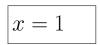
Non-Idempotent Typing Operators, beyond the λ -Calculus Soutenance de thèse

Pierre VIAL IRIF (Univ. Paris Diderot and CNRS)

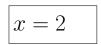
December 7, 2017

```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```

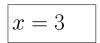
```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



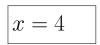
```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



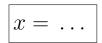
```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



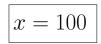
```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



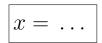
```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```



```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```

x =	
-----	--

```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```

x =

The core of this thesis

- Termination or productivity (via source codes)
- Paths to terminal states.
- For that, using **types** (data descriptors).

```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```

x =

The core of this thesis

- Termination or productivity (via source codes)
- Paths to terminal states.
- For that, using **types** (data descriptors).

Productivity:

• O. S.

```
x = 1
while (x > 0):
    x = x + 1
transfer(1 000 000 000 $, calyon, my-account)
print("I'm rich now")
```

x =

The core of this thesis

- Termination or productivity (via source codes)
- Paths to terminal states.
- For that, using **types** (data descriptors).

Productivity:

• O. S.

Backtracking:

 \simeq Classical logic.

FORMAL LOGIC (VALAR MORGHULIS)

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

$\forall x, \ \mathscr{H}(x) \Rightarrow \mathscr{M}(x)$	
$\mathscr{H}(\mathtt{S}) \mathrel{\Rightarrow} \mathscr{M}(\mathtt{S})$	$\overline{\mathscr{H}(\mathtt{S})}$
$\mathscr{M}(\mathtt{S})$	

$$\frac{ \begin{array}{c} \forall x, \ \mathcal{H}(x) \Rightarrow \mathcal{M}(x) \\ \hline \mathcal{H}(\mathbf{S}) \Rightarrow \mathcal{M}(\mathbf{S}) \end{array}}{\mathcal{M}(\mathbf{S})} \qquad \overline{\mathcal{H}(\mathbf{S})} \end{array}$$

$$\frac{\forall x, \ \mathcal{H}(x) \Rightarrow \mathcal{M}(x)}{\mathcal{H}(S) \Rightarrow \mathcal{M}(S)} \qquad \frac{}{\mathcal{H}(S)}$$

$$\frac{\forall x, \ \mathcal{H}(x) \Rightarrow \mathcal{M}(x)}{\mathcal{H}(S) \Rightarrow \mathcal{M}(S)} \qquad \frac{}{\mathcal{H}(S)}$$

All ringtus are delgo. Vinkri is a ringtu. Therefore, Vinkri is delgo.

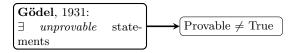
$$\frac{\forall x, \ \mathcal{H}(x) \Rightarrow \mathcal{M}(x)}{\mathcal{H}(S) \Rightarrow \mathcal{M}(S)} \qquad \overline{\mathcal{H}(S)}$$
$$\mathcal{M}(S)$$

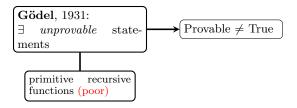
Formalization

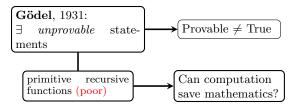
Reduce semantic (= meaning) to mechanical/grammatical/syntactic rules.

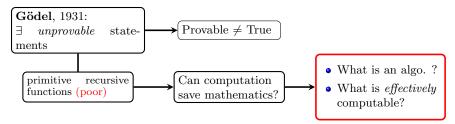
Entscheidung (1928): given a symbolic statement, is there an *algorithmic* procedure to *decide* whether it is *true* or not?

Gödel, 1931: ∃ unprovable statements

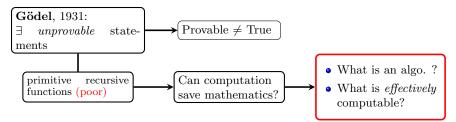








Entscheidung (1928): given a symbolic statement, is there an *algorithmic* procedure to *decide* whether it is *true* or not?



Turing machines (1936)

TM are universal

 ${\tt f} \ effectively \ computable$

 $\mathit{iff} \ \mathbf{f} \ \mathit{implementable} \ \mathit{in} \ \mathit{a} \ \mathit{TM}$

 \rightsquigarrow A prog. language $\mathcal L$ is Turing-complete

if \mathcal{L} has the same computational power as TMs.

Entscheidung (1928): given a symbolic statement, is there an *algorithmic* procedure to *decide* whether it is *true* or not?

Theorem (Turing, 1936)

- The Entscheidungsproblem has a negative answer
- The halting problem is undecidable: there does not exist a general method deciding whether any program terminates or not.

The $\lambda\text{-calculus}$

- One primitive.
- Functional paradigm.
- Turing complete.

The $\lambda\text{-calculus}$

- One primitive.
- Functional paradigm.
- Turing complete.

	Example (implementing natural numbers)			
	O:zero	S	: successor	
Thus	s: $SO \simeq 1$	$\mathrm{SSO}\simeq 2$	$SSSSSO \simeq 5.$	

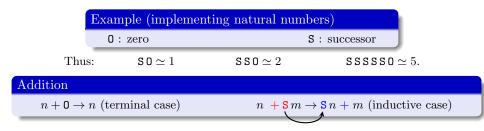
The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.

ſ	Example (implementing natural numbers)				
0:zero		S	S : successor		
Thus:	: $SO \simeq 1$	$\mathrm{SSO}\simeq 2$	$\mathbf{SSSSSO}\simeq 5.$		
Addition					
$n + 0 \rightarrow r$	n (terminal case)	$n + \mathrm{S}m \rightarrow$	$\mathbf{S}n + m$ (inductive case)		

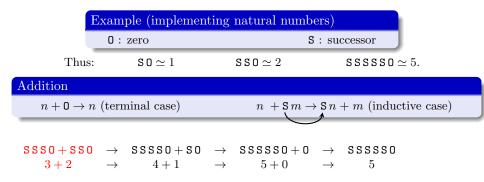
The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.



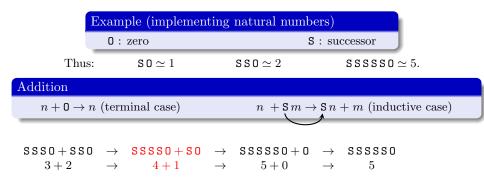
The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.



The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.

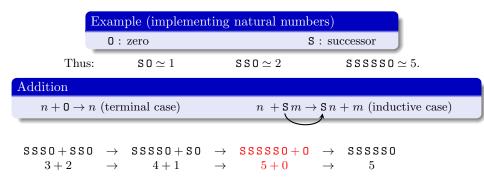


Computation as rewriting

The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.

Allows to emulate many rewriting systems e.g.:

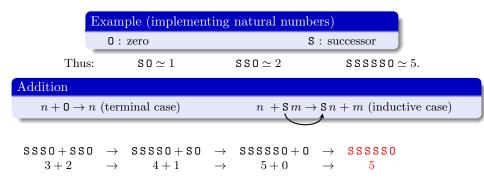


Computation as rewriting

The λ -calculus

- One primitive.
- Functional paradigm.
- Turing complete.

Allows to emulate many rewriting systems e.g.:

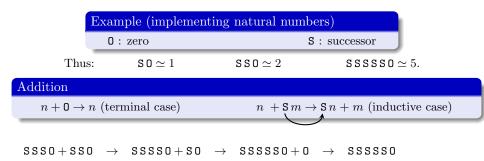


Computation as rewriting

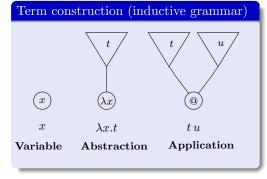
The λ -calculus

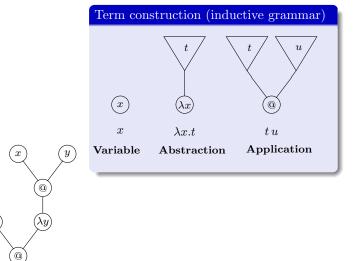
- One primitive.
- Functional paradigm.
- Turing complete.

Allows to emulate many rewriting systems e.g.:



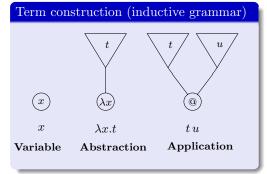
• Most structures (tabs, strings, pair of integers) can be implemented in this fashion or in the λ -calculus.



