s.r.)

~» resort to non-idempotent Not obvious! The number of
union types (below right) nodes does not work (see later).

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LOoGIC 27 /46

THE TYPING SYSTEM

Extend non-idempotent types to classical logic.

Problem 1: Problem 2:

finding quantitative descriptors guaranteeing a decrease in

suitable to classical logic measure (weighted s.r.)

~» resort to non-idempotent Not obvious! The number of

union types (below right) nodes does not work (see later).
Intersection: 7,7 := Ulkek U,V =: (ok)rex: Union

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 27 /46

THE TYPING SYSTEM

Extend non-idempotent types to classical logic.

Problem 1: Problem 2:

finding quantitative descriptors guaranteeing a decrease in

suitable to classical logic measure (weighted s.r.)

~» resort to non-idempotent Not obvious! The number of

union types (below right) nodes does not work (see later).
Intersection: 7,7 := Ulkek U,V =: (ok)rex: Union

x: U, Ua); y: VIFE: U | a: (01,02),8: (11,72, 73)

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 27 /46

THE TYPING SYSTEM

Extend non-idempotent types to classical logic.

Problem 1: Problem 2:

finding quantitative descriptors guaranteeing a decrease in

suitable to classical logic measure (weighted s.r.)

~» resort to non-idempotent Not obvious! The number of

union types (below right) nodes does not work (see later).
Intersection: 7,7 := Ulkek U,V =: (ok)rex: Union

x: U, Ua); y: VIFE: U | a: (01,02),8: (11,72, 73)

[A, C and non-I e.g., (01,02) V {o1) = (01,02701)]

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIic 27 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:
Al - B1V...VA, — B AL N N Ag (A B A)
vS.

BiV ...V Bg

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

Ay — B V...VAL — Bk AL N N Ag (A—>B A)
v,
BiV ...V Bg B
e Two new rules (manipulation on the right-h.s.):
FHt:U|A Fkc:#|A
save = restore
PHlajt:# | AV{a:U} 'k pac: Ala)” | A\«

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

Al - B1V...VA, — B AL N N Ag (A B A)
v,
BiV ...V Bg B
e Two new rules (manipulation on the right-h.s.):
FHt:U|A Fkc:#|A
save = restore
PHlajt:# | AvVv{a:U} 'k pac: Ala)” | A\«

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

Ay — B V...VAL — Bk AL N N Ag (A—>B A)
v,
BiV ...V Bg B
e Two new rules (manipulation on the right-h.s.):
FHt:U|A Fkc:#|A
save = restore
PHlajt:# | AV{a:U} 'k pac: Ala)” | A\«

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

Ay — B V...VAL — Bk AL N N Ag (A—>B A)
v,
BiV ...V Bg B
e Two new rules (manipulation on the right-h.s.):
FHt:U|A Fkc:#|A
save - restore
PHlajt:# | AV{a:U} 'k pac: Ala)” | A\«

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:

Al - B1V...VA, — B AL N N Ag (A B A)
vsS.
BiV ...V Bg B
e Two new rules (manipulation on the right-h.s.):
PHt:U|A Pke:#|A
save - restore
PHlajt:# | AV{a:U} 'k pac: Ala)" | A\«

where _* = choice operator.

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

SOME TYPING RULES (SYSTEM H),,)

Syntax-direction, relevance, multiplicative rules accumulation of typing
information.

o app-rule based upon the admissible rule of ND:
Al - B1V...VA, — B AL N N Ag (A B A)
vS.

BiV ...V Bg

e Two new rules (manipulation on the right-h.s.):
FHt:U|A Fkc:#|A
ve restore

Fl—[a]t:#|A\/{a:U}sa IFpac: Ale)" | A\«

where _* = choice operator.

[callfcc [[[A]—=B]—A] — (A, A) vs. (A= B) - A) — A]

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGIC 28 /46

PROPERTIES AND CONTRIBUTIONS (1)

o Weighted Subject Reduction
number of nodes of IT +
with size(Il) = size of the type arities of all the names of commands +
multiplicities of arguments in all the app. nodes of II.

e Subject Expansion

Theorem (Kesner, Vial, FSCD17)

Let t be a Apu-term. Then equivalence between:
Q ¢ is typable (in Hxu)
Q tis HN
@ the head reduction strategy terminates on t (thus, h.r.strat. certified!).

