
Sequence Types for Hereditary Permutators1

Pierre Vial2

Inria, Nantes3

firstname.name@inria.fr4

Abstract5

The invertible terms in Scott’s model D∞ are known as the hereditary permutators. Equivalently,6

they are terms which are invertible up to βη-conversion with respect to the composition of the7

λ-terms. Finding a type-theoretic characterization to the set of hereditary permutators was problem8

20 of TLCA list of problems. In 2008, Tatsuta proved that this was not possible with an inductive9

type system. Building on previous work, we use an infinitary intersection type system based on10

sequences (i.e., families of types indexed by integers) to characterize hereditary permutators with a11

unique type. This gives a positive answer to the problem in the coinductive case.12

2012 ACM Subject Classification General and reference→ General literature; General and reference13

Keywords and phrases hereditary permutators,Böhm trees,intersection types,coinduction,ridigity,sequence14

types,non-idempotent intersection15

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2316

The study of βη-invertible terms goes back to Curry and Feys [7], who showed that the17

only regular combinators having an inverse are of the form λxx1 . . . xn.x xσ(1) . . . xσ(n) with18

σ a permutation. Building on this work, Dezani [9] gave a characterization of the normal19

forms of all the invertible normalizing terms. This characterization was extended by Bergstra20

and Klop [3] for any term: βη-invertible terms were proved to have Böhm trees of a certain21

form, generalizing that given by Curry and Feys and suggesting to name them hereditary22

permutators.23

On another hand, intersection types systems were introduced by Coppo and Dezani [6, 12]24

around 1980 (see [16] for a survey). They were extensively used to characterize various sets25

of terms having common semantic properties (including head, weak, strong normalization)26

in different calculi. Yet, hereditary permutators resisted such a characterization, so that the27

problem of finding a type system assigning a unique type to all hereditary permutators (and28

only to them) was inscribed in TLCA list of open problem by Dezani in 2006 (Problem #29

20). Two years later, Tatsuta [14] proved that the set HP of hereditary head permutators30

is not recursively enumerable. This entails that HP cannot be characterized in an inductive31

type system.32

However, in [17], using a coinductive intersection type system named system S, we33

characterized the so-called set of hereditary head normalizing (HHN) terms which is also a34

set of terms having Böhm trees of certain form (without the constant ⊥), whereas this set35

was also proved not to be recursively enumerable by Tatsuta [13]. As in the finitary case,36

infinite types bring simpler semantic proofs of well-known theorems, e.g., system S helps37

proving that an asymptotic reduction strategy produces the infinitary normal form of a term38

when it exists. In this paper, we extend system S with a type constant characterizing the set39

of hereditary permutators and we thus give a positive answer to TLCA Problem # 20 in the40

coinductive case. This also proves that infinitary type systems may be used to characterize41

other sets of Böhm trees.42

Before properly starting the article, a few words should be said on system S and infinitary43

typing: intersections are represented by families of types indexed by sets K of integers > 2.44

These indexes are called tracks. Thus, system S is close to non-idempotent intersection,45

introduced by Gardner [10] and de Carvalho [5], for which A ∧ A 6= A. In the finite case,46

non-idempotency gives very simple proofs of normalization (see [4] for a survey). Tracks allow47

© P. Vial;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1825-0097
mailto:firstname.name@inria.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Typing Hereditary Permutators

tracing occurrences of a given type in a derivation (rigidity) while ensuring syntax-direction,48

whereas having both is not possible when non-idempotent intersection is represented by lists49

or multisets. Rigidity is crucial in the infinitary case, because coinductive type grammars give50

birth to unsound derivations, e.g., the unsolvable term Ω := (λx.x x)(λx.x x) becomes typable.51

However, rigidity allows defining a validity criterion, called approximability, which brings52

back semantic soundness. This is why system S provides a good framework to characterize53

hereditary permutators.54

Last, Tatsuta defines a type system with a family of type constants ptypd (with d ∈ N)55

such that t : ptypd iff t is a hereditary permutator on d levels. Then, a term is a hereditary56

permutator iff t : ptypd is derivable for all d ∈ N. However, given a hereditary permutator t,57

there is no explicit relation between the different typings t : ptypd when d ranges over N.58

We reuse this idea here, but the notion of approximability hinted at above allows formally59

expressing the typing derivations concluding with t : ptypd as extensions of those concluding60

with t : ptypd0
with d0 < d. Actually, we define a type constant ptyp, which can be assigned61

to hereditary permutators and to them only, which is the “supremum” of all ptypd i.e., such62

that a typing t : ptyp is an extension of typings t : ptypd for all d ∈ N.63

64

Structure of the paper: We conclude this introduction with some technical background65

on hereditary permutators. Sec. 1 recalls some basic definitions about Böhm trees and the66

infinite λ-calculus, but also on system S and infinite types. In Sec. 2, we give a type-theoretic67

characterization of hereditary permutations in system S. In Sec. 3, we introduce system68

Shp, an extension of system S, such that hereditary permutators have a unique type. The69

technical contributions of this paper are found mainly in Sec. 2 and 3.1.70

Hereditary Permutators71

Let V be a set of term variables. For all n ∈ N, Sn denotes the set of permutations of72

{1, . . . , n}, →h denotes head reduction and the reflexive-transitive closure of a reduction73

→R is denoted →∗R. To define hereditary permutators, we first consider headed hereditary74

permutators, i.e., hereditary permutators whose head variables have not been bound yet.75

I Definition 1.76

For all x ∈ V , the sets HP(x) of x-headed Hereditary Permutators (x-HP) (x ∈ V)
are defined by mutual coinduction:

h1 ∈ HP(x1) . . . hn ∈ HP(xn) (n > 0, σ ∈ Sn, xi 6= x, xi pairwise distinct)
and h→∗h λx1 . . . xn.x hσ(1) . . . hσ(n)

h ∈ HP(x)

A closed hereditary permutator, or simply, a Hereditary Permutator (HP) is a term77

of the form h = λx.h0 with h0 ∈ HP(x) for some x.78

A headed hereditary permutator is the head reduct of a hereditary permutator applied to79

a variable.80

I Theorem 2 ([3]). A λ-term t is a hereditary permutator iff t is invertible modulo βη-81

conversion for the operation · defined by u · v = λx.u (v x), whose neutral element is I = λx.x.82

