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1 INTRODUCTION
1.1 Polyadic approximations
In his paper introducing linear logic, Girard [1987] proved an approximation theorem showing

that, in the propositional case, proofs of full linear logic may be “approximated” (in an intuitive

sense) arbitrarily well in its multiplicative-additive fragment, i.e., the “purely linear” part of linear

logic. Girard’s approximation theorem is based on the (informal, at this stage) equation

!A = lim

n→∞

n︷                        ︸︸                        ︷
(A& 1) ⊗ · · · ⊗ (A& 1) (1)

where !A is the so-called exponential modality of linear logic, allowing duplication and erasing,

and the n-fold tensor of A& 1 means “A at most n times”. These approximations are affine precisely
because of the use of A& 1 rather than simply A (which would give us “A exactly n times”).

In a sense, the key contribution of this paper is understanding that Equation 1, once generalized

to terms and reductions (rather than just formulas), may serve as the basis of a general methodology

for constructing intersection types systems, including most of the standard ones.

The starting point is a correspondence between linear/affine approximations, as in Girard’s

theorem, and non-idempotent intersection types, which we now proceed to explain. First, one has

to formalize the intuition behind Equation 1. This has already been done in several ways: as a

Taylor expansion [Ehrhard and Regnier 2008], as a categorical limit [Melliès et al. 2009] and as a

topological limit [Mazza 2012]. The syntactic approaches of Ehrhard and Regnier and of the first

author are similar: they both express Girard’s approximations directly in a calculus containing

terms of the form ⟨t1, . . . ,tn⟩, which we call polyadic and which morally correspond to the n-ary
tensors of Equation 1. The former approach uses the resource λ-calculus of Boudol [1993]. We favor
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the first author’s approach because it is syntactically simpler (there are no formal sums of terms)

and more faithful to Equation 1 (the tensor is not syntactically commutative, unlike the resource

λ-calculus).
The polyadic affine λ-calculus Λaff

p
[Mazza 2012] is easy to define: its terms and reduction are

t ,u ::= x | λ⟨x1, . . . ,xn⟩.t | t⟨u1, . . . ,un⟩, (λ⟨x1, . . . ,xm⟩.t )⟨u1, . . . ,un⟩ → t {ui/xi },

where x ranges over a countably infinite set of affine variables, which must appear at most once,

and the reduction rule requiresm ≤ n (otherwise the term is “stuck”). In casem < n, the terms

um+1, . . . ,un are simply discarded. The polyadic linear λ-calculus Λlin
p

is obtained from Λaff
p

by

enforcing strict linearity in terms (abstracted variables must appear) and by requestingm = n in

the reduction rule (so no term may be discarded).

Recasting in order-theoretic language the idea of [Mazza 2012], Λaff
p

may be endowed with a

partial order which, in the spirit of Equation 1, is exemplified by the inequality t⟨u1, . . . ,un⟩ ⊑
t⟨u1, . . . ,un ,un+1⟩. The whole of point of the first author’s topological construction (but also of the

Taylor expansion of Ehrhard and Regnier [2008]) is that the pure λ-calculus faithfully embeds in

the ideal completion of (Λaff
p
,⊑): in other words, usual, non-affine λ-terms may be seen as ideals

of polyadic affine terms (or, syntactically, as infinite polyadic affine terms). Such an embedding

induces an approximation relation ⊏ on Λaff
p
× Λ: we write t ⊏ M just if t ∈ JMK, where JMK is the

ideal associated with the λ-termM (in Ehrhard and Regnier’s approach, JMK would be the support

of the Taylor expansion ofM). In particular, we have the equation

!M = sup

n∈N, ti⊏M
⟨t1, . . . ,tn⟩, (2)

where by !M we mean “M as the argument of an application”. This is clearly a reformulation of

Equation 1 at the level of terms, once we remember that Girard’s embedding of intuitionistic logic

in linear logic translates A⇒ B as !A ⊸ B.
The approximation relation may actually be defined directly by induction, using judgments of

the form Γ ⊢ t ⊏ M where Γ is a list of statements of the form x0 ⊏ x , with x0 an affine variable

and x a λ-calculus variable, such that x0 ⊏ x ,y0 ⊏ y ∈ Γ implies x0 , y0 (but we may have x = y,
meaning that both x0 and y0 approximate the same variable). The approximation relation is defined

as follows:

Γ,x0 ⊏ x ⊢ x0 ⊏ x
var

Γ, . . . xi ⊏ x . . . ⊢ t ⊏ M

Γ ⊢ λ⟨x1, . . . ,xn⟩.t ⊏ λx .M
lam

Γ ⊢ t ⊏ M . . . ∆i ⊢ ui ⊏ N . . .

Γ,∆1, . . . ,∆n ⊢ t⟨u1, . . . ,un⟩ ⊏ MN
app

where, in the lam rule, x does not appear in Γ. The direct generalization of Girard’s approximation

theorem is the continuity of reduction: ifM →∗ N , then for all u ⊏ N , there exists t ⊏ M such that

t →∗ u. In other words, given a computation in the λ-calculus, to compute an approximation of the

result, it suffices to have an approximation of the initial term and perform a computation in Λaff
p
. In

fact, continuity also holds for Λlin
p
: if u is linear, then one may take also t to be linear.

1.2 Polyadic simple types are intersection types
Intersection types, originally introduced by Coppo and Dezani-Ciancaglini [1980] with semantic

motivations, are a well-known type-theoretic approach to expressing and capturing dynamic

properties of programs. Through the years, the theory of intersection types has ramified along a

host of different directions and taken a number of different forms. One of these is the so-called

non-idempotent variant. Intuitively, intersection is non-idempotent when A→ A ∧A does not hold.

So, for instance, the typing judgment f : A → A → B ⊢ λx . f xx : A → B is not derivable with a

non-idempotent intersection; instead f : A→ A→ B ⊢ λx . f xx : A ∧A→ B is derivable.
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x : A ⊢ x : A
var

Γ ⊢ M : B
Γ ⊢ λx .M : ⊤ ⊸ B

lam0 x < Γ
Γ,x : A1 ∧ · · · ∧An ⊢ M : B

Γ ⊢ λx .M : A1 ∧ · · · ∧An ⊸ B
lam

Γ ⊢ M : Θ ⊸ B ∆1 ⊢ N : A1 . . . ∆n ⊢ N : An

Γ · ∆1 · · ·∆n ⊢ MN : B
app

Γ,x : A1 ∧ · · · ∧An ⊢ M : C
Γ,x : Aσ (1) ∧ · · · ∧Aσ (n) ⊢ M : C

perm

Fig. 1. Gardner-de Carvalho’s non-idempotent intersection type system, as presented by [Gardner 1994]. In
the app rule, Θ = A1 ∧ · · · ∧An .

The first (and simplest) example of non-idempotent intersection type system was introduced

by Gardner [1994] and, independently and with a slightly different formulation, by de Carvalho

[2009]. Types are defined by

A ::= α | Θ ⊸ A (types) Θ ::= A1 ∧ · · · ∧An (intersections).

Nullary intersections are authorized and denoted by ⊤. Intersections should be seen as elements of

the free monoid over types: Θ∧Θ′ is defined by concatenation and ⊤ is the neutral element. Typing

judgments are of the form Γ ⊢ M : A, whereM is a pure λ-term, A a type and Γ a list (permutable

at will) of type declarations of the form x : Θ. Gardner’s version of the typing rules is recalled

in Fig. 1. In rule app, the context Γ · ∆1 · · ·∆n is obtained by concatenating the type declarations

in Γ,∆i , assuming that each variable appearing in any of Γ,∆i actually appears in all of them, by

adding the fictitious declaration x : ⊤ when it does not.

The behavior of non-idempotent intersection of course hints to a connection with linear logic.

Indeed, after Gardner, non-idempotent intersection types were considered again by Carlier et al.

[2004] and their relationship with linear logic, and comparison with the idempotent case, expounded

by Neergaard and Mairson [2004]. In his independent work, de Carvalho unveiled the strong link

between non-idempotent intersection types and the relational semantics of linear logic, a line of

work which was subsequently extended by Bernadet and Lengrand [2013]. We will see that there is

an even tighter correspondence between intersection types and linear logic (in its polyadic form)

which, in fact, goes well beyond the non-idempotent case, but let us stick to Gardner-de Carvalho’s

system.

The terms of Λlin
p

are actually proof terms for a fragment of multiplicative intuitionistic linear

logic, whose formulas are given by

A,B ::= α | A1 ⊗ · · · ⊗ An ⊸ B,

where the case n = 0 is written 1 ⊸ B. Via Curry-Howard, this logical fragment induces a

simple-type discipline on Λlin
p

(where A⃗ = A1 ⊗ . . . ⊗ An ):

x0 : A ⊢ x0 : A
var

Γ, . . . xi : Ai . . . ⊢ t : B

Γ ⊢ λ⟨x1, . . . ,xn⟩.t : A⃗ ⊸ B
lam Γ ⊢ t : A⃗ ⊸ B . . . ∆i ⊢ ui : Ai . . .

Γ,∆1, . . . ,∆n ⊢ t⟨u1, . . . ,un⟩ : B
app

The typing rules are so similar to the approximation rules that it is tempting to superpose them:

x0 ⊏ x : A ⊢ x0 ⊏ x : A
var

Γ,x1 ⊏ x : A1, . . . ,xn ⊏ x : An ⊢ t ⊏ M : B

Γ ⊢ λ⟨x1, . . . ,xn⟩.t ⊏ λx .M : A1 ⊗ · · · ⊗ An ⊸ B
lam

Γ ⊢ t ⊏ M : A1 ⊗ · · · ⊗ An ⊸ B ∆1 ⊢ u1 ⊏ N : A1 . . . ∆n ⊢ un ⊏ N : An

Γ,∆1, . . . ,∆n ⊢ t⟨u1, . . . ,un⟩ ⊏ MN : B
app

where, in rule lam, x does not appear in Γ.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:4 Damiano Mazza, Luc Pellissier, and Pierre Vial

If, in the above superposition, we discard the green decorations and the approximation symbols,

we obtain a type system for the λ-calculus, in which typing contexts may contain more than one

declaration for a variable. If we adopt the following changes of notation

A1 ⊗ . . . ⊗ An ⇝ A1 ∧ · · · ∧An

Γ,x : A1, . . . ,x : An ⊢ M : B ⇝ Γ,x : A1 ∧ · · · ∧An ⊢ M : B x < Γ

we see that this is exactly the system of Fig. 1:

• the rules var and app are identical;

• the lam0 rule is just the case n = 0 of our lam rule;

• the perm rule is given by the (implicit) exchange rule on contexts of polyadic derivations.

We have thus unveiled an exact correspondence between non-idempotent intersection types and

simply-typed linear approximations.

A crucial observation now is that approximations may actually be generalized to the point of

being completely non-linear, i.e., along with erasing, duplication too may be allowed. There are

thus four flavors of polyadic calculi, depending on whether duplication and erasing (corresponding,

logically, to contraction and weakening) are switched on or off, and all of them approximate the

λ-calculus in a meaningful way (i.e., reduction is continuous). In other words, the intrisic ability of

polyadic terms ⟨t1, . . . ,tn⟩ to approximate !M (cf. Equation 2) is independent from their linearity or

affinity. Repeating the above syntactic game with cartesian polyadic approximations (i.e., allowing
both weakening and contraction), we obtain exactly the system of Coppo et al. [1981], in its

incarnation characterizing solvability/head normalization (because of the unrestricted presence of

the type Ω, represented here by the empty tensor 1).