Bonus (quantitative information)

size(Il) bounds the number of steps of the head. red. strategy on ¢.

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGiC 29 /46

CONTRIBUTIONS (2)

Theorem (Kesner,Vial, FSCD17)

e System S, characterizing SN for the Ap-calculus.

o sz(II) bounds the length of any reduction sequence starting at t.

Extension (small-step operational semantics for the Au-calculus)

@ Processing substitution and replacement one occurrence at a time.
o In \: (zyxzz)[s/z] ~ syss (1 big step)
o In Aex (zyza)[s/z] ~ syzz ~ syxzs~ syss (3 small-steps)

e Characterization of SN (extension of Sx,).

Non-idempotent typing operators P. Vial 3 RESOURCES FOR CLASSICAL LoGic 30 /46

PLan

© INFINITE TYPES AND PRODUCTIVE REDUCTION

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 31 /46

KrLor’s PROBLEM

o HN, WN, SN,...have been statically characterized by various ITS.

e Klop’s Problem: can the set of co-WN terms be characterized by an ITS ?
Def: t is co-WN iff its Bohm tree does not contain L

e Tatsuta [07]: an inductive ITS cannot do it.

e Can a coinductive ITS characterize the set of co-WN
terms?

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 32 /46

KrLor’s PROBLEM

o HN, WN, SN,...have been statically characterized by various ITS.

e Klop’s Problem: can the set of co-WN terms be characterized by an ITS ?
Def: t is co-WN iff its Bohm tree does not contain L

e Tatsuta [07]: an inductive ITS cannot do it.

e Can a coinductive ITS characterize the set of co-WN
terms?

e YES, with ITS = sequential + validity criterion.

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 32 /46

KrLor’s PROBLEM

o HN, WN, SN,...have been statically characterized by various ITS.

e Klop’s Problem: can the set of co-WN terms be characterized by an ITS ?
Def: t is co-WN iff its Bohm tree does not contain L

e Tatsuta [07]: an inductive ITS cannot do it.

e Can a coinductive ITS characterize the set of co-WN
terms?

e YES, with ITS = sequential + validity criterion.
e But...what is infinitary normalization?

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 32 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Vi = f(Y5) = f2(Yg) = fP(Yp) = fA(Yy) = o= [P (Yp) = o= fY

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = [(Y5) = f2(Yg) = fP(Yp) = fA(Yg) = o= [P (Yp) = o= Y

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr— f(Y5) = [2(Y5) = fP(Yp) = fA(Ys) = o= [P () = = Y

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr— f(Y5) = f2(Yg) = fP(Y5) = fA(Yg) = o= [P (Yp) = = Y

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = f(Y5) = f2(Yg) = fP(Yp) = [(Yy) = o= [P () = o= Y

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = f(Y5) = f2(Yg) = fP(Yp) = fA(Yy) = oo = [P (V) = o= Y

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = f(Y5) = f2(Yg) = fP(Yp) = fA(Yg) = o= [P (Yp) = o=

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = f(Y5) = f2(Yg) = fP(Yp) = fA(Yg) = o= [P (Yp) = o=

@ Yy not WN
@ Ys is co-WN
o oo-NF: f* = f(f*)

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION

33 /46

ProbpucTIVE VS. UNPRODUCTIVE REDUCTION

Productive reduction: Ay := A\z.f(zx) Yy :=AyAy "Curry f7

Yr = f(Y5) = f2(Yg) = fP(Yp) = fA(Yg) = o= [P (Yp) = o=

e Y; not WN
@ Ys is co-WN
o oo-NF: f* = f(f*)

Unproductive reduction: A = Az.xzz, 2 = A A (i.e. autoapp(autoapp))

ND—-0=-0-0-0—-Q— ...

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 33 /46

INFINITE TERMS

o Infinite A-terms.
o Infinite NF e.g., f*.
e Productive reduction sequence of infinite length (strongly converging
reduction sequence)
Yr— f(Yy)... 0k not @ — Q...
o A term ¢ is 0co-WN if 3 a reduction path to an co-NF.
o Hereditary head reduction strategy:

from lower (root) to upper levers.

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 34 /46

TOWARDS INFINITARY TYPING

To characterize co-WN, let us unforgetfully type infinite normal forms
~» no part of an co-NF must be left untyped. ..

@ Need to consider infinite derivations with a coinductive type grammar
(Zo ~~ R).