Thus, u is invertible when there exists v such that λx.u(v x) =βη= λx.v(ux) =βη I. An83

extensive presentation of hereditary permutators and their properties is given in Chapter 2184

of [2].85

P. Vial 23:3

1 Infinite terms and types86

In this section, we present Böhm trees (chapter 10 of [2]) and the construction of one of87

the infinitary calculi introduced in [11]. See also [8, 1] for alternative presentations. We88

then present system S, an infinitary intersection type system with a validity criterion (ap-89

proximability) discarding unsound coinductive derivations and using sequences to represent90

intersection. Some more details can also be found in [17].91

92

General notations: The set of finite words on N is denoted with N∗, ε is the empty word,93

a · a′ the concatenation of a and a′. The prefix order � is defined on N∗ by a � a′ if there is94

a0 such that a′ = a · a0, e.g., 2·3 � 2·3·0·1.95

Intuitively, 0 is dedicated to the constructor λx, 1 is dedicated to the left-hand side96

of applications and all the k > 2 to the possibly multiple typings of the arguments of97

applications. This also explains why 0 and 1 will have a particular status in the definitions98

to come. For instance, the applicative depth ad(a) of a ∈ N∗ is the number of nestings99

inside arguments, i.e., ad(a) is defined inductively by ad(ε) = 0, ad(a · k) = ad(a) if k = 0100

or k = 1 and ad(a · k) = ad(a) + 1 if k > 2. The collapse is defined on N by k = min(k, 2)101

and on N∗ inductively by ε = ε, a · k = a · k, e.g., 7 = 2, 1 = 1 and 2·3·0·1 = 2·2·0·1. These102

notions are straightforwardly extended to words of infinite length, e.g., 2ω, which is the103

infinite repetition of 2.104

1.1 Infinite Lambda Terms105

The set Λ∞ of infinitary λ-terms is coinductively defined by:

t, u := x ∈ V ‖ (λx.t) ‖ (t u)

When there is no ambiguity, we usually just write λx.t and t u1 . . . un instead of (λx.t)106

and (. . . (t u1) . . . un). If t is an infinitary term, then supp(t), the support of t (the set of107

positions in t) is defined in the usual way, i.e., coinductively, supp(x) = {ε}, supp(λx.t) =108

{ε} ∪ 0 · supp(t) and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If a ∈ supp(t), the subterm109

(resp. the constructor) of t at position a is denoted t|a (resp. t(a)), e.g., if t = λx.(x y)z and110

a = 0 · 1 (resp. a = 0 · 4), then t|a = x y and t(a) = @) (resp. t|a = t(a) = z).111

I Definition 3 (001-Terms). Let t ∈ Λ∞. Then t is a 001-term, if, for all infinite branches112

γ in supp(t), ad(γ) =∞.113

Once again, the vocable “001-term” comes from [11]. For instance, the 001-term fω114

is formally defined as the tree such that supp(fω) = {2n | n ∈ N} ∪ {2n · 1 |n ∈ N},115

fω(2n) = @ and fω(2n · 1) = f for all n ∈ N. Its unique infinite branch is 2ω (since all116

the finite prefixes of 2ω are in supp(fω)), which satisfies ad(2ω) = ∞. In contrast, the117

infinite term t defined by t = t x, so that t = (((. . .)x)x)x, is not a 001-term: indeed,118

supp(t) = {1n |n ∈ N} ∪ {1n · 2 |n ∈ N}, so supp(t) has the infinite branch 1ω (this indicates119

a leftward infinite branch), which satisfies ad(1ω) = 0 since 2 does not occur in 1ω.120

1.2 The computation of Böhm trees121

The notation t[u/x] denotes the term obtained from t by the capture-free substitution of122

the occurrences of x with u ([11] gives a formal definition in the infinitary calculus). The123

β-reduction→β is obtained by the contextual closure of (λx.t)u→β t[u/x] and t b→β t′ denotes124

the reduction of a redex at position b in t, e.g., λy.((λx.x)u)v 0·1→β λy.u v. A 001-Normal125

CVIT 2016

23:4 Typing Hereditary Permutators

Form (001-NF) is a 001-term that does not contain a redex. A 001-term is solvable if126

t→∗h λx1 . . . xp.x t1 . . . tq, which is a head normal form (HNF) of arity p.127

I Definition 4 (Böhm tree of a term). Let t be a 001-term.128

The Böhm tree BT(t) of t is coinductively defined by:129

BT(t) = λx1 . . . xp.x BT(t1) . . . BT(tq) if t→∗h λx1 . . . xp.x t1 . . . tq.130

BT(t) = ⊥ if t is unsolvable.131

For instance, BT(Ω) = ⊥ where Ω = (λx.x x)(λx.x x) and BT(t) = t if t a 001-normal132

form. Definition 1 can be read as the specification of a set of terms whose Böhm trees have a133

particular form. Intuitively, the computation of Böhm trees is done by a possibly infinite134

series of head reductions at deeper and deeper levels. This corresponds to an asymptotic135

reduction strategy known as hereditary head reduction.136

Some reduction paths are of infinite length but asymptotically produce a term.137

I Definition 5 (Productive reduction paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a138

reduction path of length ` 6 ω.139

Then, this reduction path is said to be productive if either it is of finite length (` ∈ N), or140

` =∞ and ad(bn) tends to infinity (recall that ad(·) is applicative depth).141

A productive reduction path is called a strongly converging reduction sequence in [11], in142

which numerous examples are found. When BT(t) does not contain ⊥, the hereditary head143

reduction strategy on a term t gives a particular case of productive path.144

I Lemma 6 (Limits of productive paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a145

productive reduction path of infinite length.146

Then, there is a 001-term t′ such that, for every d > 0, there is N ∈ N such that, for all147

n > N , supp(tn) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d} = supp(t′) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d}.148

The term t′ in the statement of Lemma 6 is called the limit of the productive path.149

Intuitively, when t′ is the limit of (tn)n>0, then t′ induces the same tree as tn at fixed150

applicative depth after sufficiently many reduction steps. We then write t→∞β t′ if t→∗β t′151

or t is the limit of a productive path starting at t. For instance, if ∆f = λx.f(xx),152

Yf = ∆f ∆f (with f ∈ V), then Yf
ε→β f(Yf), which gives the productive path Yf

ε→β153

f(Yf) 2→β . . . fn(Yf) 2n→β fn+1(Yf) . . . since ad(2n) −→ ∞. The limit of this path—which154

implements hereditary head reuction on Yf—is fω, i.e., Yf →∞β fω and also BT(Yf) = fω.155

A 001-term t is said to be infinitary weakly normalizing (WN∞) if there is a 001-NF156

t′ such that t→∞β t′. It turns out that t is WN∞ iff its Böhm tree does not contain ⊥. The157

result is proved in [11] in a syntactical way, but we give a semantic proof of this fact in [17].158