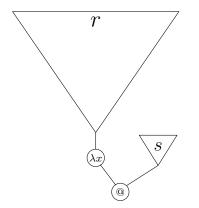


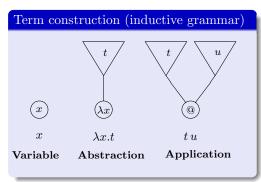
Example: $x(\lambda y.x y)$

x

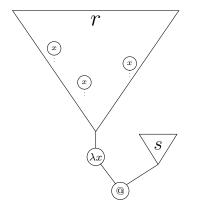


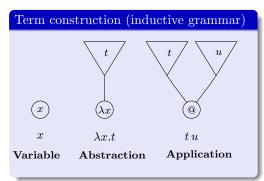
Redex: $(\lambda x.r)s$

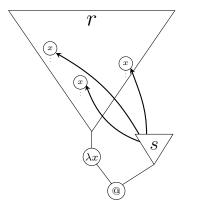




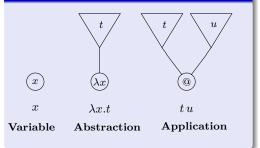
Redex: $(\lambda x.r)s$



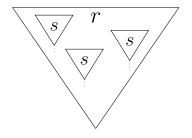


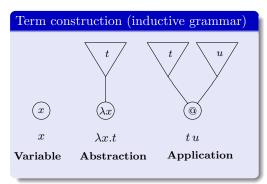


Term construction (inductive grammar)



Reduct: r[s/x]





- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app₂ is a higher-order function.

- Let $app_2(f, x) := f(f(x))$.
 - \bullet \mathtt{app}_2 takes a function \mathtt{f} as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \to \texttt{f}(\texttt{f})$

- Let $app_2(f, x) := f(f(x))$.
 - \bullet \mathtt{app}_2 takes a function \mathtt{f} as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\texttt{autoapp}(\texttt{autoapp}) \rightarrow$

- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $autoapp(autoapp) \rightarrow autoapp(autoapp)$

- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp})$

- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\begin{array}{l} \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \\ \rightarrow \texttt{autoapp}(\texttt{autoapp}) \end{array}$

- Let $app_2(f, x) := f(f(x))$.
 - app₂ takes a function **f** as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\begin{array}{l} \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \\ \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \dots \dots \dots \dots \dots \end{array}$

- Let $app_2(f, x) := f(f(x))$.
 - app_2 takes a function f as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\begin{array}{l} \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \\ \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \ldots \ldots \ldots \end{array}$

Remember

- Some programs that do not terminate are still meaningful: the **streams**.
- Keep on **producing** terminated values.

Example: The program printing 2, 3, 5, 7, 11, 13... (the list of primes).

- Let $app_2(f, x) := f(f(x))$.
 - app_2 takes a function f as an argument.
 - app_2 is a higher-order function.
- Autoapplication is defined by:

 $\texttt{autoapp}(\texttt{f}) \rightarrow \texttt{f}(\texttt{f})$

• Auto-autoapplication:

 $\begin{array}{l} \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \texttt{autoapp}(\texttt{autoapp}) \\ \rightarrow \texttt{autoapp}(\texttt{autoapp}) \rightarrow \ldots \ldots \ldots \end{array}$

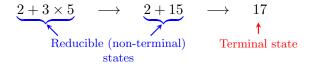
Remember

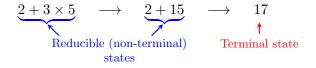
- Some programs that do not terminate are still meaningful: the **streams**.
- Keep on **producing** terminated values.

Example: The program printing 2, 3, 5, 7, 11, 13... (the list of primes).

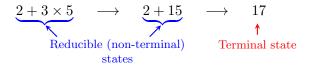
Contribution:

characterizing productive streams.





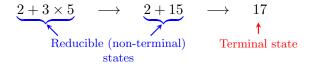
• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

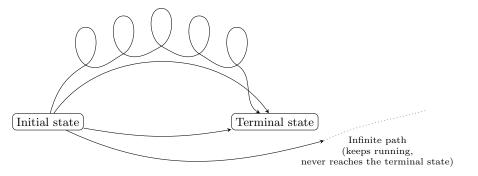


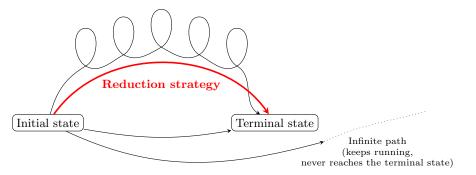
• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

Kim (smart)	Lee (not so)
$\begin{array}{rrrr} f(3+4) & \rightarrow & f(7) \\ & \rightarrow & 7 \times 7 \times 7 \\ & \rightarrow & 49 \times 7 \\ & \rightarrow & 343 \end{array}$	$ \begin{array}{rcl} f(3+4) & \rightarrow & (3+4) \times (3+4) \times (3+4) \\ & \rightarrow & 7 \times (3+4) \times (3+4) \\ & \rightarrow & 7 \times 7 \times (3+4) \\ & \rightarrow & 7 \times 7 \times 7 \\ & \rightarrow & 49 \times 7 \\ & \rightarrow & 343 \end{array} $

Thurston (don't be Thurston)	
\rightarrow \rightarrow \rightarrow \cdots	$(3+4) \times (3+4) \times (3+4)$ $3 \times (3+4) \times (3+4) + 4 \times (3+4) \times (3+4)$ dozens of computation steps







Reduction strategy

- Choice of a reduction path.
- Can be complete
- Must be **certified**.

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Primitive types:

5: int (integer)

"Leopard": String (string of characters)

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Primitive types:

5: int (integer)

"Leopard": String (string of characters)

Compound types:

 $\texttt{length}:\texttt{String} \to \texttt{int} \; (\texttt{function})$

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Example

Let toLetters : int \rightarrow String be the program:

toLetters(2) = "two"

toLetters(10) = "ten"

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Example

Let toLetters : int \rightarrow String be the program:

toLetters(2) = "two"

toLetters(10) = "ten"

toLetters("Leopard")

toLetters(5)

Principle

- Types = data **descriptors**, following a **grammar**.
- Types provide certifications of **correction**.

Example

Let $\texttt{toLetters}:\texttt{int}\to\texttt{String}$ be the program:

toLetters(2) = "two"

toLetters(10) = "ten"

toLetters(5)

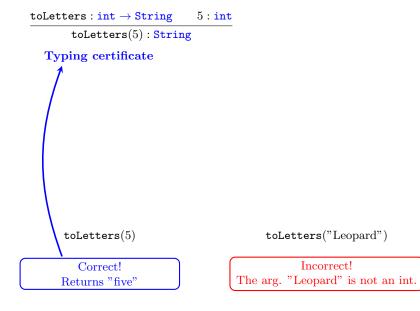
toLetters("Leopard")

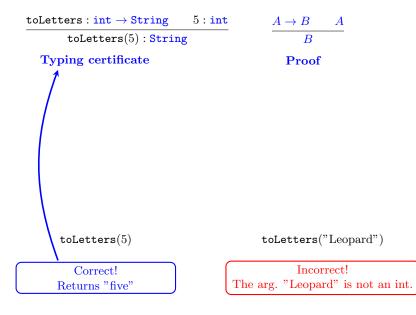
Incorrect! The arg. "Leopard" is not an int.

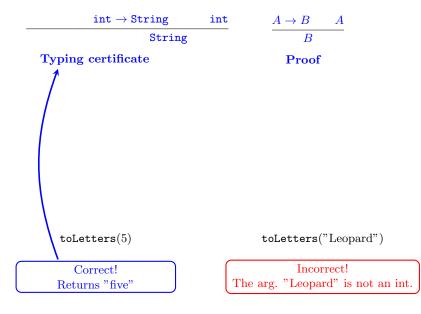
Correct! Returns "five"

Correct! Returns "five" toLetters("Leopard")

Incorrect! The arg. "Leopard" is not an int.

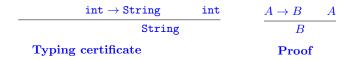


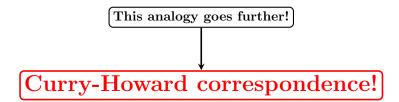




$\texttt{toLetters}: \texttt{int} \rightarrow \texttt{String}$	5: int	$A \to B$	\boldsymbol{A}
toLetters(5): String		B	
Typing certificate		Proof	

This analogy goes further!





Programming languages	Logic
Type	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination

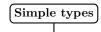
 $\frac{\texttt{toLetters}:\texttt{int} \rightarrow \texttt{String} \qquad 5:\texttt{int}}{\texttt{toLetters}(5):\texttt{String}}$

 $\frac{A \to B \qquad A}{B}$

Programming languages	Logic
Type	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination

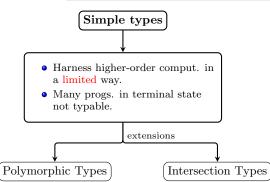
Simple types

Programming languages	Logic
Type	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination

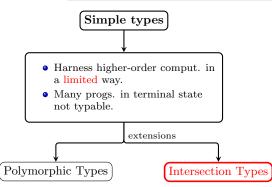


- Harness higher-order comput. in a limited way.
- Many progs. in terminal state not typable.