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 35 /46

TOWARDS INFINITARY TYPING

To characterize co-WN, let us unforgetfully type infinite normal forms
~» no part of an co-NF must be left untyped. ..

@ Need to consider infinite derivations with a coinductive type grammar

(Zo ~~ R).

Problem 1: how do we per-
form infinite subject reduc-
tion/expansion?

Actually, this is difficult only for SE

(extra-slide available)

Non-idempotent typing operators P. Vial

Problem 2: the coinductive
type grammar allows to define
p = [plo — o.

Using p, we may type Q with o
(unsound derivations)

4 INFINITE TYPES AND PRODUCTIVE REDUCTION 35 /46

TOWARDS INFINITARY TYPING

To characterize co-WN, let us unforgetfully type infinite normal forms
~» no part of an co-NF must be left untyped. ..

@ Need to consider infinite derivations with a coinductive type grammar

(Zo ~~ R).
Problem 1: how do we per- Problem 2: the coinductive
form infinite subject reduc- type grammar allows to define
tion/expansion? o = [plw — o.
Actually, this is difficult only for SE Using p, we may type § with o
(extra-slide available) (unsound derivations)

o Solution (for both problems): resort to a validity criterion called
approximability.

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 35 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others

z:[[]=okz:[]—o0

x : [[o] = o] Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

I1

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others

z:[o] 5ok xz:[o]—=o y:lolFy:o

z:[o] > oy:[o]Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

I1

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others (black C black+red)

z:[[o] 5ol x:[o]—=o0 y:loFy:o

z:[o] = oy:lo]Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

I1

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others (black C black+red)

z:[[o] 5ol x:[o]—=o0 y:loFy:o

z:[o] = oy:lo]Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

" .

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others (black C black+red)

z:[[o] 5ol x:[o]—=o0 y:loFy:o

z:[o] = oy:lo]Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

APPROXIMABILITY (INTUITIONS)

o A derivation is a set of symbols, that satisfies some grammar.

e Some derivations are included in others (black C black+red)

x:[[o] = o] Fx:[0] y:loFy:o

—o0
z:[o] = oy:lo]Fzy:o

e Informal Definition [Vial, LICS17]: a derivation II is approximable if, for
all finite selection of symbols By, there is a finite derivation II; included in II
and containing Bp.

Problem 3: Approximability
cannot be expressed with
multisets.

(no tracking with multisets)

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 36 /46

SEQUENTIAL INTERSECTION

Resorting to sequential intersection ! (~ approximability becomes definable)

e Strict Types:
S, T = 0€ O | (k- Sk)wex = T

e Sequence Types (k- Sk)kek

e Ezample: (7-01,3-02,2-01) = 0

7
7,3, 2,1 = “racks”

e Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-7)
vs. [o,1,0] =[o,7]+ [0]

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 37 /46

SEQUENTIAL INTERSECTION

Resorting to sequential intersection ! (~ approximability becomes definable)

e Strict Types:
S, T = 0€ O | (k- Sk)wex = T

e Sequence Types (k- Sk)kek

e Ezample: (7-01,3-02,2-01) = 0

7
7,3, 2,1 = “racks”

e Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-7)
vs. [o,1,0] =[o,7]+ [0]

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 37 /46

SEQUENTIAL INTERSECTION

Resorting to sequential intersection ! (~ approximability becomes definable)

e Strict Types:
S, T = 0€ O | (k- Sk)wex = T

e Sequence Types (k- Sk)kek

e Ezample: (7-01,3-02,2-01) = 0

7
7,3, 2,1 = “racks”

e Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-7)
vs. [o,1,0] =[o,7]+ [0]

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 37 /46

SEQUENTIAL INTERSECTION

Resorting to sequential intersection ! (~ approximability becomes definable)

e Strict Types:
S, T = 0€ O | (k- Sk)wex = T

e Sequence Types (k- Sk)kek

e Ezample: (7-01,3-02,2-01) = 0

7
7,3, 2,1 = “racks”

e Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-7)
vs. [o,1,0] =[o,7]+ [0]

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 37 /46

SEQUENTIAL INTERSECTION

Resorting to sequential intersection ! (~ approximability becomes definable)

e Strict Types:
S, T = 0€ O | (k- Sk)wex = T

e Sequence Types (k- Sk)kek

e Ezample: (7-01,3-02,2-01) = 0

7
7,3, 2,1 = “racks”

e Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-7)
vs. [o0,7 0] = [g,7] +[g]

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 37 /46

DERIVATIONS OF S

Cix: (Sk)kex Ft:T
o (k- T)Fa:T CFazt: (So)rex — T
Ckt: (Sk)kex =T (DeFu: Sk)keKa
CW (WrexDp)Ftu: T

abs

@ System S features pointers (called bipositions).