We thus have what seems to be a general correspondence between polyadic simple types and

intersection types: an intersection type derivation forM is the same thing as a simply-typed polyadic
approximation ofM . In other words, an intersection type derivation δ is isomorphic to a simple-type

derivation for a polyadic term δ−, and we have

δ :: Γ ⊢IT M : A iff δ− ⊏ M . (3)

Such a sharp correspondence deserves to be treated more abstractly. For this purpose, we will

be confronted with the question of finding a general but workable definition of “programming

language” and “type system”. We will adopt a categorical perspective, taking 2-operads to answer

the first question and a suitable kind of fibrations to answer the second.

1.3 Type systems as 2-operadic fibrations
Melliès and Zeilberger [2015] recently suggested an amazingly simple definition of type system: it

is a functor

p : D −→ C

mapping a category D of derivations to a monoid C of programs (in the simple case in which

programs are untyped, otherwise C is also a category, and we speak of a type refinement system).

One may think of the elements of C as untyped programs depending on a parameter x (a free

variable), with composition t ◦u defined as t {u/x }, i.e., substitution of u for the parameter x in t . In
this picture, the objects of D are types, and a morphism f : A→ B of D is a type derivation of the

judgment x : A ⊢ p ( f ) : B, i.e., the functor p maps derivations to their subject (the program they

type). If a program is not in the image of p, it is not typable.
This abstract view of type systems will be the basis of our work, with two minor twists:
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(1) following Hyland [2017], we consider symmetric multicategories and operads instead of

categories and monoids, because usual calculi and type systems fit very naturally in this

framework (a term may have more or less than one free variable);

(2) we work in a Cat-enriched setting, because intersection types are all about capturing proper-

ties of reduction, which may be conveniently represented by a second categorical dimension

(types are objects, terms are morphisms, reductions are 2-morphisms).

In the following, for brevity we call 2-operad a Cat-enriched symmetric multicategory or, in

equivalent terminology, a colored Cat-operad. The formal definition will be given in Sect. 2.1;

for the moment, the unacquainted reader may think of these simply as a means of describing,

in categorical language, the syntax and operational semantics (i.e., reduction, or evaluation) of
programming languages seen as term calculi.

Although the one provided by Melliès and Zeilberger is a very useful, workable definition of

type system, it is a bit too broad for our purposes, because we need to be able to speak of subject
reduction and subject expansion (i.e., the fact that typing is preserved by reduction or expansion).

It turns out that these notions, which are of paramount importance in intersection type systems,

find a categorical counterpart in oplifting and lifting properties, respectively. These are at the heart

of the idea of fibration, a key concept appearing in many different contexts in category theory. In

our case, we will introduce in Sect. 2.2 (operadic) Niefield fibrations, a declination of the notion of

fibration providing us with a robust framework for speaking of subject reduction and expansion.

Therefore, from our point of view, building an intersection type system for the λ-calculus amounts

to constructing a Niefield fibration

p : E −→ Λ,

where Λ is the 2-operad presenting the pure λ-calculus. Now, the key property of Niefield fibrations
is that the above is essentially the same thing as a (lax) morphism

F : Λ −→ Rel,

where Rel is a (weak) 2-operad based on relational distributors (functors A × Bop → Rel, where
A,B are arbitrary categories and Rel is the category of sets and relations). This equivalence, which
we will formally state and prove in Sect. 2.2, is just a suitable adaptation to our framework of the

so-called Grothendieck construction, a standard categorical construction relating fibrations (of a

given kind) with presheaves (of some form). It is thanks to this alternative view of type systems as

“2-operadic relational presheaves” that polyadic approximations come back to center stage.

1.4 The approximation presheaf
Let us go back a moment to Equation 2. Although morally correct, such an equation cannot be

taken literally, because !M is not really a λ-term. This mismatch may be fixed by considering an

untyped term calculus for linear logic, i.e., with explicit duplication and erasing. This calculus,

which we call Λ! and will introduce formally in Sect. 3.1, contains, in particular, terms of the form

!T marking the term T as duplicable and discardable. One may then define a polyadic calculus Λp

approximating Λ! in the same sense as discussed in Sect. 1.1 for Λaff
p

and Λ, and Equation 2 becomes

literally true. This, we will see, is not just a matter of taste; it will bring our work to a higher level

of generality.

Of course, we may consider the 2-operad Poly of Church-style simply-typed polyadic terms, and

we have a type system

(·)− : Poly −→ Λp

mapping a polyadic simple-type derivation (i.e., a Church-style term) of Γ ⊢ t : A to t .
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Fix now an arbitrary sub-operad D of Poly. We will define the approximation presheaf (relative

to D) as a lax morphism

Apx[D] : Λ! −→ Rel.

The formal definition will be given in Sect. 4, let us point out the essence:

• simplifying a bit, we may consider Λ! to have only one type ∗; Apx[D](∗) is then defined to

be the set T[D] (seen as a discrete category) of objects of D, i.e., the polyadic simple types

used by D;

• given a termT of Λ! with n free variables, Apx[D](T ) has to be a functor T[D]
n ×T[D]

op →

Rel; since T[D] is discrete, this is just a map assigning a set to each (n + 1)-tuple Γ,A of types

of D, which we define as follows:

Apx[D](T ) (Γ,A) := {δ ∈ D (Γ;A) | δ− ⊏ T }.

Intuitively, in view of applying the Grothendieck construction, Apx[D](T ) (Γ,A) is going to be

the set of intersection type derivations of Γ ⊢ T : A. This explains the definition: we are just

implementing Equivalence 3 of Sect. 1.2: an intersection type derivation for T must be the same

thing as a simply typed polyadic approximation of T . We are parametrizing the construction on an

arbitrary suboperad D of Poly because not all simply-typed approximations may be considered

suitable in general (for instance, we may not want contraction/idempotency, or we may want to

exclude the empty intersection ⟨⟩).

1.5 Intersection type systems from polyadic approximations
We are now ready to formulate the general construction relating polyadic approximations and

intersection types. The framework has two parameters:

• a suboperad D ↪→ Poly of “valid” derivations;

• a morphism of 2-operads G : L → Λ!.

The 2-operad L must be seen as presenting a(n untyped) programming language which has a

semantic-preserving encoding in Λ! (i.e., in intuitionistic linear logic). For instance, L could be Λ
(the pure λ-calculus) and G Girard’s encoding.

In fact, we will see that Poly and Λ! are themselves parameters, i.e., they are not the most general

2-operads one may chose for the construction. However, they have the advantage of being easily

presentable and are enough to recover intersection types for all major variants of the λ-calculus, so
we stick to them in our presentation.

By composing G with the approximation presheaf, we get a presheaf

L
G // Λ!

Apx[D] // Rel

which, via the Grothendieck construction, induces a type system for L, denoted by

p[D,G] : E[D,G] −→ L.

We say that a termM of L is (D,G)-typable if it is in the image of p[D,G].
Most well known intersection type systems for the λ-calculus (or minor reformulations of them)

arise from the above construction, i.e., they are isomorphic to p[D,G] for some choice of D and G.
For instance, p[LinPoly,G0] (where LinPoly are linear derivations and G0 is Girard’s call-by-name

encoding) gives rise to Gardner-de Carvalho’s system as discussed in Sect. 1.2. Many more examples

will be given in Sect. 4.4. What is more important, however, is that this abstract setting also allows

us to prove a quite general theorem through which the usual properties of intersection type systems

may be recovered. This will also be done in Sect. 4.
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The rest of the paper is devoted to filling in the technical gaps left by this introduction: in Sect. 2

we give some background on 2-operads, exemplify how they may be used to present programming

languages and formalize our operadic version of the Grothendieck construction; in Sect. 3, we

introduce polyadic calculi and approximations; in Sect. 4, we formally define the approximation

presheaf, prove Theorem 4.7 and give (detailed) examples of applications of the construction and of

Theorem 4.7; finally, in Sect. 5, we discuss related work and give some concluding remarks.

2 OPERADS AND FIBRATIONS
2.1 Programming languages as 2-operads
We give here a brief survey of the categorical definitions used in the paper; see [Leinster 2004] for

more complete definitions. We denote by B(n) the set of permutations on n elements.

Definition 2.1 (2-operad, bioperad). A (small) 2-operad C is given by the following:

• a set C0 of objects (also called colors);
• for every objects C1, . . . ,Cn ,A, a category C (C1, . . . ,Cn ;A) whose objects are called multi-
morphisms and whose morphisms are called 2-arrows;
• for every object A, sequence of objects ∆ := B1, . . . ,Bn and sequences of objects Γ1, . . . ,Γn ,
an operadic composition functor

◦Γ1, ...,Γn ;∆;A : C (∆;A) × C (Γ1;B1) × · · · × C (Γn ;Bn ) −→ C (Γ1, . . . ,Γn ;A);

• for each n ∈ N, σ ∈ B(n), object A and objects Γ := C1, . . . ,Cn , a functor

exchΓ;Aσ : C (C1, . . . ,Cn ;A) −→ C (Cσ −1 (1) , . . . ,Cσ −1 (n) ;A)

such that exchσ
−1 (Γ);A

σ ′ ◦ exchΓ;Aσ = exchΓ;Aσ ′◦σ ;

such that the composition functors satisfy the obvious associativity and compatibility laws with

respect to exch. In case such laws hold only up to (coherent) isomorphism, we speak of a bioperad.
In the above definition, composition is given “globally”; one may alternatively define a family of

“local” composition functors ◦iΓ;∆;A : C (B1, . . . ,Bn ;A)×C (Γ;Bi ) → (B1, . . . ,Bi−1,Γ,Bi+1, . . . ,Bn ;A),
with an additional commutation law. The two approaches are equivalent.

A 2-operad is called unital if, for every objectA, there is a multimorphism idA ∈ C (A;A) behaving
as the identity for operadic composition (up to isomorphism in the case of a bioperad).

A 2-operad C is monochromatic if it has only one object, usually denoted by ∗. In that case, one

writes C (n) for C (∗, . . . ,∗︸  ︷︷  ︸
n

; ∗).

A morphism of 2-operads f : C → D is given by:

• a function f0 : C0 → D0;

• for each object A and sequence of objects Γ of C, functors fΓ;A : C (Γ;A) → D (f0Γ; f0A);
such that (whenever it makes sense):

• f (θ ◦ (θ1, . . . ,θn )) = fθ ◦ (fθ1, . . . , fθn );
• f ◦ exchΓ;Aσ = exchf0Γ;f0Aσ ◦ f .

(Subscripts are usually omitted). If C and D are unital, then f is unital if it further satisfies
• f (idA) = idfA.

A (unital) lax morphism of (unital) bioperads is as above, but in which the equalities are replaced

by (coherent) natural transformations in the right-to-left direction, which are not necessarily

invertible.
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From the point of view of a programming languages theorist, 2-operads are best understood as a

means of presenting (typed) term calculi:

• objects are types;

• a multimorphism t : C1, . . . ,Cn → A is a term in context

x1 : C1, . . . ,xn : Cn ⊢ t : A;

operadic composition is substitution, i.e., t ◦i u = t {u/xi }, and the action of the symmetric

group corresponds to the possibility of injectively renaming free variables or, equivalently,

to the presence of an exchange rule on typing contexts;

• a 2-arrow t ⇒ t ′ is a type-preserving computation starting from t and leading to t ′ (e.g.
term-rewriting, cut-elimination, etc.). Computations are required to be compatible with

substitution, in the sense that, for any two computations t ⇒ t ′ and u ⇒ u ′, there is a

computation t {u/x } ⇒ t ′{u ′/x } and such a computation is equal to both sides of the diagram

t {u/x } +3

��

t ′{u/x }

��
t {u ′/x } +3 t ′{u ′/x }

(4)

where the intermediate computations are obtained by considering the identity computations

on t and u.