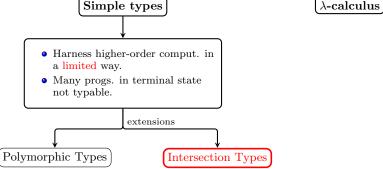
Programming languages	Logic
Туре	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination



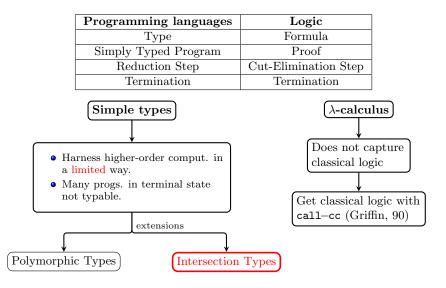
Programming languages	Logic
Туре	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination

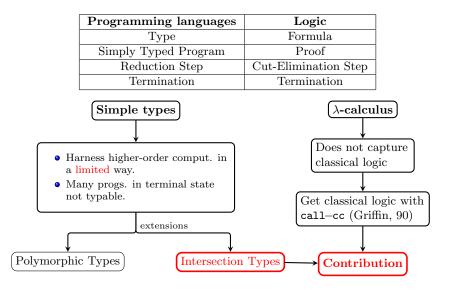


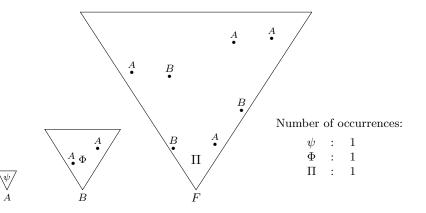
Programming languages	Logic
Type	Formula
Simply Typed Program	Proof
Reduction Step	Cut-Elimination Step
Termination	Termination



	Programming languages	Logic	
	Туре	Formula	
	Simply Typed Program	Proof	
	Reduction Step	Cut-Elimination Step	
	Termination	Termination	
a l • Ma	Simple types	Does not ca classical log	apture
Polymorphi	c Types Intersection	Types	

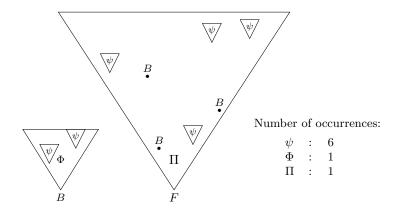






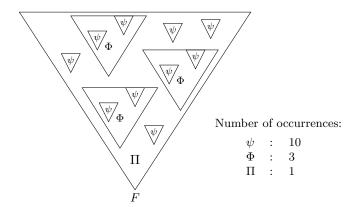
Initial proof of F (using two lemmas)

GOAL: having a one-block proof

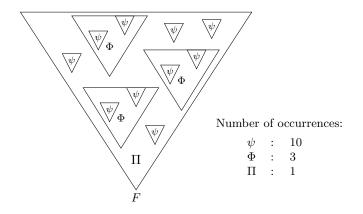


After one cut-elim. step (one lemma)

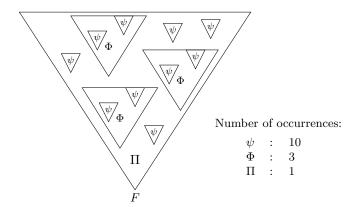
GOAL: having a one-block proof



GOAL: having a one-block proof



After two cut-elim. steps



Theorem (Gentzen, 1936, Prawitz, 1965)

The cut-elimination procedure terminates (and tells us a lot of things).

INTERSECTIONS TYPES (COPPO, DEZANI, 1980)

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

INTERSECTIONS TYPES (COPPO, DEZANI, 1980)

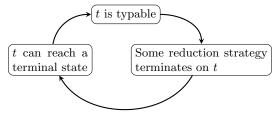
Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

Proof: by the "circular" implications:



INTERSECTIONS TYPES (COPPO, DEZANI, 1980)

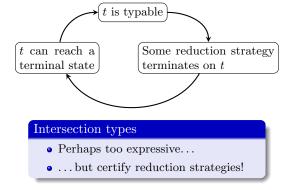
Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram.

Proof: by the "circular" implications:



Computation causes duplication.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

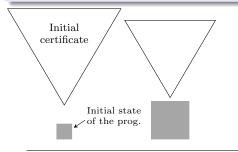
- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

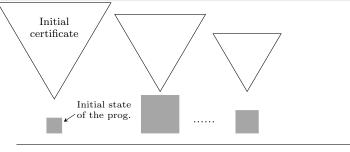


Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

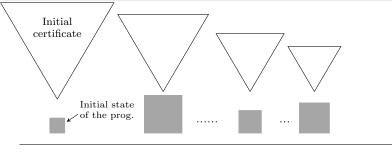


Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

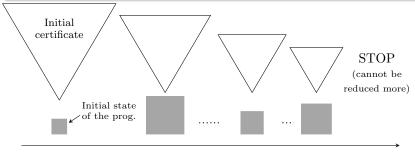


Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

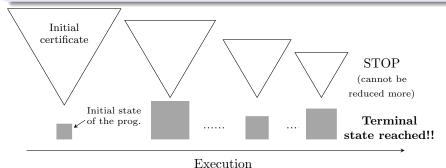


Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.



Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Comparative (dis)advantages

- Insanely difficult to type a particular program.
- Whole type system **easier** to study!
 - Easier proofs of termination!
 - Easier proofs of characterization!
 - Easier to certify a reduction strategy!

CONTENTS

• Gardner/de Caravalho's non-idempotent type system.

Contribution 1:

- Quantitative types for the $\lambda\mu$ -calculus (a *classical* calculus)
- Certificates of reduction strategies.

Contribution 2:

- Positive answer to Klop's Problem.
- Certification of an *infinitary* reduction strategy. Introduction of a new type system: system S (standing for **sequences**).

Contribution 3:

• Around the expressive power of unconstrained infinitary intersection types.

2 Non-idempotent intersection types

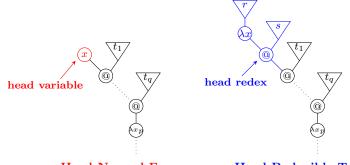
3 Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Infinite types and unproductive reduction

6 Conclusion

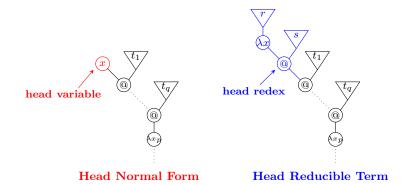
Head Normalization (λ)



Head Normal Form

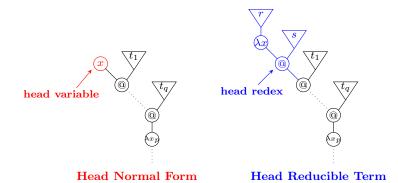
Head Reducible Term

Head Normalization (λ)



• t is head normalizing (HN) if \exists reduction path from t to a HNF.

Head Normalization (λ)



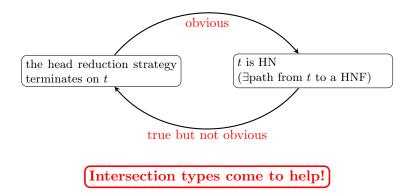
• t is head normalizing (HN) if \exists reduction path from t to a HNF.

• The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.



• The head reduction strategy: reducing head redexes while it is possible.

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

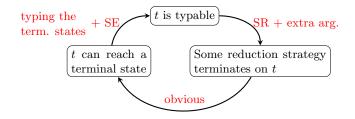
SE is usually not verified by simple or polymorphic type systems

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

SE is usually not verified by simple or polymorphic type systems



FROM INTERSECTION TYPES TO QUANTITATIVE TYPES

Types are built by means of base types, arrow (\rightarrow) and intersection (\wedge) .

$$ACI Axioms = \begin{cases} Associativity & (A \land D) \land C & \sim & A \land (D \land C) \\ Commutativity & A \land D & \sim & D \land A \\ Idempotence & A \land A & \sim & A \end{cases}$$

FROM INTERSECTION TYPES TO QUANTITATIVE TYPES

Types are built by means of base types, arrow (\rightarrow) and intersection (\wedge) .

$$ACI Axioms = \begin{cases} Associativity & (A \land D) \land C & \sim & A \land (D \land C) \\ Commutativity & A \land D & \sim & D \land A \\ Idempotence & A \land A & \sim & A \end{cases}$$

Traditional Intersection Types	Quantitative Types
Coppo & Dezani 80	Gardner 94 - Kfoury 96
ACI (Idempotent)	AC (Non-idempotent)
Types are sets: $A \wedge A \wedge C$ is $\{A, C\}$	Types are multisets: $A \wedge A \wedge C$ is $[A, A, C]$
Qualitative properties	Quantitative properties

Remark (non-idem. case):

•
$$[A, A, C] \neq [A, C]$$
 i.e. $A \land A \land C \nsim A \land C$.

• [A, B] + [A] = [A, A, B] *i.e.* \land is multiset sum.