Approximability is definable in S

Problem 3 solved!

e Every S-derivation collapses on a %-derivation.

Given t, the set of the S-derivations typing t is a complete partial order (c.p.o.).

Non-idempotent typing operators P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 38 /46

CHARACTERIZATION OF INFINITARY WN

Proposition (Vial, LICS17)

In System S:

e SR: typing is stable by productive co-reduction.

e SE: approximable typing stable by productive co-expansion.

A oco-term t is co-WN iff t is unforgetfully typable by means of an approximable
derivation

~ Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Non-idempotent typing operators P. Vial

4 INFINITE TYPES AND PRODUCTIVE REDUCTION 39 /46

CHARACTERIZATION OF INFINITARY WN

Proposition (Vial, LICS17)

In System S:

e SR: typing is stable by productive co-reduction.

e SE: approximable typing stable by productive co-expansion.

A oco-term t is co-WN iff t is unforgetfully typable by means of an approximable
derivation

~ Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Last bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LICS07]).

Non-idempotent typing ope:

P. Vial 4 INFINITE TYPES AND PRODUCTIVE REDUCTION 39 /46

PLan

© INFINITE TYPES AND UNPRODUCTIVE REDUCTION

Non-idempotent typing operators P. Vial 5 INFINITE TYPES AND UNPRODUCTIVE REDUCTION 40 /46

TWO QUESTIONS ARISING FROM KLOP’S PROBLEM

Question 1 (the set of typable terms)

What is the set of typable terms in system % and S? (without approximability
condition)

Question 2 (relation between S and %)

Every S-derivation collapses on a Z-derivation.
But is the converse true?

Non-idempotent typing operators P. Vial 5 INFINITE TYPES AND UNPRODUCTIVE REDUCTION 41 /46

TWO QUESTIONS ARISING FROM KLOP’S PROBLEM

Question 1 (the set of typable terms)

What is the set of typable terms in system % and S? (without approximability
condition)

Theorem (Vial)

o FEvery term is typable in systems Z and S (non-trivial).

e One can extract from Z-typing the order (arity) of any A-term.

o In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and %)

Every S-derivation collapses on a Z-derivation.
But is the converse true?

Non-idempotent typing operators P. Vial 5 INFINITE TYPES AND UNPRODUCTIVE REDUCTION 41 /46

TWO QUESTIONS ARISING FROM KLOP’S PROBLEM

Question 1 (the set of typable terms)

What is the set of typable terms in system % and S? (without approximability
condition)

Theorem (Vial)

o FEvery term is typable in systems Z and S (non-trivial).

e One can extract from Z-typing the order (arity) of any A-term.

o In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and %)

Every S-derivation collapses on a Z-derivation.
But is the converse true?

Theorem (Vial)

o FEvery Z-derivation is the collapse of a S-derivation.

e One can encode any reduction choice in system % b.m.o. a S-derivation.

Non-idempotent typing ope:

P. Vial 5 INFINITE TYPES AND UNPRODUCTIVE REDUCTION 41 /46

DIFFICULTIES

o In the productive cases
(HN,WN,SN,00-WN), in i.t.s., one

types the normal forms and uses e w

subject expansion.

‘ normalizing terms C typable terms ‘

productivity /stabilization. /

e We develop a corpus of methods
inspired by first order model
theory (last part of the dissertation). /

e Here, no form of ..
&
6)

Non-idempotent typing operators P. Vial 5 INFINITE TYPES AND UNPRODUCTIVE REDUCTION 42 /46

PLan

© ConcLusion

Non-idempotent typing operators P. Vial 6 CONCLUSION 43 /46

BEYOND THIS THESIS

Intersection types via Grothendieck construction

[Mazza,Pellissier,Vial, POPL2018]

o Categorical generalization of ITS. a la Mellies-Zeilberger.

e Type systems = 2-operads (see below).