In this perspective, a morphism of 2-operads f : C → D is just a modular, semantic-preserving

encoding/translation/compilation of term languages:

• a type A of C is encoded by f (A) in D;

• a term x1 : C1, . . . ,xn : Cn ⊢ t : A of C is encoded by x1 : f (C1), . . . ,xn : f (Cn ) ⊢ f (t ) : f (A);
• we have a “substitution lemma” f (t {u/x }) = f (t ){f (u)/x } (modularity);

• if t ⇒ t ′, then f (t ) ⇒ f (t ′) (preservation of operational semantics) and modularity holds for

computations too.

Following the above intuition, it is natural to consider unital operads: identities are just variables.

However, unital morphisms are less anodyne: they force the encoding of a variable to be necessarily

a variable. We will also see very natural examples of calculi in which not all types have identities,

leading us to our slightly more general definition.
1

Let us look at a couple of useful examples. The pure λ-calculus naturally induces a unital

monochromatic 2-operad: Λ(n) is the category whose objects are λ-terms with free variables in

{x1, . . . ,xn } and whose morphisms are β-reduction sequences modulo permutation equivalence;

operadic composition is substitution. We remind that permutation equivalence [Terese 2003] is the
equivalence obtained on reduction sequences by equating all diagrams of the form of Diagram 4

above. Plain β-reduction sequences do not yield a 2-operad: substitution fails to be functorial.

A 2-categorical treatment of the λ-calculus was first advocated by Seely [1987], using the language
of cartesian closed 2-categories instead of operads. The 2-CCC perspective was subsequently

investigated in depth by Hilken [1996] and, in a much broader framework, by Hirschowitz [2013].

The operadic perspective, albeit Set-enriched, is already present in the framework of Fiore et al.

[1999] and is at the heart of a recent paper of Hyland [2017].

Actually, we will be more interested in the following bichromatic presentation Λk of the untyped

λ-calculus, which has the advantage of adapting straightforwardly to call-by-value:

1
Indeed, what we call “2-operad” here could more traditionally be called “Cat-enriched symmetric semimulticategory” or

“non-unital colored Cat-operad”, which are quite verbose and justify our non-standard choice of terminology.
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• Λk has two colors, t (for terms) and v (for values);
• Λk (Γ;A), with A ∈ {t,v}, is non-empty only in case Γ = v, . . . ,v (with n occurrences of v), in
which case it is defined just like Λ(n) above;
• operadic composition is again defined via substitution.

Note that Λk is not unital: there is no identity of type t. For the connoisseur, this presentation
derives from taking seriously the idea that the λ-calculus is the Kleisli category of the exponential

comonad of linear logic (hence the subscript k): intuitively, v = !t, and the asymmetry in v → t
results from the translation of intuitionistic implication A→ B as !A ⊸ B.

The 2-operad Λk has three remarkable suboperads:

• Λ: this is the full suboperad on the color v, which is isomorphic to the monochromatic

presentation given above;

• Λ0: this is obtained by discarding terms of type v, i.e., Λ0 (Γ;A) = Λk (Γ;A) in case A = t,
otherwise it is empty. Operadic composition in Λ0 is degenerate: all terms are of type t but
variables are always of type v, so we can never compose them! In spite of this, we will see

that Λ0 plays an important role in intersection types, as it is the basis of the so-called strict
type discipline [van Bakel 1995], in which intersections are only allowed to the left of arrows,

just like in Gardner-de Carvalho’s system (Fig. 1).

• Λv: this is obtained by restricting the terms of Λv (Γ; v) to be values, i.e., variables or abstrac-
tions, and by restricting 2-arrows to be those of call-by-value reduction, i.e., (λx .M )V →
M {V /x } is only allowed when V is a value.

More 2-operads presenting calculi will be given in Sect. 3, along with examples of morphisms of

2-operads (Sect. 3.3). For the time being, let us just observe how the monochromatic presentation

Λ may be straightforwardly be adapted to present the simply typed λ-calculus: colors are simple

types (generated by A,B ::= α | A → B), multimorphisms Church-style simply-typed terms (i.e.,
with explicit type decorations) and 2-arrows reductions between them. If we call such an operad

Λst, forgetting the type decorations yields a (unital) morphism (·)− : Λst → Λ, which is a primordial

example of type system expressed as morphism of 2-operads.

2.2 Type systems as fibrations
It is a standard observation that the type system corresponding to the morphism (·)− : Λst → Λ
defined above enjoys subject reduction: if Γ ⊢ M : A (i.e.,M is simply typable) andM →∗ M ′, then
Γ ⊢ M ′ : A too. This is proved by explicitly constructing, for any given derivation δ of Γ ⊢ M : A, a
derivation δ ′ of Γ ⊢ M ′ : A. In categorical terms, we may reformulate the situation as follows: for

every δ ∈ Λst (Γ;A) and every 2-arrow ρ : δ− →∗ M ′ in Λ, there exists a 2-arrow ψ : δ →∗ δ ′ in
Λst such thatψ− = ρ. We say that ρ is an op-lifting ofψ . The “op” of course tells us that there is a
dual notion, called lifting, in which sources and targets are reversed: we have ρ : M ′ →∗ δ− and
ψ : δ ′ → δ . This, as the reader may have noticed, corresponds to subject expansion.

Liftings and op-liftings are at the heart of the categorical notion of fibration and op-fibration.
Conduché fibrations [Conduché 1972] encompass both notions, making them an ideal setting to deal

with subject expansion and subject reduction. Informally, these are functors lifting factorizations
of arrows rather than arrows themselves. However, the usual notion of Grothendieck fibration,

which is the one subsumed by Conduché fibrations, asks liftings to be minimal in a certain sense

(the technical terminology is cartesian), a requirement that is quickly seen to be too strong for a

general treatment of type systems. We are therefore led to consider a weakened form of Conduché

fibrations, which turns out to have been introduced (albeit in a slightly different form) by Niefield

[2004]:
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Definition 2.2 (Niefield fibration). Let B be a small category. A Niefield fibration on B is a functor

p : E → B, with E an arbitrary small category, verifying:

(faithfulness) p is faithful;

(identity lifting) for every k of E, if p (k ) is an identity, then so is k ;
(factorization lifting) for every arrow k of E, if p (k ) = f ′ ◦ f for some arrows f , f ′ of B,

then there exists a pair д,д′ of arrows of E such that k = д′ ◦ д, p (д) = f and p (д′) = f ′.2

Let p1 : E1 → B and p2 : E2 → B be Niefield fibrations. A relational morphism from p1 to p2 is a
relation R ⊆ E1 × E2 on the objects of E1,E2 such that:

• (e1,e2) ∈ R implies p1 (e1) = p2 (e2);
• for every arrow f : b → b ′ of B and every e1 ∈ E1 such that p1 (e1) = b and e ′

2
∈ E2 such that

p2 (e
′
2
) = b ′, the following conditions are equivalent:

– there exists д2 : e2 → e ′
2
such that p2 (д2) = f and (e1,e2) ∈ R;

– there exists д1 : e1 → e ′
1
such that p1 (д1) = f and (e ′

1
,e ′

2
) ∈ R.

Definition 2.3 (type system). We say that a morphism of small 2-operads p : E → B is a type
system if, for all objects Γ,A of E, the functor pΓ;A is a Niefield fibration.

In terms of programming languages, faithfulness, identity lifting and factorization lifting corre-

spond to the following properties:

• given a reduction ρ : M →∗ M ′ and type derivations δ ofM and δ ′ ofM ′, there is at most one

typed reductionψ : δ →∗ δ ′ typing ρ (there may exist one such reduction for every couple

of type derivations ofM ,M ′);
• empty reductions are never typed by non-empty reductions;

• reductions are typed “modularly”: if a decomposable reduction is typed, then so are its

components.

These seem to be reasonable requirements to ask of a type system. By the way, most common type

systems do not even come with an explicit notion of “typing a reduction”, so it does not make sense

to ask whether they comply with the above restrictions.

The interest of defining type systems as above is that we may build a quite robust framework

around them, based on a variant of the Grothendieck construction. In its original incarnation, this

is a statement relating fibrations and pseudo-presheaves: any Grothendieck fibration p : E → B

induces a pseudofunctor ∂p : Bop → Cat, where Cat is the 2-category of small categories, by

setting ∂p (b) = p−1 (b), i.e., the fiber over b (the category of all morphisms of E which are mapped

to idb via p). The Grothendieck construction is the inverse: given any pseudofunctor F : Bop → Cat,
it constructs a category Eℓ(F ) and a fibration

∫
F : Eℓ(F ) → B. Moreover,

∫
and ∂ induce an

equivalence between the category of fibrations (with suitable morphisms) and the pseudo-presheaf

category CatB
op

. Variants of the Grothendieck construction are available for all usual notions of

fibration; for instance, the above is true for Conduché fibrations as long as we replace Cat with
Dist, the bicategory of distributors.

In order to prove the equivalence involving our operadic variant of the Grothendieck construction,

we first need to define the category of type systems. A relational morphism R between two type

systems p1 : E1 → B and p2 : E2 → B is

• a relation R0 ⊆ E1 × E2 between the objects of E1 and the objects of E2;

• for all objects Γ1 = e1
1
, . . . ,en

1
and e1 of E1 and for all objects Γ2 = e1

2
, . . . ,en

2
and e2 of E2, such

that for all 1 ≤ i ≤ n, (ei
1
,ei

2
) ∈ R0 and (e1,e2) ∈ R0, a relational morphism RΓ1;e1

Γ2;e2
between the

Niefield fibrations (p1)Γ1;e1 and (p2)Γ2;e2 .
2
This is the weak factorization lifting property of [Niefield 2004]. In Conduché fibrations, a form of minimality is asked.
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Type systems over a 2-operad B and relational morphisms between them form a category, which

we denote TypeSys(B).
We now move on to introduce what plays the role of Dist in our framework. Let Rel be the

following (large) bioperad:

• objects are small categories;

• multimorphisms X1 . . .Xn −7→ Y are relational distributors, that is functors

X1 × · · · × Xn × Y
op → Rel;

• composition of multimorphisms is defined as the composition of distributors: given

G : Y1 . . .Ym −7→ Z and F : X1 . . .Xn −7→ Yi ,

their compositeG ◦i F is defined as the functor Y1 × · · · ×Yi−1 × (X1 × · · · ×Xn ) ×Yi+1 × · · · ×
Ym × Z

op → Rel
(y1, . . . ,yi−1,x1, . . . ,xn ,yi+1, . . . ,ym ; z) 7→∫ yi ∈Yi

G (y1, . . . ,yi , . . . ,ym ; z) × F (x1, . . . ,xn ;yi )

where the integral sign is the standard notation for a coend (it has nothing to do with the

Grothendieck construction). Composition in Rel is associative only modulo isomorphism.

• 2-arrows θ : F ⇒ G : X1 . . .Xn → Y are natural transformations of the underlying functors:

a family of relations indexed by X1 × · · · × Xn × Y
op
:

∀(x1, . . . ,xn ,y) ∈ X1 × · · · × Xn × Y
op,

θx1, ...,xn,y ⊆ F (x1, . . . ,xn ,y) ×G (x1, . . . ,xn ,y).

satisfying naturality conditions.