Types and Rules (System \mathscr{R}_0)

Strict types \rightsquigarrow syntax directed rules:

$$\begin{array}{c} \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \rightarrow \tau} \texttt{abs} \\ \frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \rightarrow \tau}{\Gamma \vdash i \in I} \frac{(\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + i \in I} \texttt{app} \\ \end{array} \\ \begin{array}{c} \textbf{System } \mathscr{R}_0 \end{array}$$

Remark

- **Relevant** system (no weakening)
- In app-rule, pointwise multiset sum *e.g.*,

$$(x:[\boldsymbol{\sigma}];y:[\boldsymbol{\tau}])+(x:[\boldsymbol{\sigma},\boldsymbol{\tau}])=x:[\boldsymbol{\sigma},\boldsymbol{\sigma},\boldsymbol{\tau}];y:[\boldsymbol{\tau}]$$

Properties (\mathscr{R}_0)

• Weighted Subject Reduction

- Reduction preserves types and environments, and...
- ... head reduction strictly decreases the nodes of the deriv. tree.

• Subject Expansion

• Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ -term. Then equivalence between:

- t is typable (in \mathscr{R}_0)
- It is HN
- **9** the head reduction strategy terminates on t (\rightsquigarrow certification!)

Bonus (quantitative information)

If Π types t, then size Π bounds the number of steps of the head. red. strategy on t.

Let t be a $\lambda\text{-term.}$

• Head normalization (HN): there is a path from t to a head normal form.

Let t be a $\lambda\text{-term.}$

- Head normalization (HN): there is a path from t to a head normal form.
- Weak normalization (WN): there is at least one path from t to normal form (NF).

Let t be a $\lambda\text{-term.}$

- Head normalization (HN): there is a path from t to a head normal form.
- Weak normalization (WN): there is at least one path from t to normal form (NF).
- Strong normalization (SN): there is no infinite path starting at t.

Let t be a λ -term.

- Head normalization (HN): there is a path from t to a head normal form.
- Weak normalization (WN): there is at least one path from t to normal form (NF).
- Strong normalization (SN): there is no infinite path starting at t.

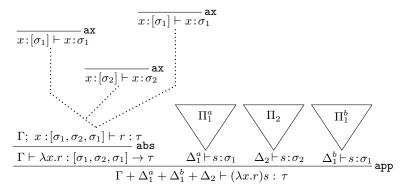
 $\begin{array}{l} \text{Normalization} \\ \text{SN} \Rightarrow \text{WN} \Rightarrow \text{HN.} \end{array}$

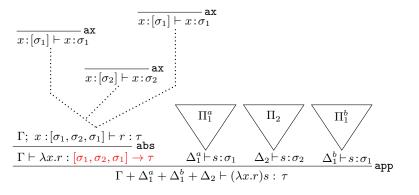
Nota Bene: $y \Omega$ HNF but not WN

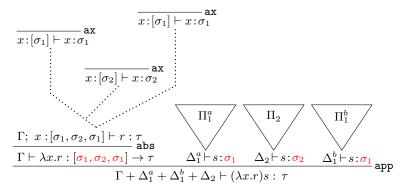
 $(\lambda x.y)\Omega$ WN but not SN

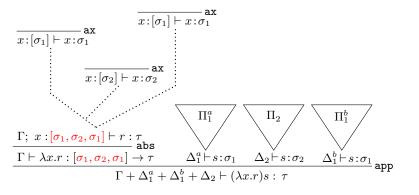
CHARACTERIZING WEAK AND STRONG NORMALIZATION

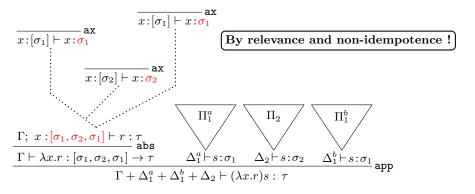
HN	System \mathscr{R}_0 any arg. can be left untyped	$sz(\Pi)$ bounds the number of <i>head</i> reduction steps
WN	$\begin{array}{c} \text{System } \mathscr{R}_0 \\ + \textbf{unforgetfulness criterion} \\ \hline \textit{non-erasable args must be typed} \end{array}$	$sz(\Pi)$ bounds the number of leftmost-outermost red. steps (and more)
SN	Modify system \mathscr{R}_0 with choice operator <i>all</i> args must be typed	$sz(\Pi)$ bounds the length of any reduction path

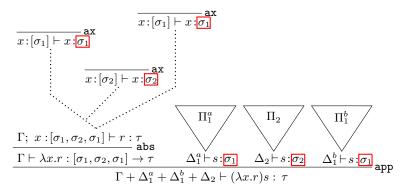


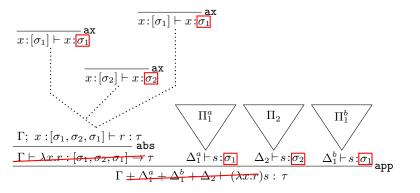


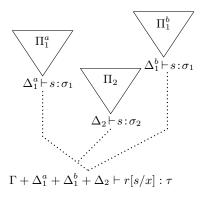


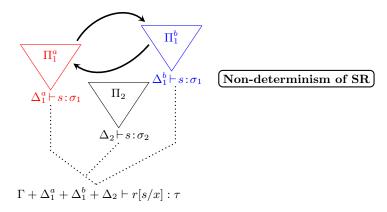


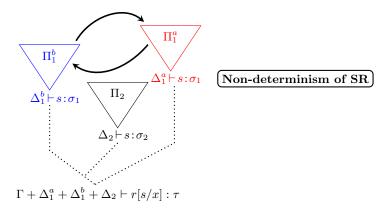












2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

THE LAMBDA-MU CALCULUS

• Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.

The Lambda-Mu Calculus

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call-cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$

 \rightsquigarrow the $\mathbf{Curry}\textbf{-}\mathbf{Howard}$ iso extends to classical logic

The Lambda-Mu Calculus

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call-cc and Felleisen's C-operator typable with Peirce's Law $((A \rightarrow B) \rightarrow A) \rightarrow A$ \sim the Curry-Howard iso extends to classical logic
- Parigot 92: λμ-calculus = computational interpretation of classical natural deduction (e.g., vs. λμμ).

The Lambda-Mu Calculus

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call-cc and Felleisen's C-operator typable with Peirce's Law $((A \rightarrow B) \rightarrow A) \rightarrow A$ \rightsquigarrow the Curry-Howard iso extends to classical logic
- Parigot 92: λμ-calculus = computational interpretation of classical natural deduction (e.g., vs. λμμ).
- Captures continuations

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

 $\bullet \ [\alpha](x\,(\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} =$

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

• $[\alpha](x (\mu \gamma . [\alpha]x)) \{ u / \!\! / \alpha \} =$

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

• $[\alpha](x(\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} =$

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

• $[\alpha](x (\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} = [\alpha](x (\mu\gamma.[\alpha]x u))u$

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

- $[\alpha](x (\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} = [\alpha](x (\mu\gamma.[\alpha]x u))u$
- call-cc := $\lambda y.\mu \alpha.[\alpha]y(\lambda x.\mu \beta.[\alpha]x)$

The $\lambda\mu$ -calculus

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

•
$$[\alpha](x(\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} = [\alpha](x(\mu\gamma.[\alpha]xu))u$$

• call-cc := $\lambda y.\mu \alpha.[\alpha] y(\lambda x.\mu \beta.[\alpha] x) : ((A \to B) \to A) \to A$ (simple typing)

The $\lambda\mu$ -calculus

Syntax: Variables x and **names** α

Basic Meta-Operations:

- t[u/x] (subst.)
- $c\{u/\!\!/\alpha\}$ replaces every occurrence of $[\alpha]v$ inside t by $[\alpha]v u$.

Example:

•
$$[\alpha](x(\mu\gamma.[\alpha]x))\{u/\!\!/\alpha\} = [\alpha](x(\mu\gamma.[\alpha]xu))u$$

• call-cc :=
$$\lambda y.\mu \alpha.[\alpha] y(\lambda x.\mu \beta.[\alpha] x) : ((A \to B) \to A) \to A$$
 (simple typing)

Operational Semantics:

$$\begin{array}{lll} (\lambda x.t)u & \rightarrow_{\beta} & t[u/x] & \text{substitution} \\ (\mu \alpha.c)u & \rightarrow_{\mu} & \mu \alpha.c\{u/\!\!/\alpha\} & \text{replacement} \end{array}$$

Extend non-idempotent types to **classical logic**.

Problem 1:

finding *quantitative* descriptors suitable to classical logic

Problem 2:

guaranteeing a *decrease* in measure (weighted s.r.)

Extend non-idempotent types to **classical logic**.

Problem 1:

finding *quantitative* descriptors suitable to classical logic

 \rightsquigarrow resort to **non-idempotent union types** (below right)

Problem 2:

guaranteeing a *decrease* in measure (weighted s.r.)

Not obvious! The number of nodes does not work (see later).

Extend non-idempotent types to **classical logic**.

Problem 1:

finding *quantitative* descriptors suitable to classical logic

 \rightsquigarrow resort to **non-idempotent union types** (below right)

Problem 2:

guaranteeing a *decrease* in measure (weighted s.r.)

Not obvious! The number of nodes does not work (see later).

Intersection: $\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$

 $\mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}$: Union

Extend non-idempotent types to **classical logic**.