Type systems as 2-operads
o Level : T'H1¢: B t = multimorphism from I to B.

o Level 2: if T Ht: BT H : B,
t ~t' = 2-morphism from t to t'.

e Construction of an i.t.s. via a Grothendieck construction (pullbacks).

o Modularity: retrieving automatically
e.g., e.g., Coppo-Dezani, Gardner, %o, call-by-value + Hy, (use cyclic
2-operads)

Non-idempotent typing operators P. Vial 6 CONCLUSION

44 /46

WHAT WE DID AND WHAT WE SHALL DO

(The Ap-calculus:
e Characterization of HN and SN with non-idempotent/quantitative
methods (extension of o).

o Certification of reduction strategies.

o Upper bounds on normalizing strategies.

@ Small-step operational semantics and SN (extension).

\ J

Non-idempotent typing operators P. Vial 6 CONCLUSION 45 /46

WHAT WE DID AND WHAT WE SHALL DO

(The Ap-calculus:
e Characterization of HN and SN with non-idempotent/quantitative
methods (extension of o).

o Certification of reduction strategies.
o Upper bounds on normalizing strategies.

@ Small-step operational semantics and SN (extension).

\ J

'Perspectives

e Exact bounds on normalizing strategies (a la Bernadet-Lengrand).

e Quantitative types for other classical calculi (e.g., Curien-Herbelin’s
AWQL).

e Studying the model underlying H,.

Non-idempotent typing operators P. Vial 6 CONCLUSION 45 /46

WHAT WE DID AND WHAT WE SHALL DO

Non-idempotent typing operators P. Vial 6 CONCLUSION 45 /46

WHAT WE DID AND WHAT WE SHALL DO

'Klop’s Problem and Infinitary Normalization
o Characterizing infinitary weak normalization.
o Certifying an infinitary reduction strategy (HHN).
e Positive answer to TLCA Problem # 20.

o Introduction of system S (sequential intersection, non-idem. flavor).

o Introduction of a validity criterion (approzimability).

Non-idempotent typing operators P. Vial 6 CONCLUSION 45 /46

WHAT WE DID AND WHAT WE SHALL DO

'Klop’s Problem and Infinitary Normalization
o Characterizing infinitary weak normalization.
o Certifying an infinitary reduction strategy (HHN).
e Positive answer to TLCA Problem # 20.

o Introduction of system S (sequential intersection, non-idem. flavor).

o Introduction of a validity criterion (approzimability).

Perspectives
e Other forms of oco-normalization (other calculi, co-SN)
o Relations between system S and ludics, Gol, indexed LL...

o Relations with Grellois-Melliés infinitary model of LL.

Non-idempotent typing operators P. Vial 6 CONCLUSION 45 /46

THANK YOU

Thank you for your attention!

Non-idempotent typing operators P. Vial 6 CONCLUSION 46 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A—-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A—-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A= B)—>AFAA
(A= B)—>AFA
F(A—-B)—A) = A
Standard Style

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A—-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A=-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

A+A|B
AFB|A™
(A=-B)—> A (A—B)— A| FA—-BJ|A
(A-B)—-AFA|A
(A>B) > AF A|
F(A—>B)—A)— A|
Focussed Style

t

contrac

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A=-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

AFA|B
AFB|A™
(A=-B)—> A (A—B)— A| FA—-BJ|A
(A-B)—-AFA|A
(A>B) > AF A|
F(A—>B)—A)— A|
Focussed Style

t

contrac

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

PEIRCE’S LAwW IN CLASSICAL NATURAL DEDUCTION

A+ AB
(A-B)->A+FA—-B)—- A +A—-BA
(A=-B)—>AFAA
(A-B)—>AFA
F(A—-B)—A) = A
Standard Style

A+A|B
AFB|A™
(A=-B)—> A (A—B)— A| FA—-BJ|A
(A-B)—-AFA|A
(A>B) > AF A|
F(A—>B)—A)— A|
Focussed Style

t

contrac

Non-idempotent typing operators P. Vial 6 CONCLUSION 47 /46

TYPING call-cc IN Hy,

z:[AlFx: A
z:[AlF oz :#|a: A
z:[AlFpB.lajz: Bla: A
FAz.pblalz: [A] > Bla: A
y: [[[A]=B]—A]Fy: [[A|=B]—A| I Xz.pB.laz : [[A]>B] |a: A
y: [[[Al—=B]=Al Fy(Az.pb.lajz) : Ala: A

y: [[[A]=Bl= Al F [ely(Az.pf.[o]z) : # | a: (A, A)