A lax natural transformation between two lax morphisms θ : F ⇒ G : B → Rel is as follows:

• for each b in B a distributor θb : Fb −7→ Gb;
• for each f : b1 . . .bn → b in B, a 2-arrow θf : Gf ◦ (θb1 , . . . ,θbn ) ⇒ θb ◦ F f , that is a family

of relations indexed by the objects of Fb1 × · · · × Fbn ×Gb
op
,

∀(x1, . . . ,xn ,y) ∈ Fb1 × · · · × Fbn ×Gb
op,

(θf )x1, ...,xn,y ⊆ (Gf ◦ (θb1 , . . . ,θbn )) (x1, . . . ,xn ;y) × (θb ◦ F f ) (x1, . . . ,xn ;y),

that satisfy naturality conditions.

We say that a lax natural transformation is relational if, for every object b, the distributor θb is a

relation, that is, it is valued in a subsingleton.

Theorem 2.4. Let B be a small 2-operad. The category TypeSys(B) is equivalent to the category
RelB of lax morphisms B → Rel and relational lax natural transformations.

Proof.

∫
: RelB → TypeSys(B) is defined by:

• given a lax functor F : B → Rel, we denote by Eℓ(F ) the following category:

– the objects are pairs (b,x ), where b is an object of B and x ∈ Fb;
– a multimorphism (b1,x1) . . . (bn ,xn ) → (b ′,x ′) is a pair ( f ,p) where f : b1 . . .bn → b ′ is a
multimorphism in B and p ∈ F f (x1, . . . ,xn ;x

′);
– given

(д,q) : (b1,y1) . . . (bm ,ym ) → (c,z),

( f ,p) : (a1,x1) . . . (an ,xn ) → (bi ,yi ),

the composite (д,q) ◦i ( f ,p) is the pair (д ◦i f , (q,p)).
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– a 2-arrow θ : ( f ,p) ⇒ (д,q) : (a1,x1) . . . (an ,xn ) → (b,y) is a family of relations indexed

by Fa1 × · · · × Fan × Fb:

∀(α1, . . . ,αn ,β ) ∈ Fa1 × · · · × Fan × Fb,

θα1, ...,αn,β ⊆ F f (α1, . . . ,αn ,β ) × Fд(α1, . . . ,αn ,β ).

such that

(p,q) ∈ θx1, ...,xn,y .∫
F is just the first projection. It is not hard to check that it is a type system in the sense of

Definition 2.3.

• Given a relational lax natural transformation θ : F ⇒ G, we define the relation (
∫
θ )0

from the objects of Eℓ(F ) to the objects of Eℓ(G ) by ((b,x ), (b ′,y)) ∈ (
∫
θ )0 iff b = b ′ and

(x ,y) ∈ θb . For every list Γ = (a1,x1), . . . , (an ,xn ) of objects of Eℓ(F ) and object (b,y) of
Eℓ(F ), and list Γ′ = (a′

1
,x ′

1
), . . . , (a′n ,x

′
n ) of objects of Eℓ(G ) and object (b ′,y ′) of Eℓ(G ), the

relation

(∫
θ
)Γ;(b,y )
Γ′;(b′,y′)

is empty unless a1 = a′
1
, . . . ,a′n = an and b = b ′, in which case, given

( f ,p) : (a1,x1), . . . , (an ,xn ) → (b,y)

(д,q) : (a1,x
′
1
), . . . , (an ,x

′
n ) → (b,y ′)

we have (( f ,p), (д,q)) ∈
(∫
θ
)Γ;(b,y )
Γ′;(b′,y′)

just if (x1,x
′
1
) ∈ θa1 , . . . , (xn ,x

′
n ) ∈ θan , (y,y

′) ∈ θb .

One may check that

∫
θ is a relational morphism.

∂ : TypeSys(B) → RelB is defined by:

• given a type system p : E → B, we set, for b an object of B,

– ∂p(b) := p−1 (b), i.e., the subcategory of E1 whose objects are sent to b and whose mor-

phisms are sent to idb (usually called the fiber over b);
– for f : b1 . . .bn → b in B, ∂p( f ) is the distributor defined by:

∀(e1, . . . ,en ,e ) ∈ p−1 (b1) × · · · × p−1 (bn ) × p−1 (b)op,

∂p( f ) (e1, . . . ,en ; e ) :=
{
д : e1, . . . ,en → e | p(д) = f

}
and, for all 1 ≤ i ≤ n, given ki : ei → e ′i arrows of p

−1 (bi ) and k : e ′ → e an arrow of

p−1 (b), respectively,

∂p( f ) (k1, . . . ,kn ;k ) := {(д,д′) | д = k ◦ д′ ◦ (k1, . . . ,kn )};

– for θ : f ⇒ f ′ : b1 . . .bn → b in B, ∂p(θ )e1, ...,en ;e is the relation

{(д,д′) ∈ ∂p( f ) (e; e ) × ∂p( f ′) (e; e ) | ∃ρ : д ⇒ д′,p(ρ) = θ }.

This defines a lax functor ∂p : B → Rel.

• Given a relational morphism R between type systems p1 : E1 → B and p2 : E2 → B,
– for b an object of B, ∂Rb is R restricted to p−1

1
(b) × p−1

2
(b), i.e., the relations R0 and R

e1,e ′
1

e2,e ′
2

(with e1,e
′
1
∈ p−1

1
(b) and e2,e

′
2
∈ p−1

2
(b)) induce a distributor ∂p1 (b) −7→ ∂p2 (b) which is a

relation (i.e., valued in a subsingleton), and we take this to be ∂Rb .
– with the above definition, given f : b1, . . . ,bn → b in B, we have

∂Rb ◦ ∂p1 ( f ) � {д1 : e11 , . . . ,e
n
1
→ e1 | p1 (д1) = f },

∂p2 ( f ) ◦ (∂Rb1 , . . . , ∂Rbn ) � {д
′
2
: e1

2
, . . . ,en

2
→ e2 | p2 (д′2) = f }.
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The family of relations (∂Rf )e1
1
, ...,en

1
;e2 is then defined to contain all pairs (д′

2
,д1) such that

there exists д′
1
and a 2-arrow д1 ⇒ д′

1
such that (д′

1
,д′

2
) ∈ Re1;e1e2,e2

(which, by definition of

relational morphism of Niefield fibrations, is equivalent to the existence of д2 and a two

arrow д2 ⇒ д′
2
such that (д1,д2) ∈ R

e1;e1
e2,e2

).

This defines ∂R as a relational lax natural transformation between ∂p1 and ∂p2.
The fact that

∫
(−) and ∂(−) form an equivalence of categories follows from elementary calculations,

applying the above definitions. □

3 POLYADIC CALCULI
3.1 Terms and reduction
We fix two disjoint, countably infinite sets of linear and polyadic variables, ranged over by a,b,c
and x ,y,z, respectively. Polyadic terms are defined as follows:

t ,u ::= a | λa.t | tu | x | ⟨t1, . . . ,tn⟩ | t[⟨x1, . . . ,xn⟩ := u] | ⊥,

where:

• in t[⟨x1, . . . ,xn⟩ := u], x1, . . . ,xn are pairwise distinct and are all bound in t ;
• modulo Barendregt’s convention (i.e., each binder binds a distinct variable), every linear

variable appears at most once and, in λa.t , a must appear in t ;
• in ⟨t1, . . . ,tn⟩, each ti has no linear free variable (polyadic free variables are allowed).

The term ⊥ is needed for technical reasons which will be clarified momentarily; it will disappear as

soon as we will introduced types. As usual, terms are considered up to renaming of bound variables.

A term is

• affine if, modulo Barendregt’s convention, every polyadic variable appears in it at most once;

• relevant if, for every of its subterms of the form t[⟨x1, . . . ,xn⟩ := u], each xi appears free in t ;
• linear if it is both affine and relevant.

Unconstrained terms are also called cartesian.
Linear substitution t {u/a} of a term u for a linear variable a in t is defined as usual. Polyadic

substitution t {u1, . . . ,un/x1, . . . ,xm } is defined by simultaneously substituting each ui to xi ; if
m < n, the terms um+1, . . . ,un are discarded; ifm > n, the variables xn+1, . . . ,xm are replaced with

⊥. This explains the presence of ⊥ in the untyped syntax; the simple types discipline will make it

unnecessary.

For the reduction semantics, we adopt the approach introduced by Accattoli [2012], which has

the advantage of avoiding commuting conversions. This approach is based on considering reduction

rules modulo the presence of arbitrary substitution contexts, defined as follows:

[−] ::= {·} | [−][⟨x1, . . . ,xn⟩ := u].

We write t[−] for the term obtained by replacing the hole {·} with the term t . Reduction is the

closure under arbitrary contexts of the following rules:

(λa.t )[−]u → t {u/a}[−]

t[⟨x1, . . . ,xm⟩ := ⟨u1, . . . ,un⟩[−]] → t {u1, . . . ,un/x1, . . . ,xm }[−].

In the relevant (and linear) case, we askm ≥ n (because we are not allowed to discard terms).

An example: (λa.a)[⟨x⟩ := u]t → t[⟨x⟩ := u] is a valid reduction; in a more traditional definition,

such a term would need the commutation (λa.a)[⟨x⟩ := u]t ⇝ ((λa.a)t )[⟨x⟩ := u] in order to

reduce. While not strictly necessary, Accattoli’s approach is extremely convenient for us.
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;a : A ⊢ a : A
var

Γ;∆,a : A ⊢ t : B

Γ;∆ ⊢ λa.t : A ⊸ B
lam

Γ;∆ ⊢ t : A ⊸ B Γ′;∆′ ⊢ u : A

Γ,Γ′;∆,∆′ ⊢ tu : B
app

x : A; ⊢ x : A
pvar

Γ1; ⊢ t1 : A1 . . . Γn ; ⊢ tn : An

Γ1, . . . ,Γn ; ⊢ ⟨t1, . . . ,tn⟩ : ⟨A1, . . . ,An⟩
box

Γ′;∆′ ⊢ u : ⟨A1, . . . ,An⟩ Γ,x1 : A1, . . . ,xn : An ;∆ ⊢ t : C

Γ,Γ′;∆,∆′ ⊢ t[⟨x1, . . . ,xn⟩ := u] : C
let

Γ;∆ ⊢ t : C
Γ,x : A;∆ ⊢ t : C

weak
Γ,x : A,y : A;∆ ⊢ t : C

Γ,x : A;∆ ⊢ t {x/y} : C
cntr

Fig. 2. Polyadic simple types derivations. We omit the obvious exchange rules on contexts.

In what follows, we fix a repetition-free sequence (ai )i ∈N of linear variables, as well as a repetition-
free sequence (x ij )i,j ∈N of polyadic variables. For a fixed i ∈ N, the sequence x i

1
,x i

2
,x i

3
, . . . is denoted

by x i and called supervariable. From now on, in the terms of the form t[⟨x1, . . . ,xn⟩ := u] we
use α-equivalence to assume that x1, . . . ,xn are always an initial segment of a supervariable. The

2-operad Λp of (cartesian) polyadic terms is defined as follows:

• it has two objects, l (for “linear”) and p (for “polyadic”);

• given Γ = s1, . . . ,sn with si ∈ {l,p}, Λp (Γ; l) is the category whose

– objects are all terms t such that, for all 1 ≤ i ≤ n: if si = l, then ai is free in t ; if si = p, then
any variable of x i may be free in t ; and no other variable may be free in t ;

– morphisms are reductions modulo permutation equivalence;

• Λp (Γ; p) is the full subcategory of Λp (Γ; l) restricted to terms of the form ⟨t1, . . . ,tn⟩ (note
that this is empty in case Γ contains l);
• operadic composition on the color l is defined by t ◦il u := t {u/ai }, while on the color p we set

t ◦ip ⟨u1, . . . ,un⟩ := t {u1, . . . ,un/x
i
1
, . . . ,x im },

wherem is the largest such that x im appears free in t . Note that the second term is of the

form ⟨u1, . . . ,un⟩ because, by definition, every term of color p must be of this form.