Problem 1:

finding *quantitative* descriptors suitable to classical logic

 \rightsquigarrow resort to **non-idempotent union types** (below right)

Problem 2:

guaranteeing a *decrease* in measure (weighted s.r.)

Not obvious! The number of nodes does not work (see later).

 $\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} & \mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}: \ \textbf{Union} \\ & x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$

Extend non-idempotent types to **classical logic**.

Problem 1:

finding *quantitative* descriptors suitable to classical logic

 \rightsquigarrow resort to **non-idempotent union types** (below right)

Problem 2:

guaranteeing a *decrease* in measure (weighted s.r.)

Not obvious! The number of nodes does not work (see later).

Intersection:
$$\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$$

 $x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle$

A, **C** and **non-I** *e.g.*, $\langle \sigma_1, \sigma_2 \rangle \lor \langle \sigma_1 \rangle = \langle \sigma_1, \sigma_2, \sigma_1 \rangle$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND:

$$\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k}{B_1 \lor \ldots \lor B_k} \qquad \begin{pmatrix} A_1 \land \ldots \land A_k \\ & & \\ \end{pmatrix} \qquad \begin{pmatrix} vs. \frac{A \to B A}{B} \end{pmatrix}$$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

$$\frac{\Gamma \vdash t : \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t : \# \mid \Delta \lor \{\alpha : \mathcal{U}\}} \text{ save } \frac{\Gamma \vdash c : \# \mid \Delta}{\Gamma \vdash \mu \alpha . c : \Delta(\alpha)^* \mid \Delta \setminus \alpha} \text{ restore}$$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

 $\frac{\Gamma \vdash t: \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t: \# \mid \Delta \lor \{\alpha: \mathcal{U}\}} \text{ save } \qquad \frac{\Gamma \vdash c: \# \mid \Delta}{\Gamma \vdash \mu \alpha. c: \Delta(\alpha)^* \mid \Delta \setminus \!\! \setminus \!\! \alpha} \text{ restore}$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

 $\frac{\Gamma \vdash t: \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t: \# \mid \Delta \lor \{\alpha: \mathcal{U}\}} \text{ save } \qquad \frac{\Gamma \vdash c: \# \mid \Delta}{\Gamma \vdash \mu \alpha. c: \Delta(\alpha)^* \mid \Delta \setminus \!\! \setminus \!\! \alpha} \text{ restore}$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

 $\frac{\Gamma \vdash t: \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t: \# \mid \Delta \lor \{\alpha: \mathcal{U}\}} \text{ save } \qquad \frac{\Gamma \vdash c: \# \mid \Delta}{\Gamma \vdash \mu \alpha. c: \Delta(\alpha)^* \mid \Delta \setminus \!\! \setminus \!\! \alpha} \text{ restore}$

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

 $\frac{\Gamma \vdash t : \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t : \# \mid \Delta \lor \{\alpha : \mathcal{U}\}} \text{ save } \frac{\Gamma \vdash c : \# \mid \Delta}{\Gamma \vdash \mu \alpha . c : \Delta(\alpha)^* \mid \Delta \setminus \alpha} \text{ restore}$ where _* = choice operator.

Syntax-direction, relevance, multiplicative rules **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND: $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

• Two new rules (manipulation on the right-h.s.):

 $\frac{\Gamma \vdash t : \mathcal{U} \mid \Delta}{\Gamma \vdash [\alpha]t : \# \mid \Delta \lor \{\alpha : \mathcal{U}\}} \text{ save } \frac{\Gamma \vdash c : \# \mid \Delta}{\Gamma \vdash \mu \alpha . c : \Delta(\alpha)^* \mid \Delta \setminus \alpha} \text{ restore}$ where _* = choice operator.

$$\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \text{vs.} \qquad ((A \to B) \to A) \to A]$$

• Weighted Subject Reduction

with $size(\Pi) = \begin{cases} number of nodes of \Pi + size of the type arities of all the names of commands + multiplicities of arguments in all the app. nodes of <math>\Pi$.

• Subject Expansion

Theorem (Kesner, Vial, FSCD17)

Let t be a $\lambda\mu$ -term. Then equivalence between:

- *t* is typable (in $\mathcal{H}_{\lambda\mu}$)
- \bigcirc t is HN

• the head reduction strategy terminates on t (thus, h.r.strat. certified!).

Bonus (quantitative information)

 $size(\Pi)$ bounds the number of steps of the head. red. strategy on t.

Contributions (2)

Theorem (Kesner, Vial, FSCD17)

- System $S_{\lambda\mu}$ characterizing SN for the $\lambda\mu$ -calculus.
- $sz(\Pi)$ bounds the length of any reduction sequence starting at t.

Extension (small-step operational semantics for the $\lambda\mu$ -calculus)

- Processing substitution and replacement one occurrence at a time.
 - In λ : $(x y x x)[s/x] \rightsquigarrow s y s s$
 - In $\lambda_{ex} (x y x x) [s/x] \rightsquigarrow s y x x \rightsquigarrow s y x s \rightsquigarrow s y s s$

(1 big step) (3 small-steps)

• Characterization of SN (extension of $S_{\lambda\mu}$).

D PRESENTATION

2 Non-idempotent intersection types

3 Resources for Classical Logic

Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 CONCLUSION

- HN, WN, SN,... have been *statically* characterized by various ITS.
- Klop's Problem: can the set of ∞-WN terms be characterized by an ITS ? Def: t is ∞-WN iff its Böhm tree does not contain ⊥

• Tatsuta [07]: an inductive ITS cannot do it.

• Can a coinductive ITS characterize the set of ∞ -WN terms?

- HN, WN, SN,... have been *statically* characterized by various ITS.
- Klop's Problem: can the set of ∞-WN terms be characterized by an ITS ? Def: t is ∞-WN iff its Böhm tree does not contain ⊥
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?
- **YES**, with ITS = sequential + validity criterion.

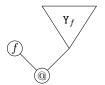
- HN, WN, SN,... have been *statically* characterized by various ITS.
- Klop's Problem: can the set of ∞-WN terms be characterized by an ITS ? Def: t is ∞-WN iff its Böhm tree does not contain ⊥
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?
- **YES**, with ITS = sequential + validity criterion.
- But... what is infinitary normalization?

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$$

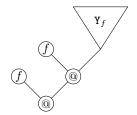
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to \mathbf{f}(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$$



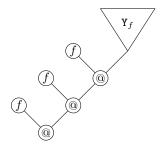
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to \mathbf{f}^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$



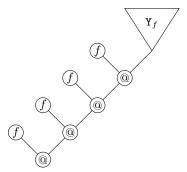
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$



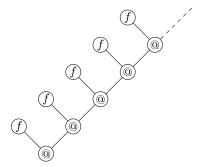
Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to \mathbf{f}^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$



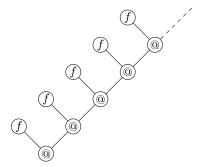
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$



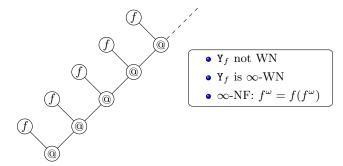
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$



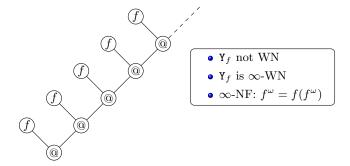
Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to \overset{\infty}{} f^{\boldsymbol{\omega}}$



Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to {}^{\infty} f^{\omega}$



Unproductive reduction: $\Delta = \lambda x.x x, \ \Omega = \Delta \Delta (i.e. \text{ autoapp}(\text{autoapp}))$ $\Omega \to \Omega \to \Omega \to \Omega \to \Omega \to \dots$

- Infinite λ -terms.
- Infinite NF *e.g.*, f^{ω} .
- Productive reduction sequence of infinite length (strongly converging reduction sequence)
 Y_f → f(Y_f)... ok not Ω → Ω...
- A term t is ∞ -WN if \exists a reduction path to an ∞ -NF.
- Hereditary head reduction strategy: from lower (root) to upper levers.

TOWARDS INFINITARY TYPING

Idea

To characterize ∞ -WN, let us unforgetfully type infinite normal forms \rightsquigarrow no part of an ∞ -NF must be left untyped...

• Need to consider infinite derivations with a coinductive type grammar $(\mathscr{R}_0 \rightsquigarrow \mathscr{R})$.

TOWARDS INFINITARY TYPING

Idea

To characterize ∞ -WN, let us unforgetfully type infinite normal forms \rightsquigarrow no part of an ∞ -NF must be left untyped...

• Need to consider infinite derivations with a coinductive type grammar $(\mathscr{R}_0 \rightsquigarrow \mathscr{R})$.

Problem 1: how do we perform infinite subject reduction/expansion?

Actually, this is difficult only for SE (extra-slide available)

Problem 2: the coinductive type grammar allows to define $\rho = [\rho]_{\omega} \rightarrow o$.

Using ρ , we may type Ω with o (unsound derivations)

TOWARDS INFINITARY TYPING

Idea

To characterize ∞ -WN, let us unforgetfully type infinite normal forms \rightsquigarrow no part of an ∞ -NF must be left untyped...