1.3 System S (sequential intersection)159

A sequence of elements of a set X is a family (xk)k∈K with K ⊆ N \ {0, 1}. In this case, if160

k0 ∈ K, xk0 is the element of (xk)k∈K on track k. We often write (k·xk)k∈K for (xk)k∈K ,161

which, for instance, allows us to denote by (2 · a, 4 · b, 5 · a) or (4 · b, 2 · a, 5 · a) the sequence162

(xk)k∈K with K = {2, 4, 5}, x2 = x5 = a and x4 = b. In this sequence, the element on track163

4 is b. Sequences come along with a disjoint union operator, denoted]. Let (xk)k∈K and164

(x′k)k∈K′ be two sequences:165

If K ∩K ′ = ∅, then (xk)k∈K] (x′k)k∈K′ is (x′′)k∈K′′ with K ′′ = K ∪K ′ and x′′k = xk166

when k ∈ K and x′′k = x′k when k ∈ K ′.167

If K ∩K ′ 6= ∅, (xk)k∈K] (x′k)k∈K′ is not defined.168

P. Vial 23:5

The operator] is partial, associative and commutative.169

Let O be a set of type atoms o. The set of S-types is coinductively defined by:170

T, Sk ::= o ∈ O ‖ (Sk)k∈K → T171

A sequence of types (Sk)k∈K is called a sequence type and it represents an intersection of172

types. The types of system S collapse on usual non-idempotent intersection types built on173

multisets [4], e.g., the S-types (2 · o, 3 · o′, 4 · o) → o and (2 · o′, 8 · o, 9 · o) → o collapse on174

[o, o, o′]→ o. The system is strict [12, 15, 16] since intersections occur only on left-hand sides175

of arrows. The domain and codomain of an arrow type are defined by dom((Sk)k∈K →176

T) = (Sk)k∈K and codom((Sk)k∈K → T) = T . The arity of a type is coinductively177

defined by ar(o) = 0 and ar((Sk)k∈K → T) = ar(T) + 1. For instance, if T is defined by178

T = (2 · o)→ T = (2 · o)→ (2 · o)→ . . ., then ar(T) =∞. A 001-type is a S-type T such179

that, for all c ∈ supp(T), ar(T |c) <∞, where T |c is the subtree rooted at c in T (T |c is a180

type). The target type targ(T) of a 001-type S is inductively defined by targ(o) = o and181

targ((Sk)k∈K → T) = targ(T).182

The support of a type or a sequence type U is coinductively defined by supp(o) = {ε},183

supp((Sk)k∈K) = ∪k∈Kk · supp(Sk) and supp((Sk)k∈K → T) = {ε} ∪ supp((Sk)k∈K) ∪ 1 ·184

supp(T). Since 1 /∈ K by convention, this definition is correct. If c ∈ supp(U), then U |c185

denotes the type or sequence type rooted at position c in U (U |c is a type when U is a type or186

c 6= ε). For instance, if U = (2 · o)→ (2 · o, 3 · o)→ o and c = 1, then U |c = (2 · o, 3 · o)→ o.187

An S-context C (or D) is a total function from V to the set of S-types. The operator] is188

extended point-wise. An S-judgment is a triple C ` t : T , where C, t and T are respectively189

an S-context, a 001-term and an S-type. A sequence judgment is a sequence of judgments190

(Ck ` t : Tk)k∈K with K ⊆ N \ {0, 1}. For instance, if 8 ∈ K, the judgment C8 ` t : T8 is191

specified on track 8. The set of S-derivations is defined coinductively by:192

ax
x : (k · T) ` x : T

C;x : (Sk)k∈K ` t : T
abs

C ` λx.t : (Sk)k∈K → T
193

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K
app

C] (]k∈KDk) ` t u : T
194

In app, K may be empty, and then u is untyped. We call S0, the restriction of system S195

to finite types and contexts, but allowing infinite terms. The derivation Pex below is in S0.196

Let P be a S-derivation typing a term t. The support of P is the set of positions of197

judgments inside P defined in the expected way: 0 to visit the premise of an abs-rule, 1 to198

visit the left-hand side of an app-rule and k > 2 to visit an argument judgment on track k on199

the right-hand side of the app-rule. Thus, if a ∈ supp(P), P (a), which denotes the judgment200

at position a in P , types the subterm t|a. We denote the type and the context of P (a) by201

TP (a) and CP (a), so that P (a) = CP (a) ` t|a : TP (a). Moreover:202

If a ∈ supp(P) and c ∈ supp(TP (a)), then the pair (a, c) is a right biposition of P and203

P (a, c) denotes TP (a)(c).204

If a ∈ supp(P), x ∈ V and k · c ∈ supp(CP (a)(x)), then the triple (a, x, k · c) is a left205

biposition in P and P (a, x, c) denotes CP (a)(x)(c).206

The set of bipositions of P is called the bisupport of P and is denoted by bisupp(P). An207

S-derivation P is finite, i.e., is a derivation of system S0, iff bisupp(P) is a finite set. If208

a ∈ supp(P) and t(a) = x, P (a) is an ax-rule and CP (a) = x : (k · TP (a)).209

I Example 7. In the derivation, the notation [7] indicates that the judgment f : 2·()→o `210

fω : o is on track 7.211

CVIT 2016

23:6 Typing Hereditary Permutators

Pex =
ax

x : (2·(7 · o)→ o′) ` x : (7 · o)→ o′

ax
f : (2·()→ o) ` f : ()→ o

app
f : (2 · ()→ o) ` fω : o [7]

app
x : (2 · (7 · o)→ o′), f : (2 · ()→ o) ` x fω : o′

abs
x : (2 · (7 · o)→ o′) ` λf.x fω : (2 · ()→ o)→ o′

212

We have supp(Pex) = {ε, 0, 0·1, 0·7, 0·7·1}. Remark how fω is typed in the derivation213

using the type () → o. We have Pex(0·7·1) = f : (2·()→o) ` f : ()→o and TPex(0·1) =214

(7·o)→o. Since supp(TPex) = {ε, 7, 1} and TPex(ε) =→, TPex(7) = o and TPex(1) = o′, we215

have (0·1, ε), (0·1, 7), (0·1, 1) ∈ bisupp(Pex) and Pex(0·1, ε) =→, Pex(0·1, 7) = o, Pex(0·1, 1) =216

o′. Likewise, TPex(0·7) = o and CPex(0) = x : (2·(7·o)→o), f : (2·()→o), so that, e.g.,217

(0, x, 2·7), (0, f, 2) ∈ bisupp(Pex), Pex(0, x, 2·7) = o, Pex(0, f, 2) =→.218

A derivation P is quantitative when the context is computable from the axiom rules:219