3.2 Simple types
The polyadic simple types are defined as follows:

A,B ::= α | A ⊸ B | ⟨A1, . . . ,An⟩.

The simply-typed polyadic calculi are defined by the rules of Fig. 2. Typing judgments are of the

form Γ;∆ ⊢ t : A,where Γ (resp. ∆) is the polyadic (resp. linear) context and contains assignments

of the form x : C (resp. a : B). Note that, as anticipated, ⊥ is not typable, nor is any term containing

it.

We want to stress that the type system of Fig. 2 is far from original: if one erases all term

annotations, one obtains a natural deduction formulation of a logical system such that

• if one reads ⟨A1, . . . ,An⟩ as A1 ⊗ · · · ⊗ An , all rules except weak and cntr are derivable in the

⊗/⊸ fragment of multiplicative linear logic;
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• if one reads ⟨A1, . . . ,An⟩ as (A1&1)⊗· · ·⊗ (An&1), thenweak too is derivable in multiplicative

additive linear logic;

• if one reads ⟨A1, . . . ,An⟩ as !A1 ⊗ · · · ⊗ !An , then every rule is derivable in multiplicative

exponential linear logic.

We are now going to define a type system (·)− : Poly −→ Λp corresponding to Fig. 2, where

Poly is a suitable 2-operad of simply-typed derivations/Church-style terms. To define it, we follow

the two-sorted definition of Λp, declining it over all polyadic simple types:

• the objects are of the form A or [A], where A ranges over polyadic simple types;

• given sequences [Γ] and ∆ of objects and an interleaving Σ of them, Poly(Σ;A) is the category
whose

– objects are the type derivations (or, equivalently, Church-style terms) of Γ;∆ ⊢ t : A, where
t is a term whose free variables are ai and x ij as in the definition of Λp;

– morphisms are reductions (of Church-style terms) modulo permutation equivalence;

• Poly(Σ; [A]) is the full subcategory of Poly(Σ;A) restricted to derivations of terms of the

form ⟨t1, . . . ,tn⟩;
• operadic composition is substitution, with the rules var and pvar playing the role of identities
(on A and [A], respectively).

By disallowing the structural rules (weak and cntr), we have obvious suboperads RelvPoly, AffPoly
and LinPoly of Poly. Of course, these may only type relevant, affine and linear terms, respectively.

To stress the use of unrestricted structural rules, we may write CartPoly as a synonym of Poly.
The forgetful morphism (·)− : Poly→ Λp is now easy to define: it takes objects of the form A to

l and [A] to p, and it is defined in the obvious way for the rest.

The main property ensured by simple types is strong normalization:

Proposition 3.1. Simply-typed polyadic terms strongly normalize.

Proof. As observed above, Poly may be embedded in propositional multiplicative exponential

linear logic, whose strong normalization is well known [Girard 1987]. □

It is worth mentioning that, for LinPoly orAffPoly, Proposition 3.1 is actually immediate because

linear or affine polyadic terms strongly normalize even without types: the absence of duplication

makes the size of terms strictly decrease at every reduction step. In that case, the only property

ensured by simple types is that typed terms cannot get stuck (this is proved as customary).

3.3 Intuitionistic linear logic and Girard’s embeddings
We consider the following calculus Λ! of proof terms for linear logic:

T ,U ::= a | λa.T | TU | x | !T | T [!x := U ],

where a and x range over disjoint sets of linear and cartesian variables, respectively. Linear variables
must respect the same linearity constraint as in polyadic calculi; in T [!x := U ], x is bound in T ;
and, in !T , which is called a box, T must not contain free linear variables.

Substitution contexts are defined just like in the polyadic calculus and reduction is the closure

under arbitrary contexts of the following rules:

(λa.T )[−]U → T {U /a}[−] T [!x := !U [−]] → T {U /x }[−].

The 2-operad Λ! corresponding to the above calculus is defined by adapting the definition of

Λp: its objects are l and c (for “cartesian”); the multimorphisms of source Γ ∈ {l,c}∗ and target

l are terms with free variables matching Γ (cartesian variables need not actually be free); the

multimorphisms of target c are restricted to boxes (i.e., of the form !T ); 2-arrows are reductions
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modulo permutation equivalence; and operadic composition is defined by t ◦il u := t {u/ai } for the

color l, and by t ◦ic !u := t {u/x i } for the color c.
We are now in position of giving a couple of non-trivial examples of encodings of term calculi

seen as morphisms of 2-operads. We start with a morphism G0 : Λ0 −→ Λ!, defined as follows (the

definition of Λ0 is in the final part of Sect. 2.1):

• on types, G0 (t) := l and G0 (v) := c;
• on terms,

G0 (x ) := x , G0 (λx .M ) := λa.G0 (M )[!x := a], G0 (MN ) := G0 (M )!G0 (N );

an immediate induction shows that G0 (M {N /x }) = G0 (M ){G0 (N )/x }.
• On reductions, it is enough to defineG0 (β ), where β : (λx .M )N →∗ M {N /x } is the generating
2-arrow; this is set to be the following reduction:

G0 ((λx .M )N ) = (λa.G0 (M )[!x := a])!G0 (N ) → G0 (M )[!x := !G0 (N )]

→ G0 (M ){G0 (N )/x } = G0 (M {N /x }).

The above encoding may be extended to the whole 2-operad Λk. We define Gk : Λk −→ Λ! by

setting Gk (A) := G0 (A) on types; Gk (M : t) := G0 (M ) and Gk (M : v) := !G0 (M ) on terms; and Gk

is defined like G0 on reductions.

Both G0 and Gk correspond to the call-by-name embedding of the λ-calculus in linear logic,

originally presented by Girard [1987]. In that paper, Girard also defined a call-by-value embedding,

which induces a morphism Gv : Λv −→ Λ! defined as follows (Λv is also defined in Sect. 2.1):

• on colors, Gv (t) := l and Gv (v) := c;
• on terms, we must distinguish whether the λ-term being encoded is of type t or v:

Gv (x : v) := !x Gv (MN : t) := ξ [!ξ := Gv (M : t)]Gv (N : t)

Gv (λx .M : v) := !(λa.Gv (M : t)[!x := a]) Gv (V : t) := Gv (V : v).

Note that the last line is not circular, i.e., whatever V is, a Gv is invoked on strictly smaller

subterm of it. It is easy to check that Gv (M {V /x } : t) = Gv (M : t){Gv (V : v)/x }.
• on reductions, we set if βv : (λx .M )V →∗ M {V /x } is the generating 2-arrow, we take Gv (βv)
to be the following reduction:

Gv ((λx .M )V : t) = ξ [!ξ := !(λa.Gv (M : t)[!x := a])]!Gv (V : v)

→ (λa.Gv (M : t)[!x := a])!Gv (V : v) → Gv (M : t)[!x := !Gv (V : v)]

→ Gv (M : t){Gv (V : v)/x } = Gv (M {V /x } : t).

In all cases, we glossed over a detail: technically, since the 2-arrows of our operads are defined

only up to permutation equivalence, we need to check that the image of Diagram 4 of Sect. 2.1 via

the embeddings commutes. Fortunately, this is just a straightforward verification.

3.4 Polyadic approximations
Definition 3.2 (approximation relations). The approximation relations on Λp × Λ! are defined

inductively, as in Fig. 3. The judgments are of the same form given in the introduction (Sect. 1.1).

There are four variants of the relation, one for each of the four variants of Λp, depending on which

structural rule(s) (i.e., weak and cntr) are allowed. We write t ⊏ T to mean that Γ ⊢ t ⊏ T is

derivable from the (suitable variant of) the rules of Fig. 3 for some context Γ.

The approximation relation may be extended to reduction sequences. We first need to fix some

notations and terminology. A context is shallow if
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⊢ a ⊏ a
var

Γ ⊢ t ⊏ T
Γ ⊢ λa.t ⊏ λa.T

lam
Γ ⊢ t ⊏ T Γ′ ⊢ u ⊏ U

Γ,Γ′ ⊢ tu ⊏ TU
app

x0 polyadic, x cartesian

x0 ⊏ x ⊢ x0 ⊏ x
pvar

Γ1 ⊢ t1 ⊏ T . . . Γn ⊢ tn ⊏ T

Γ1, . . . ,Γn ⊢ ⟨t1, . . . ,tn⟩ ⊏ !T
box

Γ′ ⊢ u ⊏ U Γ,x1 ⊏ x , . . . ,xn ⊏ x ⊢ t ⊏ T

Γ,Γ′ ⊢ t[⟨x1, . . . ,xn⟩ := u] ⊏ T [!x := U ]

let

Γ ⊢ t ⊏ T
Γ,x0 ⊏ x ⊢ t ⊏ T

weak
Γ,x0 ⊏ x ,x1 ⊏ x ⊢ t ⊏ T

Γ,x0 ⊏ x ⊢ t {x0/x1} ⊏ T
cntr

Fig. 3. Polyadic approximations. In the let rule, x does not appear in Γ.

t ⊏ T
idt ⊏ idT

id
ρ ⊏ φ ρ ′ ⊏ φ ′

ρ; ρ ′ ⊏ φ;φ ′
comp

ρ ⊏ φ S0 ⊏ S
S0{ρ} ⊏ S{φ}

sh ctxt
ρ1 ⊏ φ . . . ρn ⊏ φ

⟨ρ1, . . . ,ρn⟩ ⊏ !φ
box

ρ : (λa.t )[−]0u → t {u/a}[−]0
φ : (λa.T )[−]U → T {U /a}[−] t ⊏ T u ⊏ U [−]0 ⊏ [−]

ρ ⊏ φ mul

ρ : t[⟨x⃗⟩ := ⟨u⃗⟩[−]0]→ t {u⃗/x⃗ }[−]0
φ : T [!x := !U [−]]→ T {U /x }[−] t ⊏ T ui ⊏ U [−]0 ⊏ [−]

ρ ⊏ φ
exp

Fig. 4. Approximation relation on reductions.

• in Λp, the hole does not appear inside a ⟨. . .⟩;
• in Λ!, the hole does not appear under a !(−).

Substitution contexts are example of shallow contexts. The approximation relation is extended to

shallow contexts in the obvious way (the hole is treated like a linear variable).

The identity (i.e., empty) reduction sequence on a term t is denoted by idt ; if ρ : t →∗ t ′ and
ρ ′ : t ′ →∗ t ′′, their concatenation is denoted by ρ; ρ ′. If ρ : t →∗ t ′ and S is a shallow context,

there is an obvious reduction sequence S{t } →∗ S{t ′}, which we denote by S{ρ}. Similar notations

are used for Λ!. If ρi : ti →
∗ t ′i are reduction sequences in Λp, with 1 ≤ i ≤ n, there are several

obvious reduction sequences ⟨t1, . . . ,tn⟩ →
∗ ⟨t ′

1
, . . . ,t ′n⟩; these are all permutation equivalent and

are denoted by ⟨ρ1, . . . ,ρn⟩. Similarly, if φ : T →∗ T ′ is a reduction sequence in Λ!, there is an

obvious reduction sequence !T →∗ !T ′, which we denote by !φ.