y (A5 BISATF polalyOapblalz) (4, 4) |

g [y Oz B ez : [[A1> B> A] — (A, 4) |

Non-idempotent typing operators P. Vial 6 CONCLUSION 48 /46

TYPING call-cc IN Hy,

z:[AlFx: A
z:[AlF oz :#|a: A
z:[AlFpB.lajz: Bla: A
FAz.pblalz: [A] > Bla: A
y: [[[A]=B]—A]Fy: [[A|=B]—A| I Xz.pB.laz : [[A]>B] |a: A
y: [[[Al—=B]=Al Fy(Az.pb.lajz) : Ala: A

y: [[[A]=Bl= Al F [ely(Az.pf.[o]z) : # | a: (A, A)

y (A5 BISATF polalyOapblalz) (4, 4) |

g [y Oz B ez : [[A1> B> A] — (A, 4) |

Non-idempotent typing operators P. Vial 6 CONCLUSION 48 /46

INFINITE FORMULAS ARE UNSOUND

Let A be any formula.
We then set Ra := (((...) > A) > A) = Ai.e. Ra = Ra — A.

Rat Ra Rat Ra RatF Ra RaF Ra
RaF A RaF A
F Ra— A F Ra
H A

Non-idempotent typing operators P. Vial 6 CONCLUSION 49 /46

INFINITE FORMULAS ARE UNSOUND

Let A be any formula.
We then set Ra := (((...) > A) > A) = Ai.e. Ra = Ra — A.

RalF Ryie Ry— A RalF Ra Ratk Ra RaFRa
Ral A RaFA
- Ra— Aie Ra F Ra
A

Non-idempotent typing operators P. Vial 6 CONCLUSION 49 /46

INFINITE FORMULAS ARE UNSOUND

Let A be any formula.
We then set Ra := (((...) > A) > A) = Ai.e. Ra = Ra — A.

Rat Ra Rat Ra RatF Ra RaF Ra
RaF A RaF A
F Ra— A F Ra
H A

Non-idempotent typing operators P. Vial 6 CONCLUSION 49 /46

INFINITE FORMULAS ARE UNSOUND

Let A be any formula.
We then set Ra := (((...) > A) > A) = Ai.e. Ra = Ra — A.

rz:RakFx:Ra rz:RaFx:Ra Ral Ry RaF Ra
z:Rabtxz:A RaF A
Flrx.xx:Ras — A FAr.xx:Ra
FQ:A

Non-idempotent typing operators P. Vial 6 CONCLUSION 49 /46

TRUNCATION (FIGURES)

=Tk f“: 0

Every Variable
~ is Typed

I'=f: [[o] = o]. (infinite multiplicity)

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

II'> f : [[o] = 0]w F f“ : 0 can be truncated into IT}
[o] = o

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

II'> f : [[o] = 0]w F f“ : 0 can be truncated into IT}
o] = o

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

II'> f : [[o] = 0]w F f“ : 0 can be truncated into IT}

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

II'> f : [[o] = 0]w F f“ : 0 can be truncated into II3

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

II'> f : [[o] = 0]w F f“ : 0 can be truncated into II3

TRUNCATION (FIGURES)

f“ may be replaced by f3(AfA;) in TI4,
yielding I3 :

TRUNCATION (FIGURES)

f“ may be replaced by f3(AfA;) in TI4,
yielding I3 :

Non-idempotent typing operators P. Vial 6 CONCLUSION

50 /46

TRUNCATION (FIGURES)

I3 may be expanded 3 times,
yielding II5 > AfAf :

Non-idempotent typing operators P. Vial 6 CONCLUSION

50 /46

TRUNCATION (FIGURES)

Back to IT}, level 4 truncation of IT' :

TRUNCATION (FIGURES)

f“ may be replaced by f*(AfA;) in TIj,
yielding TI% :

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

f“ may be replaced by f*(AfA;) in TIj,
yielding TI% :

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

I} may be expanded 4 times,
yielding ITy > Ay Ay :

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

@ Initial derivation (inf. term, inf.
0 deriv.)

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

@ Initial derivation (inf. term, inf.
0 deriv.)

@ Truncation (inf t., f. deriv.)

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

0 deriv.)
@ Truncation (inf t., f. deriv.)

@ Subject subst. (fin. t., fin. d.)

@ Initial derivation (inf. term, inf.