• Need to consider infinite derivations with a coinductive type grammar $(\mathscr{R}_0 \rightsquigarrow \mathscr{R}).$

Problem 1: how do we perform infinite subject reduction/expansion?

Actually, this is difficult only for SE (extra-slide available)

Problem 2: the coinductive type grammar allows to define $\rho = [\rho]_{\omega} \rightarrow o$.

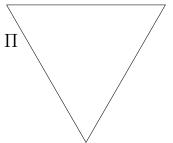
Using ρ , we may type Ω with o (unsound derivations)

• Solution (for both problems): resort to a *validity criterion* called approximability.

APPROXIMABILITY (INTUITIONS)

- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others

• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .

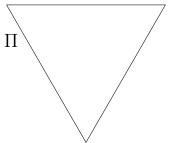


APPROXIMABILITY (INTUITIONS)

- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others

$$\frac{x: [[o] \rightarrow o] \vdash x: [o] \rightarrow o}{x: [[o] \rightarrow o]; y: [o] \vdash x y: o}$$

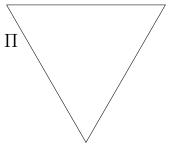
• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .



- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others (black \subseteq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

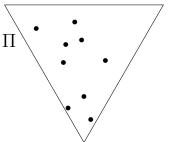
• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .



- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others (black \subseteq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

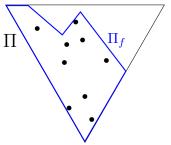
• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .



- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others (black \subseteq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

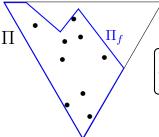
• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .



- A derivation is a set of symbols, that satisfies some grammar.
- Some derivations are included in others (black \subseteq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

• Informal Definition [Vial, LICS17]: a derivation Π is approximable if, for all *finite* selection of symbols B_0 , there is a *finite* derivation Π_f included in Π and containing B_0 .



Problem 3: Approximability cannot be expressed with multisets.

(no tracking with multisets)

Resorting to sequential intersection !

 $(\rightsquigarrow approximability becomes definable)$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Example:
$$(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \to o$$

 $7, 3, 2, 1 =$ "tracks"

• Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \tau)$$

 $vs. \ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Resorting to sequential intersection !

 $(\rightsquigarrow approximability becomes definable)$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Example:
$$(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \to o$$

7, 3, 2, 1 = "tracks"

• Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \tau)$ $vs. \ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Resorting to sequential intersection !

 $(\rightsquigarrow approximability becomes definable)$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Example:
$$(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \to o$$

 $7, 3, 2, 1 =$ "tracks"

• Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \tau)$ vs. $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Resorting to sequential intersection !

 $(\rightsquigarrow approximability becomes definable)$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Example:
$$(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \rightarrow o$$

 $7, 3, 2, 1 =$ "tracks" $0 \rightarrow 0$

• Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \tau)$ $vs. \ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Resorting to sequential intersection !

 $(\rightsquigarrow approximability becomes definable)$

• Strict Types:

$$S_k, T ::= o \in \mathscr{O} \mid (k \cdot S_k)_{k \in K} \to T$$

• Sequence Types $(k \cdot S_k)_{k \in K}$

• Example:
$$(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \rightarrow o$$

 $(7, 3, 2, 1 = \text{"tracks"}, 0 \rightarrow 0$

• Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \tau)$ $vs. \ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Derivations of ${\tt S}$

$$\begin{array}{l} \overline{x: \ (k \cdot T) \vdash x: T} \, \mathrm{ax} & \qquad \frac{C; \, x: (S_k)_{k \in K} \vdash t: T}{C \vdash \lambda x.t: (S_k)_{k \in K} \to T} \, \mathrm{abs} \\ \\ \frac{C \vdash t: \ (S_k)_{k \in K} \to T}{C \uplus (\uplus_{k \in K} D_k) \vdash t \, u: \, T} \, \mathrm{app} \end{array}$$

• System S features pointers (called bipositions).

Approximability is definable in S

Problem 3 solved!

 \bullet Every $S\text{-}\mathrm{derivation}$ collapses on a $\mathscr{R}\text{-}\mathrm{derivation}.$

Theorem

Given t, the set of the S-derivations typing t is a complete partial order (c.p.o.).

Proposition (Vial, LICS17)

In System S:

- SR: typing is stable by productive ∞ -reduction.
- SE: approximable typing stable by productive ∞ -expansion.

Theorem (Vial, LICS17)

- A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable derivation → Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Proposition (Vial, LICS17)

In System S:

- SR: typing is stable by productive ∞ -reduction.
- SE: approximable typing stable by productive ∞ -expansion.

Theorem (Vial, LICS17)

- A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable derivation → Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Last bonus (positive answer to TLCA Problem #20)

System S also provides a type-theoretic characterization of the **hereditary permutations** (not possible in the inductive case, Tatsuta [LICS07]).

D PRESENTATION

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Infinite types and unproductive reduction

6 Conclusion

Two questions arising from KLOP's problem

Question 1 (the set of typable terms)

What is the set of typable terms in system ${\mathscr R}$ and ${\bf S}?$ (without approximability condition)

Question 2 (relation between S and \mathscr{R})

Every S-derivation collapses on a \mathcal{R} -derivation. But is the converse true?

Two questions arising from Klop's problem

Question 1 (the set of typable terms)

What is the set of typable terms in system ${\mathscr R}$ and ${\bf S}?$ (without approximability condition)

Theorem (Vial)

- Every term is typable in systems \mathscr{R} and S (non-trivial).
- One can extract from \mathscr{R} -typing the order (arity) of any λ -term.
- In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and \mathscr{R})

Every S-derivation collapses on a \mathcal{R} -derivation. But is the converse true?

Two questions arising from Klop's problem

Question 1 (the set of typable terms)

What is the set of typable terms in system ${\mathscr R}$ and ${\bf S}?$ (without approximability condition)

Theorem (Vial)

- Every term is typable in systems \mathscr{R} and S (non-trivial).
- One can extract from \mathscr{R} -typing the order (arity) of any λ -term.
- In the infinitary relational model, no term has an empty denotation.

Question 2 (relation between S and \mathscr{R})

Every **S**-derivation collapses on a \mathcal{R} -derivation. But is the converse true?

Theorem (Vial)

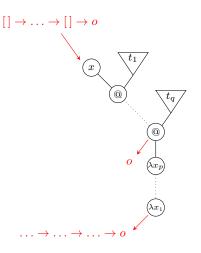
- Every \mathscr{R} -derivation is the collapse of a S-derivation.
- One can encode any reduction choice in system \mathscr{R} b.m.o. a S-derivation.

DIFFICULTIES

 In the productive cases (HN,WN,SN,∞-WN), in i.t.s., one types the normal forms and uses subject expansion.

normalizing terms \subseteq typable terms

- Here, no form of productivity/stabilization.
- We develop a corpus of methods inspired by **first order model theory** (last part of the dissertation).



D PRESENTATION

2 Non-idempotent intersection types

3 Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Infinite types and unproductive reduction

6 CONCLUSION

Intersection types via Grothendieck construction [Mazza,Pellissier,Vial, POPL2018]

- Categorical generalization of ITS. à la Melliès-Zeilberger.
- Type systems = 2-operads (see below).

Type systems as 2-operads

- Level 1: $\Gamma \vdash t : B$ t = multimorphism from Γ to B.
- Level 2: if $\Gamma \vdash t : B \xrightarrow{SR} \Gamma \vdash t' : B$, $t \rightsquigarrow t' = 2$ -morphism from t to t'.
 - Construction of an i.t.s. via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
 e.g., e.g., Coppo-Dezani, Gardner, *R*₀, call-by-value + H_{λμ} (use cyclic 2-operads)

The $\lambda\mu$ -calculus:

- Characterization of HN and SN with non-idempotent/quantitative methods (extension of \mathcal{R}_0).
- Certification of reduction strategies.
- Upper bounds on normalizing strategies.
- Small-step operational semantics and SN (extension).

The $\lambda\mu$ -calculus:

- Characterization of HN and SN with non-idempotent/quantitative methods (extension of \mathcal{R}_0).
- Certification of reduction strategies.
- Upper bounds on normalizing strategies.
- Small-step operational semantics and SN (extension).

Perspectives

- Exact bounds on normalizing strategies (à la Bernadet-Lengrand).
- Quantitative types for other classical calculi (*e.g.*, Curien-Herbelin's $\bar{\lambda}\mu\tilde{\mu}$).
- Studying the model underlying $\mathcal{H}_{\lambda\mu}$.

Klop's Problem and Infinitary Normalization

- Characterizing *infinitary* weak normalization.
- Certifying an *infinitary* reduction strategy (HHN).
- Positive answer to TLCA Problem # 20.
- \bullet Introduction of system S (sequential intersection, non-idem. flavor).
- Introduction of a validity criterion (*approximability*).