I Definition 8 (Quantitative derivation). Let P be a S-derivation. Then P is quantitative220

if, for all a ∈ supp(P), x ∈ V , k ∈ N \ {0, 1} such that (a, x, k) ∈ bisupp(P), there is a0 � a221

such that P (a0) = x : (k · S) ` x : S.222

Observe that, in a quantitative derivation P � C ` t : T , if C(x) = (k · S) i.e., x is223

assigned a singleton sequence type, then there is exactly one ax-rule typing x (we use this in224

the proof of Claim 21).225

An example of non-quantitative derivations is given by the family (Pk)k>2 defined by:

Pk =
ax

f : (k·(2·o)→o) ` f : (2·o)→o Pk+1�f : (`·(2·o)→o)`>k+1, x:(2·o) ` fω : o [2]
app

f : ((`·(2·o)→o))`>k, x : (2·o) ` fω : o

The Pk type fω with o but they assign a non-empty sequence type to x /∈ fv(fω): this is226

why there are not quantitative. Indeed, (ε, x, 2) ∈ bisupp(Pk), but there is no a0 ∈ supp(Pk)227

such that Pk(a0) = x : (2·o) ` x : o. Remark how the infinite branch of fω is used to assign228

a type to x whereas it does not occur in the subject. In contrast, if t is a finite λ-term, every229

derivation typing t is quantitative. However, Lemma 16 below states that quantitativity is a230

sufficient condition for soundness for normal forms.231

1.4 Approximability232

I Definition 9 (Approximation). Let P0 and P be two S-derivations typing the same term t.233

Then P0 is an approximation of P if bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0),234

P0(p) = P (p). When this holds, we write P0 6 P .235

Intuitively, P0 6 P if the derivation P0 can be obtained from the derivation P by erasing
some symbols inside P . For instance, let:

P 0
ex =

ax
x : (2·()→ o′) ` x : ()→ o′

app
x : (2 · ()→ o′) ` x fω : o

abs
x : (2 · ()→ o′) ` λf.x fω : ()→ o′

Then P 0
ex 6 Pex, since P 0

ex has been obtained from Pex by erasing all typing information236

on fω. Indeed, we check that supp(P 0
ex) ⊆ supp(Pex), bisupp(P 0

ex) ⊆ bisupp(Pex) and237

P 0
ex(p) = Pex(p) for all p ∈ bisupp(P 0

ex).238

P. Vial 23:7

The relation 6 is an order. There are S-derivations P that do not have finite approx-239

imations, e.g., any derivation typing Ω (see [17] for an example), but these derivation are240

unsound: they do not ensure any form of finitary or infinitary normalization. In contrast, a241

finite derivation is sound.242

To retrieve validity, we must specify that infinitary derivations should be obtained as243

asymptotic extensions of finite derivations:244

I Definition 10 (Approximability). Let P be a S-derivation. Then P is approximable if P245

is the supremum of its finite approximations i.e., if, for all finite sets B ⊆ bisupp(P), there246

is a finite derivation P0 such that P0 6 P and B ⊆ bisupp(P0).247

A term that is in the conclusion of an approximable derivation is said to be approximably248

typable. Quantitativity is of course a necessary condition for approximability, and types of249

infinite arity are unsound:250

I Lemma 11. If P is approximable, then P is quantitative and contains only 001-types.251

1.5 Soundness and completeness for system S252

The main characterization theorem of system S states the equivalence between infinitary253

weak normalization and typability: more precisely, t is WN∞ iff there is an unforgetful and254

approximable S-derivation typing P . This characterization is proved by the propositions255

below, that we will also use in this article. One recognizes usual properties that are expected256

from an intersection type system (subject reduction, expansion, typing of the normal forms),257

except that they pertain to infinitary objects and computations.258

I Proposition 12 (Infinitary subject reduction). If P �C ` t : T is approximable and t→∞β t′,259

then there is an approximable derivation P ′ � C ` t′ : T .260

If a term is approximably typable, then, in particular, it is finitely typable, so that it is261

HN, as for usual, inductive intersection type systems:262

I Lemma 13 (Approximability and Head Normalization). If P � C ` t : T is approximable,263

then t is head normalizing.264

Approximable S-derivations ensure only head normalization because of the empty sequence265

(), which allows us to leave an argument untyped. For instance, if x is assigned ()→ o, then266

x t is typed with o for any term t. To ensure WN∞, one needs to control the occurrences267

of (): by definition, the empty sequence type () occur negatively in ()→ T (base case), ()268

occurs negatively (resp. positively) in (Sk)k∈K → T if it occurs negatively (resp. positively)269

in T or positively (resp. negatively) in one of the Sk (inductive case).270

I Definition 14 (Unforgetfulness). Let P � C ` t : T be a derivation. Then P is unforgetful271

when () does not occur negatively in C and does not occur positively in T .272

In particular, when () does not occur in C nor in T , then P is unforgetful.273

I Proposition 15 (Correctness for system S). If P �C ` t : T is approximable and unforgetful,274

then t is infinitary weakly normalizing.275

Completeness for infinitary normal forms—i.e., the fact that they are approximably and276

unforgetfully typable—is proved in two steps: one shows that every quantitative derivation277

typing a normal form is approximable (this is not true for non-normal forms). Since one278

finds quantitative unforgetful derivations for each normal form, one concludes:279

CVIT 2016

23:8 Typing Hereditary Permutators

I Lemma 16 (Completeness for Normal Forms). Let t be a NF∞.280

If P � C ` t : T and P is quantitative, then P is approximable.281

t is approximably typable by derivation P such that supp(P) = supp(t).282

Subject expansion holds for productive reduction paths:283

I Proposition 17 (Infinitary subject expansion). If t→∞β t′ and P ′�C ` t′ : T is approximable,284

then there is an approximable derivation concluding with C ` t : T .285

From Lemma 16 and Proposition 17, one concludes that every infinitary weakly normaliz-286

ing term is approximably and unforgetfully typable.287

Last, Propositions 12 and 17 entail:288

I Lemma 18. If t is WN∞, then t and BT(t) have the same approximable typings.289

2 Characterizing hereditary permutators290

We now want to define the permutator pairs (S, T) (with S, T types of system S) so that the291

judgments of the form x : (2 · S) ` t : T characterize the x-HP (i.e., there is an approximable292

P � x : (2 · S) ` t : T iff t is an x-HP). Informally, if h = λx1 . . . xn.x hσ(1) . . . hσ(n) and h is293

typed with a type of arity n and x1, . . . , xn are the respective head variables of h1, . . . , hn,294

then we have:295

Type of h = (type of x1) → . . .→ (type of xn) → o (eq1)296

Type of x = (type of hσ(1)) → . . .→ (type of hσ(n)) → o (eq2)297

Since x1, . . . , xn are the respective head variables of the headed hereditary permutators298

h1, . . . , hn, the equations (eq1) and (eq2), which are the golden thread of the proofs to come299

in the remainder of the paper, suggest the following coinductive definition:300

I Definition 19 (Permutators pairs).301

When o ranges over O (the set of type atoms), the set PP(o) of o-permutator pairs302