Non-idempotent typing operators P. Vial 6 CONCLUSION

50 /46

TRUNCATION (FIGURES)

Initial derivation (inf. term, inf.
deriv.)

@ Truncation (inf t., f. deriv.)
@ Subject subst. (fin. t., fin. d.)
@ Expansion (~ Yy is typed)

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

TRUNCATION (FIGURES)

Initial derivation (inf. term, inf.
deriv.)

Truncation (inf t., f. deriv.)
Subject subst. (fin. t., fin. d.)
Expansion (~ Yy is typed)

Take the join for all trunc.

Non-idempotent typing operators P. Vial 6 CONCLUSION 50 /46

SUPPORT CANDIDATES

What is a correct type ?

Support:
{e,1,4,4-1,4-3, 4-8}

Non-idempotent typing operators P. Vial 6 CONCLUSION

51 /46

SUPPORT CANDIDATES

What is a correct type ?

Wrong Labels

Support:
{e,1,4,4-1,4-3, 4-8}

Non-idempotent typing operators P. Vial 6 CONCLUSION

51 /46

SUPPORT CANDIDATES

What is a correct type ?

Correct Labels

Support:
{e,1,4,4-1,4-3,4-8}

Type: (4-(8:03,3-01) = 02) = 01

Non-idempotent typing operators P. Vial 6 CONCLUSION

51 /46

SUPPORT CANDIDATES

What is a correct type ?

Support: Support:
{e,1,4,4-1,4-3, 4-8} {e, 1, 4, 4-3}

Non-idempotent typing operators P. Vial 6 CONCLUSION 51 /46

SUPPORT CANDIDATES

What is a correct type ?

‘Wrong Support

Support: Support:
{e,1,4,4-1,4-3, 4-8} {e, 1, 4, 4-3}

Non-idempotent typing operators P. Vial 6 CONCLUSION

51 /46

SUPPORT CANDIDATES

What is a correct type ?

Support: Support:
{e,1,4,4-1,4-3, 4-8} {e, 1, 4, 4-3}

Support candidate: a set of positions that is the support of a type

@ c-k—1c (a candidate supp is a tree)

@ c-k—2c 1 (if a node does not have a 1-child, it is a leaf)

Non-idempotent typing operators P. Vial 6 CONCLUSION 51 /46

SUPPORT CANDIDATES

What is a correct type ?

Support: Support:
{e,1,4,4-1,4-3, 4-8} {e, 1, 4, 4-3}

Support candidate: a set of positions that is the support of a type
@ c-k—1c (a candidate supp is a tree)

@ c-k—2c 1 (if a node does not have a 1-child, it is a leaf)

Lemma: Let C C N*. Then 3T type, C = supp(T) iff C # () and C
stable under —¢1, —>¢2.

Non-idempotent typing operators P. Vial 6 CONCLUSION

51 /46

BisupPORT CANDIDATES

o We want to show that every term t is typable in S.

Non-idempotent typing operators P. Vial 6 CONCLUSION 52 /46

BisurPPORT CANDIDATES

o We want to show that every term t is typable in S.

o [dea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing ¢ and have a proposition of the
form:

Proposition: let ¢t be a term and B a set of bipositions. Then,
3P derivation, B = bisupp(P) iff B # 0 and B stable under —1, —2, —3,. .. [see
Prop. 12.3, p. 260]

Non-idempotent typing operators P. Vial 6 CONCLUSION 52 /46

BisurPPORT CANDIDATES

o We want to show that every term t is typable in S.

o [dea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing ¢ and have a proposition of the
form:

Proposition: let ¢t be a term and B a set of bipositions. Then,
3P derivation, B = bisupp(P) iff B # 0 and B stable under —1, —2, —3,. .. [see
Prop. 12.3, p. 260]

e We must find suitable stability conditions.

Non-idempotent typing operators P. Vial 6 CONCLUSION 52 /46

BisurPPORT CANDIDATES

o We want to show that every term t is typable in S.

o [dea: we try to capture the notion of bisupport candidate: a set of pointers
that is the bisupport of a S-derivation typing ¢ and have a proposition of the
form:

Proposition: let ¢t be a term and B a set of bipositions. Then,
3P derivation, B = bisupp(P) iff B # 0 and B stable under —1, —2, —3,. .. [see
Prop. 12.3, p. 260]

e We must find suitable stability conditions.

@ Then, we show that there is actually a non-empty set that satisfies them.