Definition 3.3 (approximating reductions). The approximation relation (in any of its variants) for

reductions is defined by means of the inductive rules of Fig. 4, where:

• in the comp rule, the sequences are assumed to be composable;

• in the sh ctxt rule, S0 and S are shallow contexts;
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• in the mul and exp rules, ρ and φ are the obvious one-step sequences reducing the redex on

the left hand side.

4 INTERSECTION TYPES FROM POLYADIC APPROXIMATIONS
4.1 The approximation presheaf
Fix a suboperad D ↪→ Poly.

Definition 4.1 (category of types). We define the following sets, seen as discrete categories:

Tl[D] := {A | the polyadic type A is a color of D};

Tc[D] := {⟨A1, . . . ,An⟩ | Ai ∈ Tl[D]}.

Definition 4.2 (approximation presheaf). We define a lax morphism of bioperads

Apx[D] : Λ! −→ Rel

as follows:

• on objects, Apx[D](l) := Tl[D] and Apx[D](c) := Tc[D];

• given T ∈ Λ! (cm , ln ; s) with s ∈ {l,c}, we must define a functor Apx[D](T ) : Tc[D]
m ×

Tl[D]
n × Ts[D]

op → Rel; since the source categories are discrete, this is just a map assigning

a set to each element of Tc[D]
m × Tl[D]

n × Ts[D]. Let Θ ∈ Tc[D]
m
, i.e.,

Θ = ⟨B1

1
, . . . ,B1

k1⟩, . . . ,⟨B
m
1
, . . . ,Bmkm ⟩;

we define Θ to be the polyadic context containing exactly the judgments x ij : Bij for all

1 ≤ i ≤ m, 1 ≤ j ≤ ki . Then, for Γ ∈ Tl[D]
n
and A ∈ Ts[D], we set

Apx[D](T ) (Θ,Γ;A) :=
{
δ ∈ D (Θ,Γ;A) | Ξ ⊢ δ− ⊏ T

}
,

where Ξ consists of exactly x ij ⊏ x i for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki .

• given T ,T ′ ∈ Λ! (cm , ln ; s) with s ∈ {l,c} and φ : T →∗ T ′, Apx[D](φ) must be a natural

transformation from Apx[D](T ) to Apx[D](T ′); again, since the source categories of these
distributors are discrete, this is just a family of relations indexed by Tc[D]

m ×Tl[D]
n ×Ts[D];

we define it as follows:

Apx[D](φ)Θ,Γ;A :=
{
(δ ,δ ′) ∈ Apx[D](T ) (Θ,Γ,A) × Apx[D](T ′) (Θ,Γ,A) |

∃τ : δ →∗ δ ′ in D (Θ,Γ;A) s.t. Ξ ⊢ τ− ⊏ φ
}
,

with Θ and Ξ defined as above. So, (δ ,δ ′) ∈ Apx[D](φ)Θ,Γ;A if these are related by a typed

reduction approximating φ.

Suppose now that we have a morphism of operads G : L → Λ!, i.e., L is a programming

language admitting a semantic-preserving embedding in intuitionistic linear logic. Then, we have a

lax morphism

L
G // Λ!

Apx[D] // Rel

to which we may apply the Grothendieck construction of Theorem 2.4, yielding a type system for

L in the sense of Definition 2.3:

Definition 4.3 ((D,G)-type system). LetD ↪→ Poly and G : L → Λ!. We define the abbreviations

p[D,G] :=
∫
(Apx[D] ◦ G), E[D,G] := Eℓ(Apx[D] ◦ G),

and say that a multimorphismM of L is (D,G)-typable if it is in the image of p[D,G] or, equiva-
lently, there are Γ,A such that (Apx[D] ◦ G) (M ) (Γ;A) , ∅.
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In Sect. 4.3 and 4.4 we will give ample evidence that this is an intersection type system for L,

in accord with the Equivalence 3 of Sect. 1.2. For the time being, let us give an idea of what the

2-operad E[D,G] looks like. By applying the definition given in the proof of Theorem 2.4, we have:

• an object of E[D,G] is a pair (a,A) where a is a type of L and A a type of Tl[D] or Tc[D],

depending on whether the image of a through G is l or c; in other words, it is a type of L

refined by a polyadic simple type declared “valid” by D.

• Given types (a,A), (γ ,Γ) = (c1,C1), . . . , (cn ,Cn ) and

(θ ,Θ) = (b1,⟨B
1

1
, . . . ,B1

k1⟩), . . . , (bm ,⟨B
m
1
, . . . ,Bmkm ⟩),

where we assume that G(ci ) = l ad G(bi ) = c for all i , a multimorphism of

E[D,G]((θ ,Θ), (γ ,Γ); (a,A))

is a pair (M ,δ ) composed of a termM ∈ L (θ ,γ ;a) and a “valid” simply-typed derivation δ of

Θ; Γ ⊢ t : A such that t ⊏ G(M ).
• Similarly, a 2-arrow (M ,δ ) → (M ′,δ ′) is a pair (ψ ,τ ) such thatψ : M →∗ M ′ inL, τ : δ →∗ δ ′

in D and τ− ⊏ G(ψ ), i.e.,M →∗ M ′ viaψ and there is a polyadic reduction approximatingψ
which may be given a “valid” type as a reduction δ →∗ δ ′.

In particular,

M is (D,G)-typable iff there exists δ in D (Γ;A) such that δ− ⊏ G(M ),

exactly as in Equivalence 3 of Sect. 1.2.

4.2 Capturing dynamic properties
Intersection types are known for their ability to capture dynamic (or runtime) properties of programs,

most notably various kinds of termination. We will start by giving a somewhat general definition

of what a “dynamic property” may be in our context.

Definition 4.4 (dynamic property). Let L be a 2-operad. A strong dynamic property for L is a set

of 2-arrows of L. Given such a set R, we let S (R ) be the set of all multimorphismsM of L such

that there is no sequence (ψi : Mi →
∗ Mi+1)i ∈N of non-identity 2-arrows of R withM0 = M .

A weak dynamic property of L consists of a triple (R,N ,Ctxt) such that

• R is a set of 2-arrows of L;

• N is a set of multimorphisms of L;

• Ctxt is a set of functions on multimorphisms of L.

We write C{M } for the multimorphism of L resulting from the application of C ∈ Ctxt to a

multimorphismM . Given such a triple, we letW (R,N ,Ctxt) be the set of all multimorphismsM
of L such that there exist C ∈ Ctxt, N ∈ N andψ : C{M } →∗ N in R.

The intuition between strong and weak dynamic properties is that they express some kind of

strong or weak normalization. For what concerns the first, this is clear from the definition: R

represents a notion of reduction and S (R ) is the set of strongly R-normalizing terms (seen as

multimorphisms). For what concerns the latter, R is still a notion of reduction, N represents a

notion of normal form and Ctxt a notion of “legal” contexts, soW (R,N ,Ctxt) is the set of terms

having a N -form reachable via a reduction in R, modulo an initial manipulation in Ctxt.

Definition 4.5 (faithful reduction, full expansion). Let D ↪→ Poly and G : L → Λ!. Let R be a

strong dynamic property for L. We say that the pair (D,G) is faithfully reductive with respect to

R if, for all ρ ∈ R and for all types Γ,A

subject reduction: p[D,G] oplifts every 2-arrow of R;
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faithfulness: if (Apx[D] ◦ G) (ρ)Γ;A , ∅ and is the identity (i.e., the diagonal relation), then ρ
is an identity.

Let (R,N ,Ctxt) be a weak dynamic property for L. We say that the pair (D,G) is fully expansive
if, for all ρ ∈ R and for all types Γ,A

subject expansion: p[D,G] lifts every arrow of R;

fullness: for all u ∈ N , u is (D,G)-typable and, for all C ∈ Ctxt, if t is (D,G)-typable, then so

is C{t }.

Lemma 4.6. Let D ↪→ Poly and G : L → Λ! and let R be a strong dynamic property for L with
respect to which (D,G) is faithfully reductive. Then, ifψ ∈ R is not an identity, there is at least one
oplifting (ψ ,τ ) ofψ with respect to p[D,G] such that τ is not an identity.

Proof. Letψ : M ⇒ M ′ ∈ R be a non-identity arrow withM in the image of p[D,G], i.e., there
exist Γ,A and δ ∈ D (Γ;A) such that (M ,δ ) ∈ E[D,G](Γ;A), which means that δ ∈ (Apx[D] ◦

G) (M ) (Γ;A). Now, by subject reduction,ψ has an oplifting, which by definition is of the form (ψ ,τ )
with τ : δ ⇒ δ ′ and (δ ,δ ′) ∈ (Apx[D] ◦ G) (ψ )Γ;A. By faithfulness, we may choose δ ′ , δ and, in

particular, τ , idδ . □

We may now state and prove our main result:

Theorem 4.7. Let L be a programming language, presented as a 2-operad. Let R and (R0,N ,Ctxt)
be a strong and a weak dynamic property for L such that S (R ) ⊆ W (R0,N ,Ctxt), and suppose that
(D ↪→ Poly,G : L → Λ!) is both faithfully reductive with respect to R and fully expansive with
respect to (R0,N ,Ctxt). Then, for every programM of L, the following are equivalent:
(1) M is (D,G)-typable;
(2) M ∈ S (R );
(3) M ∈ W (R0,N ,Ctxt).

Proof. (1)⇒ (2): letM be (D,G)-typable and suppose, for the sake of absurdity, that there is

a sequence (ψi : Mi ⇒ Mi+1)i ∈N of non-identity 2-arrows of R with M0 = M . Since M is (D,G)-
typable, there exist Γ,A and a derivation δ such that (M ,δ ) ∈ E[D,G](Γ;A). In particular,M is the

image of (M ,δ ) via p[D,G]Γ;A. Now, sinceψ0 ∈ R, this functor oplifts it by the subject reduction

hypothesis, so there is (ψ0,τ0) : (M ,δ ) ⇒ (M1,δ1) in E[D,G](Γ;A). In particular,M1 too is in the

image of p[D,G]Γ;A. Furthermore, by Lemma 4.6, we may suppose τ1 not to be an identity. We

may now re-apply the reasoning toM1 andψ1, then toM2 andψ2, and so on, obtaining a sequence

(τi : δi ⇒ δi+1)i ∈N of non-identity reductions in D (Γ;A), with δ0 = δ . We have therefore shown

that δ is not strongly normalizing, contradicting Proposition 3.1 (remember that D ↪→ Poly).
(2)⇒ (3): by hypothesis.

(3)⇒ (1): suppose M ∈ W (R0,N ,Ctxt), i.e., there exist C ∈ Ctxt, N ∈ N and ψ : C{M } ⇒ N
in R0. By fullness, there are types Γ,A and a derivation ε such that (N ,ε ) ∈ E[D,G](Γ;A). In
particular, N is the image of (N ,ε ) via p[D,G]Γ;A. Now, since ψ ∈ R0, this functor lifts it by the

subject expansion hypothesis, so there is (ψ ,τ ) : (C{M },δ ) ⇒ (N ,ε ), showing in particular that

C{M } is (D,G)-typable, so we conclude by fullness. □

4.3 A worked out example
We will now show that the multimorphisms of E[LinPoly,G0] are isomorphic to the derivations of

Gardner-de Carvalho’s non-idempotent intersection type system of Fig. 1. According to the general

description of E[LinPoly,G0] given after Definition 4.3, its objects are either polyadic simple types

(color l), or sequences of such (color c). Its derivations are pairs (M ,δ ) consisting of a λ-term M
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and a linear polyadic simply-typed derivation δ of Θ; ⊢ t : A such that t ⊏ G0 (M ). We know that

the context Θ is entirely polyadic because λ-terms only have variables of type v, and G0 (v) = c.
Moreover, we know that t : l because G0 has only terms of type t and G0 (t) = l.