(S, T), where S and T are S-types, is defined by mutual coinduction:303

(S1, T1) ∈ PP(o1), . . . , (Sn, Tn) ∈ PP(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PP(o)
304

A pair (S, T) ∈ PP(o) is said to be proper, if, for all o′ ∈ O, o′ occurs at most once in S305

and in T . The set of proper o-permutator pairs is denoted PPP(o).306

Actually, we could allow other tracks than 2 in the definition (e.g., T = (`1 · S1)→ . . .→307

(`n · Sn)→ o would be fine), but it is more convenient to consider this restriction, so that we308

are relieved of the care of specifying the values of `1, . . . , `n.309

The condition of properness is here to ensure that every term variable occurs at exactly310

one level deeper than its binder and to distinguish them from one another: it is a key point311

of the proof of Claim 21, because two distinct variables will have types with distinct targets.312

The first implication of the characterization is quite natural to prove:313

B Claim 20 (From hereditary permutators to permutator pairs). Let y ∈ V and t be a y-head314

hereditary permutator. Then there is an approximable S-derivation P and a permutator pair315

(S, T) such that P � y : (2 · S) ` h : T .316

Proof. We skip the proof of this property (it is given in Appendix A.1). Observe that317

Definition 19 is designed so that it holds. The converse claim (Claim 21) is more difficult to318

prove and requires to be carefully verified. J319

P. Vial 23:9

x〈b0 · 0p · 1p〉

S = Tσ(1)→ . . .→Tσ(n)→ob0

C1 ` t1 : Tσ(1)

@
Cp−1 ` tp−1:Tσ(p−1)

@

Cp ` tp : Tσ(p)

@〈b0 · 0p〉 : Tσ(p+1)→ . . .→ Tσ(p) → o

= Sp+1→ . . .→ Sp → o

λxp Sp→ . . .→Sn→o

λx1〈b0〉

t : T = S1→ . . .→Sn→o

Arguments (part 1):
ti has type Tσ(i) (proper)
so ti is free-headed
so the head var. of ti is one of the xj
so the head var. of ti is xσ(i) : Sσ(i)

Arguments (part 2):
C1] . . .] Cp = x1 : (2·S1), . . . , xp : (2·Sp)
the head var. of ti is x : Sσ(i)

so Ci = x : (2·Sσ(i)).

Figure 1 Hereditary permutators and permutator pairs

B Claim 21 (From permutator pairs to hereditary permutators). Let t ∈ Λ001 be a 001-normal320

form and (S, T) a permutator pair and P a quantitative S-derivation typing t.321

If P� ` t : (2 · S)→ T , then t is a hereditary permutator.322

If P � x : (2 · S) ` T , then t is a x-headed hereditary permutator.323

In both cases, supp(P) = supp(t).324

Proof. The proof uses the following observation: let us say that a HNF is free-headed when325

its head variable is free. If (S, T) is a proper permutator pair and t = λx1 . . . xp.xi t1 . . . tq326

(with 1 6 i 6 p) is a HNF which is not free headed, then t cannot have the types S and T ,327

since the target of the type of xi appears twice in the type of t.328

329

We now start the proof, whose main stages are summarized in Fig. 1, in which we330

abusively write S instead of (2·S). Assume S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o and331

T = (2 · S1)→ . . .→ (2 · Sn)→ o. We first prove that the first point of the claim reduces to332

the second one.333

Since the context in ` t : (2 · S) → T is empty, the head variable of t is bound and334

the arity of t is > 1. Thus, t = λx0.λx1 . . . xp.x t1 . . . tq with t1, . . . , tq normal forms whose335

respective head variables are denoted y1, . . . , yq. Note that:336

x is x1, . . . , xp or x0 since x is bound.337

The type assigned to x0 is S. The respective types assigned to x1, . . . xp are S1, . . . , Sp.338

The common target type of T and the type of x0 is o.339

Since (S, T) is proper, o does not occur in S1, . . . , Sn, so necessarily, x = x0 and x :340

(2 · S) ` λx1 . . . xp.x t1 . . . tq : T is derivable by means of a quantitative derivation P∗. Thus,341

we are now in the second case. The type of x t1 . . . tq is both Tσ(q+1) → . . . → Tσ(n) → o342

since x : S and Sp+1 → . . . → Sn → o since t : T , so p = q and for p+ 1 6 i 6 n, σ(i) = i343

and Si = Ti. Let us denote o1, . . . , on the respective target types of S1, . . . , Sn. Since the344

type of x is S, the respective types of t1, . . . , tp must be Tσ(1), . . . , Tσ(p). Moreover, since345

the “tail” of T is made of singleton sequence types (2·Si), t1, . . . , tp are typed once in P and346

the head variables y1, . . . , yp of t1, . . . tp are also typed exactly once. In particular, P∗ has a347

subderivation at depth n of the form:348

CVIT 2016

23:10 Typing Hereditary Permutators

ax
x : (2·S) ` x : S P1 � C1 ` t1 : Tσ(1) [2]

app
x : (2·S), C1 ` x t1 : (2·Sσ(2))→ . . .→ o . . .

app
. . . Pp � Cp ` tp : Tσ(p) [2]

app
x : (2·S), C1] . . .] Cp ` x t1 . . . tp : T ′

where T ′ = Tσ(p+1) → . . .→ Tσ(n) → o = Sp+1 → . . .→ Sn → o.349

Let us prove now that, for all 1 6 i 6 p, the unique argument derivation of x in P typing350

ti, that we denote Pi, concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).351

First, since ti is normal, ti = λz1 . . . zp′ .yi u1 . . . u
′
q. Since ti : Tσ(i), ti is free-headed by352

the observation above. Moreover, the head variable of ti is typed once since ti is typed353

once. Thus, yi is one of the x1, . . . , xp. The only possibility is yi = xσ(i) since the types of354

x1, . . . , xp have pairwise distinct targets.355

Since P is quantitative and (2 · Si) is a singleton sequence type, x1, . . . , xp must be356

exactly typed once in the subderivation of P typing x t1 . . . tp. This entails that the ax-rule357

typing xσ(i) as the head variable of ti concludes with xσ(i) : (2 · Sσ(i)) ` xσ(i) : Sσ(i). Thus,358

Pi concludes with a judgment of the form xσ(i) : (2 · Sσ(i))] C ′i ` ti : Tσ(i) (2nd argument).359