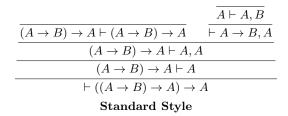
Klop's Problem and Infinitary Normalization

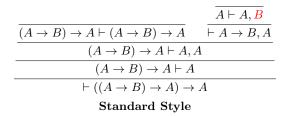
- Characterizing *infinitary* weak normalization.
- Certifying an *infinitary* reduction strategy (HHN).
- Positive answer to TLCA Problem # 20.
- Introduction of system S (sequential intersection, non-idem. flavor).
- Introduction of a validity criterion (*approximability*).

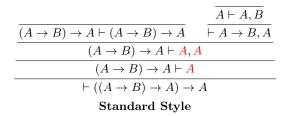
Perspectives

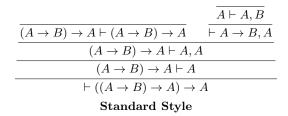
- Other forms of ∞ -normalization (other calculi, ∞ -SN)
- Relations between system **S** and ludics, GoI, indexed LL...
- Relations with Grellois-Melliès infinitary model of LL.

Thank you for your attention!

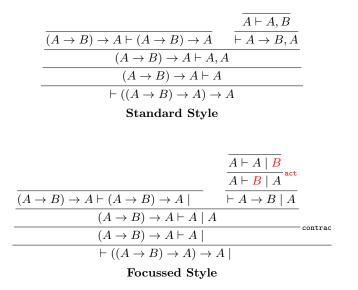




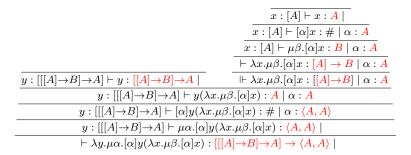


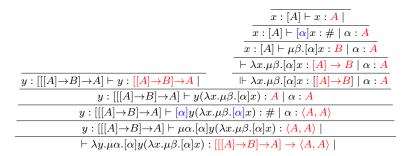












Let A be any formula.

We then set $R_A := (((\ldots) \to A) \to A) \to A$ *i.e.* $R_A = R_A \to A$.

$R_A \vdash$	R_A		$R_A \vdash$	R_A	$\overline{R_A \vdash R_A}$	$\overline{R_A \vdash R_A}$	
		$R_A \vdash A$			R_{\perp}	$R_A \vdash A$	
	F	$R_A \to A$			F	R_A	
			$\vdash A$				

Let A be any formula. We then set $R_A := (((\ldots) \to A) \to A) \to A$ *i.e.* $R_A = R_A \to A$.

$R_A \vdash R_A \ i.e. \ R_A \to A$	$R_A \vdash$	R_A	$\overline{R_A \vdash R_A}$	$\overline{R_A \vdash R_A}$
$R_A \vdash$		$R_A \vdash A$		
$\vdash \qquad R_A \to A$		F	R_A	
	\vdash A			

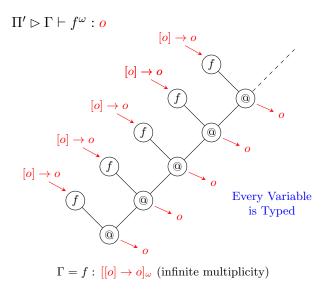
Let A be any formula.

We then set $R_A := (((\ldots) \to A) \to A) \to A$ *i.e.* $R_A = R_A \to A$.

$R_A \vdash$	R_A		$R_A \vdash$	R_A	$\overline{R_A \vdash R_A}$	$\overline{R_A \vdash R_A}$	
		$R_A \vdash A$			R_{\perp}	$R_A \vdash A$	
	F	$R_A \to A$			F	R_A	
			$\vdash A$				

Let A be any formula. We then set $R_A := (((\ldots) \to A) \to A) \to A$ *i.e.* $R_A = R_A \to A$.

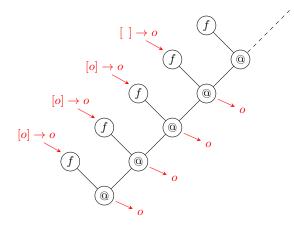
$x: R_A \vdash x: R_A$	$\overline{x:R_A\vdash x:R_A}$	$\overline{R_A \vdash R_A}$	$\overline{R_A \vdash R_A}$
$x:R_A \vdash x$	$R_A \vdash A$		
$\vdash \lambda x.xx:R_A \rightarrow$	$\vdash \lambda x.xx:R_A$		
	$\vdash \Omega : A$		



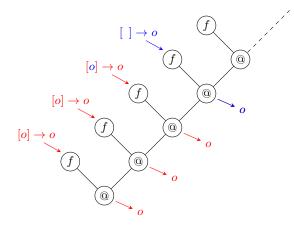
 $\Pi' \rhd f : [[o] \to o]_{\omega} \vdash f^{\omega} : o \text{ can be truncated into } \Pi'_4$ $[o] \rightarrow o$ $[o] \rightarrow o$ 0 $[o] \rightarrow o$ 0 0 $[o] \rightarrow o$ 0 0 $[o] \rightarrow o$ 0 0 0 0 0

 $\Pi' \rhd f : [[o] \to o]_{\omega} \vdash f^{\omega} : o \text{ can be truncated into } \Pi'_4$ $[o] \rightarrow o$ $[o] \rightarrow o$ 0 $[o] \rightarrow o$ 0 0 $[o] \rightarrow o$ 0 0 $[o] \rightarrow o$ 0 0 0 0 0

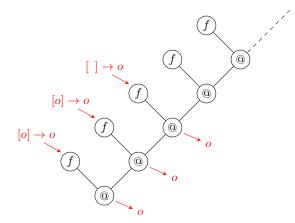
 $\Pi' \triangleright f : [[o] \to o]_{\omega} \vdash f^{\omega} : o \text{ can be truncated into } \Pi'_4$



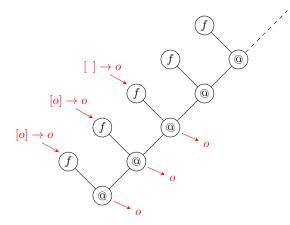
 $\Pi' \triangleright f : [[o] \to o]_{\omega} \vdash f^{\omega} : o \text{ can be truncated into } \Pi'_3$



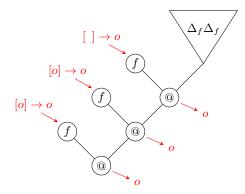
 $\Pi' \triangleright f : [[o] \to o]_{\omega} \vdash f^{\omega} : o \text{ can be truncated into } \Pi'_3$



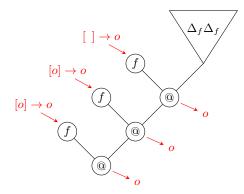
 f^{ω} may be replaced by $f^{3}(\Delta_{f}\Delta_{f})$ in Π'_{3} , yielding Π^{3}_{3} :



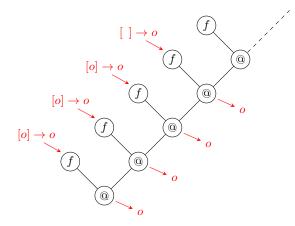
 f^ω may be replaced by $f^3(\Delta_f\Delta_f)$ in $\Pi_3',$ yielding Π_3^3 :



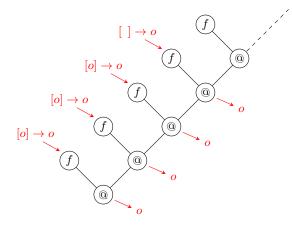
 Π_3^3 may be expanded 3 times, yielding $\Pi_3 \triangleright \Delta_f \Delta_f$:



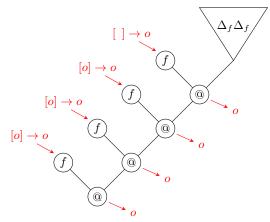
Back to Π'_4 , level 4 truncation of Π' :



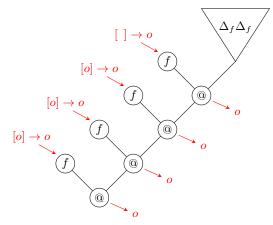
 f^{ω} may be replaced by $f^4(\Delta_f \Delta_f)$ in Π'_3 , yielding Π^4_4 :

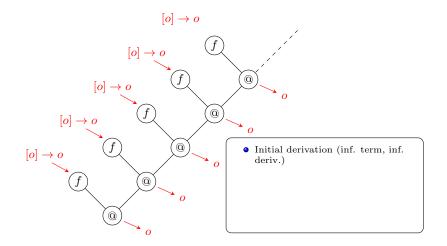


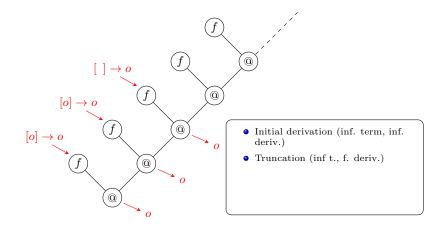
 f^{ω} may be replaced by $f^4(\Delta_f \Delta_f)$ in Π'_3 , yielding Π^4_4 :

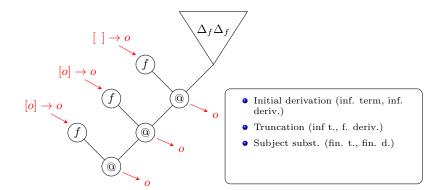


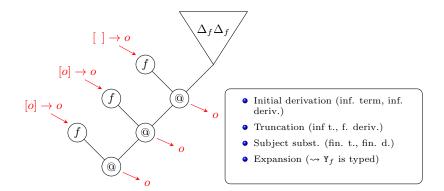
 Π_4^4 may be expanded 4 times, yielding $\Pi_4 \triangleright \Delta_f \Delta_f$:

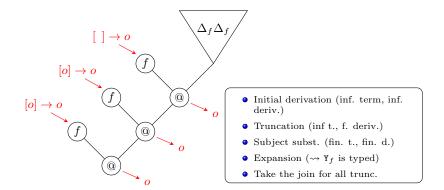






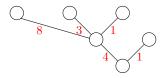






Support candidates

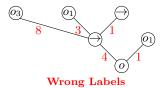
What is a correct type ?



Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

SUPPORT CANDIDATES

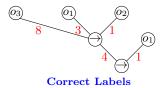
What is a correct type ?



Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

Support candidates

What is a correct type ?

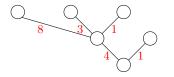


Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

Type: $(4 \cdot (8 \cdot o_3, 3 \cdot o_1) \rightarrow o_2) \rightarrow o_1$

Support candidates

What is a correct type ?

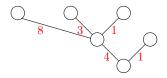


Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

Support: $\{\varepsilon, 1, 4, 4.3\}$

SUPPORT CANDIDATES

What is a correct type ?



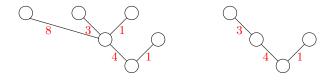
Wrong Support

Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

Support: $\{\varepsilon, 1, 4, 4.3\}$

Support candidates

What is a correct type ?



 Support:
 Support:

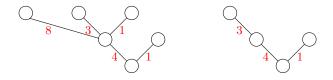
 $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$ $\{\varepsilon, 1, 4, 4 \cdot 3\}$

Support candidate: a set of positions that is the support of a type

- $c \cdot k \rightarrow_{t1} c$ (a candidate supp is a tree)
- $c \cdot k \rightarrow_{t2} c \cdot 1$ (if a node does not have a 1-child, it is a leaf)

Support candidates

What is a correct type ?



 Support:
 Support:

 $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$ $\{\varepsilon, 1, 4, 4 \cdot 3\}$

Support candidate: a set of positions that is the support of a type

- $c \cdot k \rightarrow_{t1} c$ (a candidate supp is a tree)
- $c \cdot k \rightarrow_{t2} c \cdot 1$ (if a node does not have a 1-child, it is a leaf)

Lemma: Let $C \subseteq \mathbb{N}^*$. Then $\exists T$ type, $C = \operatorname{supp}(T)$ iff $C \neq \emptyset$ and C stable under $\rightarrow_{t1}, \rightarrow_{t2}$.

BISUPPORT CANDIDATES

• We want to show that every term t is typable in **S**.

- We want to show that every term t is typable in **S**.
- *Idea:* we try to capture the notion of **bisupport candidate**: a set of pointers that is the bisupport of a S-derivation typing t and have a proposition of the form:

Proposition: let t be a term and B a set of bipositions. Then, $\exists P \text{ derivation}, B = \texttt{bisupp}(P) \text{ iff } B \neq \emptyset \text{ and } B \text{ stable under } \rightarrow_1, \rightarrow_2, \rightarrow_3, \dots \text{ [see Prop. 12.3, p. 260]}$

- We want to show that every term t is typable in **S**.
- *Idea:* we try to capture the notion of **bisupport candidate**: a set of pointers that is the bisupport of a S-derivation typing t and have a proposition of the form:

Proposition: let t be a term and B a set of bipositions. Then, $\exists P \text{ derivation}, B = \texttt{bisupp}(P) \text{ iff } B \neq \emptyset \text{ and } B \text{ stable under } \rightarrow_1, \rightarrow_2, \rightarrow_3, \dots \text{ [see Prop. 12.3, p. 260]}$

• We must find suitable stability conditions.

- We want to show that every term t is typable in **S**.
- *Idea:* we try to capture the notion of **bisupport candidate**: a set of pointers that is the bisupport of a S-derivation typing t and have a proposition of the form:

Proposition: let t be a term and B a set of bipositions. Then, $\exists P \text{ derivation}, B = \texttt{bisupp}(P) \text{ iff } B \neq \emptyset \text{ and } B \text{ stable under } \rightarrow_1, \rightarrow_2, \rightarrow_3, \dots \text{ [see Prop. 12.3, p. 260]}$

- We must find suitable stability conditions.
- Then, we show that there is actually a *non-empty* set that satisfies them.

- Reduce the problem ("every term is S-typable") to a parametrized first order theory \mathcal{T}_t $(t \in \Lambda)$.
- Establish a "completeness-like" property:

Prop.: let $t \in \Lambda$. Then t is S-typable iff \mathcal{T}_t is consistent.

• How do we prove that \mathcal{T}_t cannot be contradictory?

- Reduce the problem ("every term is S-typable") to a parametrized first order theory \mathcal{T}_t $(t \in \Lambda)$.
- Establish a "completeness-like" property:

Prop.: let $t \in \Lambda$. Then t is S-typable iff \mathcal{T}_t is consistent.

- How do we prove that \mathcal{T}_t cannot be contradictory?
 - Assume ad absurdum that \mathcal{T}_t is contradictory for some t. Then, there is a finite proof \mathcal{C} (standing for **chain**) that \mathcal{T}_t is contradictory.
 - **9** If C "visits" redexes, C is not decypherable. But we cannot eliminate redexes in all generality (*e.g.*, in mute terms). What can we do?

- Reduce the problem ("every term is S-typable") to a parametrized first order theory \mathcal{T}_t $(t \in \Lambda)$.
- Establish a "completeness-like" property:

Prop.: let $t \in \Lambda$. Then t is S-typable iff \mathcal{T}_t is consistent.

- How do we prove that \mathcal{T}_t cannot be contradictory?
 - Assume ad absurdum that \mathcal{T}_t is contradictory for some t. Then, there is a finite proof \mathcal{C} (standing for **chain**) that \mathcal{T}_t is contradictory.
 - If C "visits" redexes, C is not decypherable. But we cannot eliminate redexes in all generality (e.g., in mute terms). What can we do?
 - Fundamental idea: There is a finite reduction strategy (called the **collapsing** strategy) $t \to t'$ such that C can be residuated into a chain C' of t' that does not interact with redex (C' is called a **normal chain**).
 - We prove that \mathcal{C}' cannot exist. So \mathcal{C} does not either *i.e.* there is not proof of contradiction.
 - Thus, \mathcal{T}_t is consistent!

- Reduce the problem ("every term is S-typable") to a parametrized first order theory \mathcal{T}_t $(t \in \Lambda)$.
- Establish a "completeness-like" property:

Prop.: let $t \in \Lambda$. Then t is S-typable iff \mathcal{T}_t is consistent.

- How do we prove that \mathcal{T}_t cannot be contradictory?
 - Assume ad absurdum that \mathcal{T}_t is contradictory for some t. Then, there is a finite proof \mathcal{C} (standing for **chain**) that \mathcal{T}_t is contradictory.
 - If C "visits" redexes, C is not decypherable. But we cannot eliminate redexes in all generality (e.g., in mute terms). What can we do?
 - Fundamental idea: There is a finite reduction strategy (called the **collapsing** strategy) $t \to t'$ such that C can be residuated into a chain C' of t' that does not interact with redex (C' is called a **normal chain**).
 - We prove that \mathcal{C}' cannot exist. So \mathcal{C} does not either *i.e.* there is not proof of contradiction.
 - Thus, \mathcal{T}_t is consistent!
- *Remark:* works for the infinitary λ -calculus!

Theorem (complete unsoundness): in \mathscr{R} , every term is typable. [Th 12.1, p. 276]

Theorem (complete unsoundness): in \mathscr{R} , every term is typable. [Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o. [Th 12.2, p. 276]

Theorem (complete unsoundness): in \mathscr{R} , every term is typable. [Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o. [Th 12.2, p. 276]

Definition (relational model): For all closed λ -term t, we set

 $\llbracket t \rrbracket = \{ \tau \mid \vdash t : \tau \text{ is derivable} \}$

Theorem (complete unsoundness): in \mathscr{R} , every term is typable. [Th 12.1, p. 276]

Theorem: if t is a zero-term, then, t is typable with o. [Th 12.2, p. 276]

Definition (relational model): For all closed λ -term t, we set

 $\llbracket t \rrbracket = \{ \tau \mid \vdash t : \tau \text{ is derivable} \}$

Corollary: This yields a *non-sensible* model that discriminates terms according to their order:

if t and u are two terms of different orders, then $\llbracket t \rrbracket \neq \llbracket u \rrbracket$.

First model to do this!