Let fv(M ) ⊆ {x1, . . . ,xn }. If we make explicit the approximation context, i.e., which free polyadic

variables of t approximate which free variables of G0 (M ) (which coincide with those ofM), we get

x1 ⊏ x1, . . . ,xn ⊏ xn ⊢ t ⊏ G0 (M ). This also means that Θ = x1 : C
1

, . . . ,xn : C
n
. Superposing

approximation judgments and typing judgments (as we did in the introduction), we get judgments

of the form x1 ⊏ x1 : C
1

, . . . ,xn ⊏ xn : C
n
⊢ t ⊏ G0 (M ) : A,where x i ⊏ x i : C

i
abbreviates x i

1
⊏

x i : Ci
1
, . . . ,x iki ⊏ x i : Ci

ki
. Now, by inspecting Fig. 2 and Fig. 3, we see that linear approximations

and linear derivations are both syntax-directed. Therefore, the structure ofM guides the structure

of δ , and we have only three possibilities:

x0 ⊏ x : A; ⊢ x0 ⊏ G0 (x ) : A
pvar

;a : A⃗ ⊢ a : A⃗
var

Γ,x ⊏ x : A; ⊢ t ⊏ G0 (M ) : B

Γ;a : A⃗ ⊢ t[⟨x⟩ := a] ⊏ G0 (M )[!x := a] : B
let

Γ; ⊢ λa.t[⟨x⟩ := a] ⊏ G0 (λx .M ) : A⃗ ⊸ B
lam

Γ; ⊢ t ⊏ G0 (M ) : A⃗ ⊸ B

Γ1; ⊢ u1 ⊏ G0 (N ) : A1 . . . Γn ; ⊢ un ⊏ G0 (N ) : An

Γ′
1
, . . . ,Γ′n ; ⊢ ⟨u1, . . . ,un⟩ ⊏ !G0 (N ) : A⃗

box

Γ,Γ′
1
, . . . ,Γ′n ; ⊢ t⟨u1, . . . ,un⟩ ⊏ G0 (MN ) : B

app

where A⃗ = ⟨A1, . . . ,An⟩. If we only retain the purple decorations, forget the intermediate steps

not typing terms of the form G0 (−) and if, in the context, we write x : ⟨A1, . . . ,An⟩ instead of

x1 ⊏ x : A1, . . . ,xn ⊏ x : An , we obtain precisely Fig. 1: the lam0 rule is a special case of the above

in which there are zero approximations of x , and the perm rule results from th exchange rule on

LinPoly contexts. To be exact, the system obtained is in Fig. 5, discarding the rules weak and cntr.

4.4 Applications
We will now present a series of interesting instances of Theorem 4.7. First, however, let us point

out the intuition behind faithfulness (Definition 4.5). The idea is that not only do we want subject

reduction, we also want it to reflect the computation being performed. Indeed, subject reduction

may hold because, whenM → M ′, the derivation δ typingM ′ is the same as that typingM . This

may happen because the redex fired inM to obtainM ′ is contained, via the embedding in Λ!, inside

a box approximated by ⟨⟩, hence it is not typed by δ , and the modifications induced by the reduction

are invisible to the typing. Faithfulness says that this must not happen for the reductions of which

we are trying to capture termination (i.e., those in R).

Head normalization. Consider again the pair (LinPoly,G0). We know that the induced type

system is isomorphic to Fig. 1. It is easy to see that such a system enjoys both subject reduction

and subject expansion with respect to every reduction. However, it is faithfully reductive only with

respect to head reduction, whichwe denote here byR . This is a consequence of what observed above:
head redexes never appear under a !(−) viaG0, so they may never be “forgotten” by approximations.

Let now R0 := all reductions, N := head normal forms and Ctxt := {id}. Then,W (R0,N ,Ctxt)
is the set of terms having a head normal form. It is straightforward to see that head normal

forms are typable (just assign a type of shape ⟨⟩ ⊸ · · · ⊸ ⟨⟩ ⊸ α to the head variable), so

(LinPoly,G0) is fully expansive. It is obviously the case that S (R ) ⊆ W (R0,N ,Ctxt) (if head
reduction terminates forM , thenM certainly has a head normal form). Therefore, by Theorem 4.7,

(LinPoly,G0)-typability characterizes having a head normal form and, moreover, we get for free
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x : ⟨A⟩ ⊢ x : A
var

Γ,x : A⃗ ⊢ M : B

Γ ⊢ λx .M : A⃗ ⊸ B
lam Γ ⊢ M : ⟨A1, . . . ,An⟩ ⊸ B . . . ∆i ⊢ N : Ai . . .

Γ · ∆1 · · ·∆n ⊢ MN : B
app

Γ,x : A⃗ ⊢ M : C

Γ,x : σ (A⃗) ⊢ M : C
exch Γ ⊢ M : C

Γ,x : ⟨⟩ ⊢ M : C
weak0
x<Γ

Γ,x : B⃗ ⊢ M : C

Γ,x : ⟨B⃗,A⟩ ⊢ M : C
weak

Γ,x : ⟨B⃗,A,A⟩ ⊢ M : C

Γ,x : ⟨B⃗,A⟩ ⊢ M : C
cntr

Fig. 5. Cartesian intersection type system characterizing head normalization. In the app rule, Γ · ∆ is con-
catenation as in Fig. 1. Non-idempotent or relevant variants are obtained by removing the rule cntr or weak,
respectively (but not weak0). Gardner-de Carvalho’s system (Fig. 1) is obtained by removing both.

that having a head normal form is the same as saying that head reduction terminates. This latter

fact is not immediate: syntactic proofs require a form of standardization.

More generally, it is easy to see that (D,G0) for anyD ∈ {LinPoly,AffPoly,RelvPoly,CartPoly}
induces a type system characterizing head normalization. The least restrictive, whenD = CartPoly,
is depicted in Fig. 5. This is just a (strict, in the sense of van Bakel [1995]) reformulation of the

standard system called DΩ by Krivine [1993], the variant with Ω of Coppo et al. [1981]. The other

systems are obtained by discarding one or both of the rules weak and cntr: the former enables

basic subtyping (i.e., A ∧ B ≤ A) and makes the system non-relevant; the latter makes the system

idempotent. The rule weak0 cannot be discarded, it is necessary to make the system complete (e.g.
it is needed to type λx .y).

Solvability. The above systems actually characterize solvability. It is a classic result of Wadsworth

[1971] that solvability and head normalization coincide, so this would be a trivial remark if it

were not for the fact that we may prove it independently of Wadsworth’s result, thus yielding an

alternative, type-theoretic proof of his theorem. Indeed, let R be head reductions, as above, and

let R0 := all reductions, N := {I } and Ctxt := applicative contexts, where I is the identity λ-term
and applicative contexts are of the form {·}N1 · · ·Nn . By definition,W (R0,N ,Ctxt) is the set of
solvable λ-terms.

Now, it is immediate that S (R ) ⊆ W (R0,N ,Ctxt) (if a λ-term has a head normal form, it is

solvable). We know that any of the systems of Fig. 5 is faithfully reductive with respect to R. It is

easy to see that it is also fully expansive with respect to (R0,N ,Ctxt): we know we have subject

expansion, I is obviously typable and it is immediate to see that, ifMN1 · · ·Nn is typable, then so

must be M . So Theorem 4.7 applies, and we have that a term is solvable iff it has a head normal

form iff it is typable in one of the systems of Fig. 5.

Note that this particular application uses a non-trivial set of functions Ctxt. In the sequel, we

will always use Ctxt = {id} (the identity function), so we will never specify it again, and we will

writeW (R,N ) forW (R,N , {id}).

Strong normalization. Let now D ∈ {CartPoly,AffPoly} and let Dsn be its full suboperad on

the ⟨⟩-free types, i.e., the empty sequence ⟨⟩ is not allowed, and consider the pair (Dsn,G0). The
resulting type system is obtained from Fig. 5 by disallowing the use of ⟨⟩ in types, which means

that the weak0 rule must be modified to derive Γ,x : ⟨A⟩ ⊢ M : C from Γ ⊢ M : C (also, in the

affine case, the rule cntr must be dropped). The idempotent system (i.e., with contraction) is just a

reformulation of the system originally introduced by Coppo et al. [1981].

Since the type ⟨⟩ is the only way to type the term ⟨⟩, empty polyadic approximations are not

allowed in Dsn; in particular, whenever t ⊏ G0 (M ) with t typable in Dsn, no redex of M may
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be “forgotten” by t . This means that the identity reduction cannot approximate a non-identity

reduction, ensuring faithfulness with respect to all reductions (subject reduction is easy to show).

It is also easy to show that all normal forms are typable. However, subject expansion only holds

for non-erasing reductions. In the λ-calculus, a reduction step firing a redex (λx .M )N is non-erasing
if x < fv(M ) implies N normal.

Indeed, if (λx .M )N → M because x < fv(M ), and if t ⊏ M is a typable approximation, we cannot

use the approximation (λa.t[⟨⟩ := a])⟨⟩ ⊏ G0 ((λx .M )N ) in order to expand, because this is not

typable in Dsn. However, we know that N is normal, hence typable, hence there exists u ⊏ N
typable in Dsn, so we may use the approximation (λa.t[⟨z⟩ := a])⟨u⟩, where z does not appear in t
and may be given the type of u. This latter point shows the necessity of weakening.

So, if R denotes the set of all reductions, R0 the set of non-erasing reductions and N the

set of normal forms, we have that S (R ) is the set of strongly normalizable λ-terms, whereas

W (R0,N ) is the set of λ-terms having a normal form via a non-erasing reduction. Since being

strongly normalizable implies having a normal form under any kind of reduction, Theorem 4.7

applies and we have that a λ-term is strongly normalizable iff its normal form may be found

by non-erasing reduction iff it is (Dsn,G0)-typable. This subsumes the classic result that the

perpetual strategy (which is a particular non-erasing strategy) terminates onM iffM is strongly

normalizable [Barendregt 1984].

Weak normalization. Let Dwn be the suboperad of D ∈ {LinPoly,AffPoly,RelvPoly,CartPoly}
in which typing judgments Θ; Γ ⊢ t : A are restricted so that A (resp. a type in Θ,Γ) may only

contain occurrences of ⟨⟩ in negative (resp. positive) position, and consider the pair (Dwn,G0). The
corresponding type systems are obtained from Fig. 5 simply by restrict typing judgments.

In this case, subject reduction and expansion are unproblematic for all reductions. It is also easy

to show that all normal forms are typable, so the pair is fully expansive with respect to (R0,N )
where R0 is all reductions and N are the normal forms. Note thatW (R0,N ) is just the set of
(weakly) normalizable λ-terms.

This time, what fails in general is faithfulness. Indeed, it holds for reductions which only fire

redexes whose applicative depth is minimal among all redexes, the applicative depth of a subterm N
ofM being the number of times one must cross the argument position of an application to reach N
from the root of the syntactic tree ofM . Such reductions are called Böhm reductions, because they
iterate head reduction and gradually reveal the Böhm tree of a term: the head redex is at minimum

depth; once the head variable is found, one starts entering in its arguments, and so on.