Since]16i6p(xσ(i) : (2 · Sσ(i))] C ′i) = x1 : (2 · S1), . . . , xp : (2 · Sp), we deduce that C ′i is360

empty for all 1 6 i 6 p (3rd argument). Thus, Pi concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).361

This easily implies that x1 : S1 ` tσ−1(1) : T1, . . . xp : Sp ` tσ−1(p) : Tp are judgments of362

P∗. In particular, they are approximably derivable. We conclude by coinduction. J363

The two claims, which are valid for 001-normal forms, along with infinitary subject364

reduction and expansion, give a type-theoretical characterization of hereditary permutators365

in system S:366

I Theorem 22. Let t ∈ Λ001. Then t is a hereditary permutator iff ` t : (2 · S) → T is367

approximably derivable for some proper permutator pair (S, T).368

Proof.369

The implication ⇐ is given by Claim 21 and Proposition 17.370

Implication ⇒: let t be a hereditary permutator. By Definition 1, its Böhm tree is371

of the form λx.h where h is a normal x-headed hereditary permutator. By Claim 20,372

there is a proper permutator pair (S, T) and an approximable derivation P such that373

P �x : (2 ·S) ` h : T . By Proposition 17, ` t : (2 ·S)→ T is also approximably derivable.374

J375

3 A unique type to rule them all376

In this section, we explain how to enrich system S with type constants and typing rules so377

that there is one type characterizing the set of hereditary permutators, as expected.378

In Sec. 2, we proved that a term t is a hereditary permutator iff it can be assigned a type379

of the form (2·S)→ T where (S, T) is a proper permutator pair. To obtain a unique type for380

all the hereditary permutators, one idea is to identify all the types of the form (2·S)→ T ,381

where (S, T) ranges over PPP with a type constant ptyp. However, since quotienting types382

may bring unsoundness (e.g., if o and o→ o are identified), one must then verify that the383

correctness and the completeness of system S is preserved, and that the approximability384

criterion can be suitably extended. The main argument, given by Lemma 26, is that the385

P. Vial 23:11

notions of hereditary permutators and permutators pairs, which are infinitary, have arbitrarily386

big finite approximations, which are defined as trucations at some applicative depth d. Thus,387

we may express hereditary permutators and permutator pairs as asymptotic limits and adapt388

the general methods of system S.389

Our approach parallels that of Tatsuta [14], which uses a family of constants ptypd, with390

a few differences: in the finite restriction of our system, it is easier to deal with hereditary391

permutators (normalization is simple to prove in finite non-idempotent type systems), but of392

course we have to treat the infinitary typings and we consider the constant ptyp, which is393

subsumed under all the ptypd, which represent hereditary permutators under level d.394

3.1 Permutator schemes395

Before presenting the system giving a unique type to all hereditary permutators, we must396

first explain how the typings of hereditary permutators are approximated in system S.397

I Definition 23 (Permutator schemes). Let d > 0. A term t is a x-headed (resp. closed)398

permutator scheme of degree d if its Böhm tree is equal to that of a hereditary permutator399

on {b ∈ {0, 1, 2}∗ | ad(b) 6 d}. The set of x-headed (resp. closed) permutators schemes of400

degree d is denoted PSd(x) (resp. PSd).401

The sequence (PSd) is decreasing, i.e., PSd ⊇ PSd+1, and HP = ∩d>0PSd.402

I Definition 24 (Permutator pairs of degree d). Let d ∈ N.403

When o ranges over O, the set PPd(o) of o-permutator pairs of degree d (S, T), where404

S and T are S-types, is defined by induction on d:405

(()→ . . . ()︸ ︷︷ ︸
n

→ o, ()→ . . .→ ()︸ ︷︷ ︸
n

→ o) ∈ PP0(o)406

407
(S1, T1) ∈ PPd−1(o1), . . . , (Sn, Tn) ∈ PPd−1(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PPd(o)
408

A pair (S, T) ∈ PPd(o) is said to be proper if every type variable occurs at most once in409

S and T . The set of proper permutator pairs of degree d is denoted PPPd.410

We can also see permutator pairs of degree d as truncation of permutator pairs: let U411

be a S-type or a sequence type and d ∈ N. We denote by (U)6d the truncation of T at412

depth d i.e., supp((U)6d) = supp(U) ∩ {c ∈ N∗ | ad(c) 6 d} and (U)6d(c) = U(c) for all413

c ∈ supp((U)6d). It is easy to check that (U)6d is a correct type or sequence type. We extend414

the notation to S-contexts. Note that, if d > 1, ((Sk)k∈K → T)6d = ((Sk)6d−1)k∈K → (T)6d415

and d = 1, then ((Sk)k∈K → T)6d = () → (T)61. By induction on d, this entails that, if416

(S, T) ∈ PPP, then ((S)6d, (T)6d) ∈ PPPd. Indeed, the base case (d = 0) is obvious and if417

d > 1, T = (2 · S1) → . . . → (2 · Sn) → o and S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o with418

σ ∈ Sn, (Si, Ti) ∈ PPP for 1 6 i 6 n, then:419

(T)6d = (2 · (S1)6d−1)→ . . .→ (2 · (S1)6d−1)→ o (eq3)420

(S)6d = (2 · (Tσ(1))6d−1)→ . . .→ (2 · (Tσ(n))6d−1)→ o (eq4)421

so that, by Definition 24, ((S)6d, (T)6d) ∈ PPPd(o).422

I Proposition 25 (Characterizing permutation schemes). Let d > 1 and t be a 001-term. Then423

t ∈ PSd iff ` t : (2 · S)→ T is approximably derivable for some (S, T) ∈ PPPd.424

Proof.⇒ Straightforward induction on the structure of t.425

CVIT 2016

23:12 Typing Hereditary Permutators

⇐ The proof is the same as Claim 21, we also obtain that xi : (2 · Si) ` tσ−1(i) : Ti are426

judgments of P , except that (Si, Ti) ∈ PPPd−1 instead of (Si, Ti) ∈ PPP.427

J428

It is not enough to know that a x-headed hereditary permutator t is approximably typable429

in a judgment x : (2 · S) ` t : T with (S, T) ∈ PPP, which implies that T is the supremum of430

a direct family of finite types which be assigned to t: in order to prove soundness regarding431

quotienting, we must prove that this typing is the supremum of typings ensuring that t is a432

permutator scheme of degree d, i.e., by Proposition 25, one must type t with (Sd, Td) ∈ PPPd433

for all d. The lemma below is the missing third ingredient (along with Claims 20 and 21) of434

this article and will allow us to define in Sec. 3.2 an extension of system S giving a unique435

type to hereditary permutators:436

I Lemma 26 (Approximations and permutator pairs). If P � x : (2·S) ` t : P is approximable,437

where (S, T) ∈ PPP, then, for all d ∈ N, there is a finite Pd 6 P such that Pd � x : (2 · Sd) `438

t : Td with (Sd, Td) ∈ PPPd.439

Proof. Since () does not occur in S and T , by Lemma 18, we can assume that t is a440