Non-idempotent typing operators P. Vial 6 CONCLUSION 52 /46

GUIDELINES OF THE PROOF

@ Reduce the problem (“every term is S-typable”) to a parametrized first order
theory T¢ (t € A).
o Establish a “completeness-like” property:

Prop.: let t € A. Then t is S-typable iff T; is consistent.

e How do we prove that 7; cannot be contradictory?

Non-idempotent typing operators P. Vial 6 CONCLUSION 53 /46

GUIDELINES OF THE PROOF

@ Reduce the problem (“every term is S-typable”) to a parametrized first order
theory T¢ (t € A).

o Establish a “completeness-like” property:

Prop.: let t € A. Then t is S-typable iff T; is consistent.

e How do we prove that 7; cannot be contradictory?

@ Assume ad absurdum that T; is contradictory for some ¢. Then, there is a finite
proof C (standing for chain) that 7; is contradictory.

@ If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

Non-idempotent typing operators P. Vial 6 CONCLUSION 53 /46

GUIDELINES OF THE PROOF

@ Reduce the problem (“every term is S-typable”) to a parametrized first order
theory T¢ (t € A).

o Establish a “completeness-like” property:

Prop.: let t € A. Then t is S-typable iff T; is consistent.

e How do we prove that 7; cannot be contradictory?

@ Assume ad absurdum that T; is contradictory for some ¢. Then, there is a finite
proof C (standing for chain) that 7; is contradictory.

@ If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

@ Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t — t’ such that C can be residuated into a chain C’ of ¢’ that does not
interact with redex (C’ is called a normal chain).

@ We prove that C’ cannot exist. So C does not either i.e. there is not proof of
contradiction.

@ Thus, 7; is consistent!

Non-idempotent typing operators P. Vial 6 CONCLUSION 53 /46

GUIDELINES OF THE PROOF

@ Reduce the problem (“every term is S-typable”) to a parametrized first order
theory T¢ (t € A).

o Establish a “completeness-like” property:

Prop.: let t € A. Then t is S-typable iff T; is consistent.

e How do we prove that 7; cannot be contradictory?

@ Assume ad absurdum that T; is contradictory for some ¢. Then, there is a finite
proof C (standing for chain) that 7; is contradictory.

@ If C “visits” redexes, C is not decypherable. But we cannot eliminate redexes in all
generality (e.g., in mute terms). What can we do?

@ Fundamental idea: There is a finite reduction strategy (called the collapsing
strategy) t — t’ such that C can be residuated into a chain C’ of ¢’ that does not
interact with redex (C’ is called a normal chain).

@ We prove that C’ cannot exist. So C does not either i.e. there is not proof of
contradiction.

@ Thus, 7; is consistent!

e Remark: works for the infinitary A-calculus!

Non-idempotent typing operators P. Vial 6 CONCLUSION 53 /46

ORDER

Theorem (complete unsoundness): in %, every term is typable.
[Th 12.1, p. 276]

Non-idempotent typing operators P. Vial 6 CONCLUSION 54 /46

ORDER
Theorem (complete unsoundness): in %, every term is typable.
[Th 12.1, p. 276]

Theorem: if ¢ is a zero-term, then, ¢ is typable with o.
[Th 12.2, p. 276]

Non-idempotent typing operators P. Vial 6 CONCLUSION 54 /46

ORDER
Theorem (complete unsoundness): in %, every term is typable.
[Th 12.1, p. 276]

Theorem: if ¢ is a zero-term, then, ¢ is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed A-term ¢, we set

[t] = {7 |k t: 7 is derivable}

Non-idempotent typing operators P. Vial 6 CONCLUSION 54 /46

ORDER

Theorem (complete unsoundness): in %, every term is typable.
[Th 12.1, p. 276]

Theorem: if ¢ is a zero-term, then, ¢ is typable with o.
[Th 12.2, p. 276]

Definition (relational model): For all closed A-term ¢, we set

[t] = {7 |k t: 7 is derivable}

Corollary: This yields a non-sensible model that discriminates terms according to
their order:

if t and u are two terms of different orders, then [¢] # [u].

[First model to do this!]

Non-idempotent typing operators P. Vial 6 CONCLUSION 54 /46

	Presentation
	Non-idempotent intersection types
	Resources for Classical Logic
	Infinite types and productive reduction
	Infinite types and unproductive reduction
	Conclusion