The intuition behind faithfulness for Böhm reductions is the following. Letψ : M → M ′ be a non-
identity reduction such that Hψ is a Böhm reduction and suppose that h is a polyadic term typable

in Dwn such that h⟨⟩ ⊏ G0 (Hψ ), contradicting faithfulness. Since Hψ is a Böhm reduction, H must

be of the form xN1 · · ·Nk (if instead of x we had an abstraction, there would be a redex at strictly

lower applicative depth). But then the type of x must be of the form C⃗1 ⊸ · · · ⊸ C⃗k ⊸ ⟨⟩ ⊸ A
with ⟨⟩ appearing negatively, which is not allowed in a context of Dwn.

So, if we take R to be Böhm reductions, we have that S (R ) is obviously contained in the set of

normalizable terms, and Theorem 4.7 gives us that a term is (weakly) normalizable iff every Böhm

reduction starting from it terminates iff it is (Dwn,G0)-typable. A syntactic proof of the first double

implication requires a non-trivial standardization theorem [Barendregt 1984].

Non-strict intersection types. Systems using “non-strict” intersection types (i.e., with intersection

also to the right of arrows, as in A → A ∧ A) may be obtained by considering the unrestricted

encoding Gk : Λk −→ Λ!,which takes as source the full bichromatic presentation of the λ-calculus,
with terms of type v as well. In this embedding, the image of a λ-termM seen as value is !G0 (M ),
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x : A ⊢ x : A
var

Γ1,x : A1 ⊢ N : B1 . . . Γn ,x : An ⊢ N : Bn
Γ1 · · · Γn ⊢ λx .N : ⟨A1 ⊸ B1, . . . ,An ⊸ Bn⟩

lam
Γ ⊢ M : ⟨A ⊸ B⟩ ∆ ⊢ N : A

Γ · ∆ ⊢ MN : B
app

Fig. 6. Intersection types for the call-by-value λ-calculus. The are also rules exch, weak0, weak and cntr, not
shown because identical to Fig. 5.

so its approximations will all be of the form ⟨t1, . . . ,t1⟩ with ti ⊏ G0 (M ). In other words, we have

systems with the rules of Fig. 5 augmented with

Γ1 ⊢ M : A1 . . . Γn ⊢ M : An

Γ1, . . . ,Γn ⊢ M : ⟨A1, . . . ,An⟩
inter

In particular, the derivations of E[Dsn,Gk], with Dsn as defined above (the cartesian version), are

just a different presentation of the original system of Coppo and Dezani-Ciancaglini [1980].

The call-by-value λ-calculus. Our construction has two parameters: a sub-operadD ↪→ CartPoly
and an embedding G : L → Λ! of a calculus L in linear logic. The first wave of examples fixed G
and showed several possibilities for D; the last example provided a different G, but the calculus
was the same. Let us give an instance of our framework with a slightly different calculus.

In Sect. 3.3, we recalled Girard’s call-by-value embedding Gv : Λv −→ Λ!. If R denotes head

reduction in Λv (also known as the weak call-by-value strategy, which is the standard evaluation

strategy of many practical programming languages), and if R0 denotes all reductions and N weak

head normal forms (i.e., arbitrary abstractions or terms of the form xN1 · · ·Nk with Ni arbitrary),

then the pair (D,Gv) for any D ∈ {LinPoly,AffPoly,RelvPoly,CartPoly} is faithfully reductive

with respect to R and fully expansive with respect to (R0,N ), so Theorem 4.7 proves that weak

head normal forms are reachable with the weak call-by-value strategy iff they are reachable at all,

and gives us intersection type systems characterizing weak call-by-value normalization.

The types for these systems are given by A,B ::= ⟨A1 ⊸ B1, . . . ,An ⊸ Bn⟩ (n = 0 is allowed,

which gives the base case of the inductive definition). The shape of types is justified by observing that

Girard’s call-by-value translation is based on the recursive type D = !(D ⊸ D), and remembering

that ⟨−⟩ approximates !(−). The rules are given in Fig. 6. As usual, one has four versions of the

system, idempotent or not, relevant or not, by keeping or discarding weak and cntr.

The λµ-calculus. The 2-operad Λ! and the polyadic calculi that approximate it are not the most

general for which one may define an approximation presheaf as in Sect. 4.1. In fact, it is possible to

reformulate the whole theory of polyadic approximations (Sect. 3.4) using proof nets, which are the

most general syntax for linear logic proofs, without intuitionistic restrictions. The details of this

have been developed by the second author in his Ph.D. thesis [Pellissier 2017]. The development

is based on cyclic 2-operads, of which the proof net syntax is a paradigmatic example, which we

denote by LL.
In this augmented set-up, we may consider the λµ-calculus of Parigot [1992], a well-known

extension of the λ-calculus capturing classical reasoning/control operators. This admits a natural

presentation as a cyclic 2-operad ΛM , which may be embedded in LL by means of an embedding

L : ΛM −→ LL due to Laurent [2003]. Then, for any “flavor”D of simply-typed polyadic proof nets

(with weakening and/or contraction), the Grothendieck construction applied to Apx[D] ◦ L gives

us a type system for the λµ-calculus. Its types, ranged over by A,B,C , are as follows:

A,B,C ::= ⟨⟨P1, . . . ,Pn⟩⟩, P ::= Θ ⊸ B, Θ ::= ⟨A1, . . . ,An⟩,
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x : ⟨A⟩ ⊢ x : A
var

Γ,x : Θ ⊢ M : B

Γ ⊢ λx .M : ⟨⟨Θ ⊸ B⟩⟩
lam

Γ,α : A,β : B ⊢ M : C

Γ,α : C · A ⊢ µβ .⌈α⌉M : B
name

Γ ⊢ M : ⟨⟨Θ1 ⊸ B1, . . . ,Θn ⊸ Bn⟩⟩ ∆j
i ⊢ N : Θi (j )

Γ · ∆1

1
· · ·∆k1

1
· · ·∆1

n · · ·∆
kn
n ⊢ MN : ⟨⟨B1, . . . ,Bn⟩⟩

app
1 ≤ i ≤ n
1 ≤ j ≤ ki

Fig. 7. Intersection types for the λµ-calculus. The notation Γ · ∆ is concatenation as in Fig. 1, extended to
sequences of the form ⟨⟨−⟩⟩ as well. There are also rules exch, weak0, weak and cntr, similar to Fig. 5.

where ⟨⟨−⟩⟩ is the dual of ⟨−⟩, just like the modality ?(−) is dual to !(−) in classical linear logic.

The shape of the types is immediately justified by noting that Laurent’s translation uses the

recursive type D = ?(!D ⊸ D), keeping in mind that ⟨−⟩ approximates !(−) and ⟨⟨−⟩⟩ approximates

?(−). In the literature on intersection types for the λµ-calculus, these latter are known as union
types [Laurent 2004]. Given a sequence Θ = ⟨A1, . . . ,An⟩, we write Θ(i ) for Ai . Given two types

A,B, which are always sequences, we write A · B for their concatenation. The typing judgments are

of the form

x1 : Θ1, . . . ,xm : Θm ,α1 : B1, . . . ,αn : Bn ⊢ M : A,

where xi are λ-variables and α j are µ-variables. The typing rules are given in Fig. 7.

One may check that the right conditions for applying (the augmented version of) Theorem 4.7

are met by this system with respect to head reduction of λµ-terms, which is therefore characterized

by typability. Interestingly, the linear version of this system (without weak and cntr) turns out to
coincide with a system for the λµ-calculus recently introduced by Kesner and Vial [2017].

5 CONCLUSIONS
5.1 Related work
It is has been known for a long time that intersection types and linear logic are related. Regnier

(crediting Duquesne) started this line of investigation in his Ph.D. thesis [Regnier 1992]; later on,

Kfoury [2000] discovered an intriguing relationship between intersection types and a linearization

of the λ-calculus. Retrospectively, his is a sort of an embryo of our linear polyadic calculus. We

already mentioned the line of work concerning the link between non-idempotency and linear-

ity [de Carvalho 2009; Neergaard and Mairson 2004]. However, to the best of our knowledge no

previous work described the correspondence between approximations and intersection types in

the sharp, synthetic and broad framework we propose.

The affinities between our approximations and the Taylor expansion of Ehrhard and Regnier

[2008] are obvious and we believe that our work may be entirely reformulated in that context. As a

starting point, it is immediate to define an embedding (−)◦ of the linear polyadic calculus into the

resource λ-calculus such that, for T in Λ! and t linear, t ⊏ T iff t◦ ∈ Taylor(T ), where Taylor(T ) is
the support of the Taylor expansion of T .

Another relevant work is that of Bucciarelli et al. [2003], in which an encoding from intersection

type derivations to simply-typed λ-terms is used to show the soundness (i.e., typable⇒ SN) of the

system of Coppo et al. [1981]. Our work (vastly) generalizes this approach, reducing the soundness

of every well-known system of intersection types to the strong normalization of propositional

linear logic (Proposition 3.1) and replacing plenty of ad hoc reducibility/logical relation arguments

[Krivine 1993] or, in the non-idempotent case, ad hoc combinatorial arguments [Bernadet and

Lengrand 2013; Kesner and Vial 2017; Kfoury 2000] with a single proof.
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Finally, the work of Melliès and Zeilberger [2015] obviously had a major influence on our paper.

It is worth mentioning that the fibrational perspective on type systems is already explored to

some depth in their work. In this respect, all we do is “taking it to dimension two”, in the sense

that we consider reduction sequences and see (op)fibrations as witnesses of the subject expansion

(reduction) properties. Melliès and Zeilberger’s work focuses on the Set-enriched case and therefore
fibrations have a different meaning there.

5.2 Discussion and perspectives
The main message of this paper is: as soon as a programming language may be meaningfully
embedded in linear logic, there is an intersection type discipline for it. Of course, what this intersection
type discipline may do depends on the embedding and its “meaningfulness”. However, we hope

that we have shown enough applications to justify the claim that our approach is rather broad.

Our framework also gives a systematic explanation to certain aspects of intersection types:

• non-idempotency and relevance are just reflections of the absence of structural rules (weak-

ening and contraction, respectively) in polyadic systems;

• strictness of intersections arises from the asymmetric version of Girard’s encoding;

• as mentioned above, soundness is ultimately a consequence of strong normalization of

propositional linear logic.

We would also like to stress that our construction does not have only an “explanatory” power

but also has a “predictive” value: the last two instances given in Sect. 4.4, albeit simple, exemplify

how our framework may be used to almost automatically synthesize intersection type systems

without necessarily knowing them in advance (the call-by-value system is possibly folklore, but

we did not know of it; the system for λµ had been developed independently of our work). More

interestingly, we are currently studying the possibility of applying our construction to the encoding

of the π -calculus in proof nets by Ehrhard and Laurent [2010], which would yield what is perhaps

the first application of intersection types to concurrent calculi.

Of course, we should also mention what our construction cannot currently do: it fails to capture

infinitary systems such as those of the third author [Vial 2017], or probabilistic systems as those

being developed by Breuvart and Dal Lago [2016]; and, although we do capture the reformulation

by Grellois and Melliès [2015] of the system of Kobayashi and Ong [2009] for higher order recursion

schemes, its main property is not a consequence of our Theorem 4.7.

Finally, let us mention an intriguing aspect of Theorem 4.7, which is to highlight how, contrarily

to common understanding, intersection types systems do not characterize dynamic properties per se
but, rather, relate them to one another. That is, intersection types actually show up as a bridge from

an “existential” property (weak normalization) to a “universal” property (strong normalization),

and their apparent ability to characterize dynamic properties results from judiciously choosing

such properties so that the “universal” implies the “existential”, thus closing the circle. It would be

interesting to pursue a more general approach in this direction.
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