001-normal form without loss of generality. We then reason by induction on d.441

Let us present the argument informally (a formal proof is given in Appendix A.2). Say that442

t = λx1 . . . xp.x t1 . . . tp, S = Tσ(1)→ . . .→Tσ(n)→o and T = S1→ . . .→Sn→o. Intuitively,443

t : T with x : S and for 1 6 i 6 p, ti : Tσ(i) is a hereditary permutator headed by xσ(i) : Sσ(i),444

as specified by Fig. 1. When we truncate the type of t at applicative depth d, we have now445

t : (T)6d with x : (S)6d. But, by (eq3) and (eq4), we must truncate the types of t1, . . . , tp446

and x1, . . . , xp at applicative depth d− 1. Inductively, this demands that we truncate the447

types of the arguments of t1, . . . , tp at applicative depth d− 2. By proceeding so, we obtain448

a finite derivation Pd 6 P concluding with x : (2 · (S)6d) ` t : (T)6d.449

J450

3.2 System Shp451

Let ptyp and ptypd (d ∈ N) be a family of type constants. The set of Shp-types is defined by:

T, Sk ::= o ‖ ptypd ‖ ptyp ‖ (Sk)k∈K → T

System Shp has the same typing rules as system S with the addition of:452

x : (2 · S) ` t : T (S, T) ∈ PPPd
hpd` λx.t : ptypd

x : (2 · S) ` t : T (S, T) ∈ PPP
hp

` λx.t : ptyp
453

Thus, rule hpd allows assigning the constant ptypd to any normal permutator scheme of454

degree d and rule hp assign the constant ptyp to any normal hereditary permutator by455

Claims 20 and 21. Intuitively, ptyp = ptyp∞ and we will make this idea more precise with456

Definition 27. Note also that if t : ptypd or t : ptyp, t cannot be applied to an argument u,457

even if t is an abstraction: the rules hpd/hp freeze the terms.458

The notions of support, bisupport, permutator pairs etc naturally extend to Shp. We459

define an order 6 on O ∪ {→, ptyp} ∪ {ptypd | d ∈ N} by o 6 o, →6→, ptypd 6 ptyp and460

ptypd 6 ptypd′ for d 6 d′.461

I Definition 27 (Approximation and Approximability in system Sh).462

Let P0 and P be two Shp-derivations. We write P0 6 P (P0 is an approximation of P) if463

bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0), P0(p) 6 P (p).464

P. Vial 23:13

Let P be a Shp-derivation. Then P is approximable if P is the supremum of its finite465

approximations.466

This extends Definition 10: for all S-derivations P , P is approximable for system S iff it467

is approximable for system Shp. We first notice that rules hp(d) are invertible for HNF:468

I Lemma 28 (Inverting rules (hpd) for head normal forms). Let t be a HNF. If ` t : ptypd469

(resp. P� ` t : ptyp) is approximably derivable, then t = λx.t0 with x : (2 · S) ` t0 : T470

approximably derivable, for some (S, T) ∈ PPPd (resp. (S, T) ∈ PPP).471

Proof. We consider the case ptyp (the case ptypd is similar), i.e., we assume that P ′� ` t :
ptyp is approximable. For one, t = x t1 . . . xn is impossible, because we would have C(x) 6= ()
since the head variable x is free in x t1 . . . tn. So, t is an abstraction, i.e., t = λx.t0 and thus,
the last rule of P is either abs, hpd, hp. But it is neither abs (we would have an arrow type)
nor hpd, so it is hp and thus, P ′ is of the form:

P ′ =
P � x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Since P ′ is approximable, P also is. J472

All is now in place to obtain the expected properties of system Shp:473

I Lemma 29 (Characterizing normal hereditary permutators). Let t be a 001-normal form.474

t ∈ PSd iff ` t : ptypd is approximably derivable.475

t ∈ HP iff ` t : ptyp is approximably derivable.476

Proof. The two points are handled similarly. We do not prove the first one, which uses477

Proposition 25:478

If t = λx.h is a HP, then, by Claim 20, there is (S, T) ∈ PPP and P a S-derivation such
that P � x : (2 · S) ` h : T . We then set:

P ′ =
P � h : (2 · S) ` p : T

hp
` t : ptyp

By Lemma 26, for all d ∈ N, there is a finite S-derivation Pd 6 P such that Pd � x :
(2 · Sd) ` h : Td with (Sd, Td) ∈ PPPd and P = supd Pd. We then set:

P ′d =
Pd � x : (2 · Sd) ` h : Td

hpd` t : ptypd

By construction, supd P ′d = P ′.479

Conversely, assume that P ′� ` t : ptyp is approximable. By Lemma 28, P ′ concludes
with the hp-rule, so P ′ is of the form:

P ′ =
P � x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Let d ∈ N. Since P ′ is the supremum of its finite approximations, there is a finite480

approximation P ′0 6 P ′ concluding with1 ` t : ptyp or ` t : ptypd′ with d′ > d. Thus,481

t ∈ PSd′ ⊆ PSd or t ∈ HP. This proves that t ∈ ∩d>0PSd = HP.482

1 The case P ′0� ` t : ptyp is possible: there are finite HP and PPP, e.g., λx.x and (o, o).

CVIT 2016

23:14 Typing Hereditary Permutators

J483

I Lemma 30 (Soundness of system Shp). If t is approximably typable in system Shp, then t is484

head normalizing.485

Proof. If t is approximably typable, there is a finite Shp-derivation P � C ` t : T . If t is a486

HNF, we are done. In the other case, t→h t
′ for some t′. It is routine work in non-idempotent487

intersection type theory (see [4]) to prove a weighted subject reduction property, i.e., that488

there is P ′ � C ` t′ : T such that |supp(P ′)| < |supp(P)|, i.e., P ′ contains strictly less489

judgments than P does. The only unusual rules are hpd and hp, which are easily handled.490

Since |supp(P)| ∈ N and N is well-founded, weighted subject reduction entails that head491

reduction terminates on t. J492

I Corollary 31. If ` t : ptyp is approximably derivable, then t is WN∞.493

Proof. By Lemma 30, t reduces to a HNF t′. By subject reduction, ` t′ : ptyp is also494

approximably derivable. Then, Lemma 28 entails that t = λx.t0 and x : (2 · S) ` t0 : T is495

approximably derivable in system S for some t0 and permutation pair (S, T). Since this latter496

judgment is ()-free, Proposition 15 entails that t0 is WN∞. Thus, t also is WN∞. J497

More generally, the dynamic properties of system S are preserved in system Shp.498

I Proposition 32 (Infinitary subject reduction). If t →∞β t′ and P � C ` t : T is an499

approximable Shp-derivation, then there exists an approximable derivation P ′ � C ` t′ : T .500

I Proposition 33 (Infinitary subject expansion). If t →∞β t′ and P ′ � C ` t′ : T is an501

approximable Shp-derivation, then there exists an approximable derivation P � C ` t : T .502

Proof. The proofs of infinitary subject reduction and expansion in system Shp do not differ503

of those for system S, which can be found in [17] (in particular, Sec. II.D. and VI.D.) or in504

Chapter 10 of [18], so we do not give the details. Once again, the only new rules are hp and505

hpd, which are easily handled in the one step case, then in the asymptotic case.506

Infinitary subject reduction is easy to prove, but infinitary subject expansion holds507

because we can expand finite approximations of a derivation P ′ concluding a productive508

reduction path. Why? Because, if t→∞β t′ and P ′f is finite and types t′, then there is a term509

t→k
β tk obtained from t after a finite number k of β-reduction steps such that, on supp(P ′),510

tk and t′ induce the same subtree (this is a consequence of Definition 5). Thus, we can511

substitute t′ with tk in P ′f : we then obtain P kf typing tk. After k expansion steps, we obtain512

from P kf a derivation Pf typing t. To conclude this dense summary, let us just say that the513

infinitary subject expansion is not so about the rules than about the possibility to replace a514

derivation by its finite approximations, which is precisely what Definition 27 captures for515

system Shp. J516

We now give a positive answer to TLCA Problem # 20:517

I Theorem 34 (Characterizing hereditary permutators with a unique type). Let t ∈ Λ001. Then518

t is a hereditary permutator iff ` t : ptyp is approximably derivable in system Shp.519

Proof.⇒ If t is a HP, let t′ be its 001-NF. By Lemma 29, there is an approximable derivation520

P ′� ` t′ : ptyp. By Proposition 33, there is P� ` t′ : ptyp approximable.521

⇐ Given by Corollary 31.522

J523

P. Vial 23:15

Future work524

We plan to adapt system S to characterize other sets of Böhm trees and other notions of525

infinitary normalization, including weak normalization in the calculi Λ101 and Λ111 of [11].526

References527

1 Patrick Bahr. Strict ideal completions of the lambda calculus. In FSCD 2018, July 9-12,528

Oxford, pages 8:1–8:16, 2018.529

2 Henk Barendregt. The Lambda-Calculus: Its Syntax and Sematics. Ellis Horwood series in530

computers and their applications. Elsevier, 1985.531

3 Jan A. Bergstra and Jan Willem Klop. Invertible terms in the lambda calculus. Theor.532

Comput. Sci., 11:19–37, 1980.533

4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for534

the lambda-calculus. Mathematical Structures in Computer Science., 2017.535

5 Daniel De Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis,536

Université Aix-Marseille, November 2007.537

6 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality538

theory for the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.539

7 Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-Holland Co.,540

Amsterdam, 1958. (3rd edn. 1974).541

8 Lukasz Czajka. A coinductive confluence proof for infinitary lambda-calculus. In Rewriting542

and Typed Lambda Calculi - Joint International Conference, RTA-TLCA, Vienna, Austria,543

July 14-17, pages 164–178, 2014.544

9 Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing inverse in the545

lambda-beta-eta-calculus. Theor. Comput. Sci., 2(3):323–337, 1976.546

10 Philippa Gardner. Discovering needed reductions using type theory. In TACS, Sendai, 1994.547

11 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda548

calculus. Theor. Comput. Sci., 175(1):93–125, 1997.549

12 Betti Venneri Mario Coppo, Mariangiola Dezani-Ciancaglini. Functional characters of solvable550

terms. Mathematical Logic Quarterly, 27:45–58, 1981.551

13 Makoto Tatsuta. Types for hereditary head normalizing terms. In FLOPS, Ise, Japan, April552

14-16, pages 195–209, 2008.553

14 Makoto Tatsuta. Types for hereditary permutators. In LICS, 24-27 June, Pittsburgh, pages554

83–92, 2008.555

15 Steffen van Bakel. Complete restrictions of the intersection type discipline. Theor. Comput.556

Sci., 102(1):135–163, 1992.557

16 Steffen van Bakel. Intersection type assignment systems. Theor. Comput. Sci., 151(2):385–435,558

1995.559

17 Pierre Vial. Infinitary intersection types as sequences: a new answer to Klop’s problem. In560

LICS, Reykjavik, 2017.561

18 Pierre Vial. Non-Idempotent Typing Operator, beyond the Lambda-Calculus. Phd thesis,562

Université Sorbonne Paris-Cité, 2017, available on http://www.irif.fr/~pvial.563

CVIT 2016

http://www.irif.fr/~pvial

23:16 Typing Hereditary Permutators

A Appendix564

A.1 Hereditary permutars are typable with permutator pairs565

B Claim (given on p. 8). Let y ∈ V and t be a y-head hereditary permutator. Then there is an566

approximable S-derivation P and a permutator pair ((2 ·S), T) such that P�y : (2 ·S) ` h : T .567

Proof. Let ι be an injection from B = supp(t) to O. We associate to each b ∈ supp(t) two568

indeterminates Xb and Yb. The idea is that Xb is a placeholder for the types of head variables569

and Yb is a placeholder for the types of the sub-hereditary permutators of t.570

We denote by Bhp the set of positions b of subterms of t that are x-HP for some x ∈ V and,571

for all b ∈ Bhp, hvp(b) denotes the position of the head variable of t|b (hvp stands for “head572

variable position”). Formally, we have Bhp = {ε} ∪ {b · 2 ∈ supp(t) | b ∈ {0, 1, 2}∗} (b ∈ Bhp
573

is b is the root of t or it is the argument of an application in t) and, for all b ∈ Bhp, hvp(b) is574

the longest b0 such b0 ∈ b · {0, 1}∗. For all b ∈ Bhp, then we denote by xb the head variable575

of hv(t|b), e.g., if t = λz1z2.(y (λz3z4.z2 t1 t2))(λz5.z1 t3), then hvp(ε) = 02 · 12 and xε = y,576

t|02·2 = λz5.z1 t3, so hvp(02 · 2) = 02 · 2 · 1 · 0 and x02·2 = z1, hvp(02 · 1 · 2) = 02 · 1 · 2 · 12 · 02
577

and x02·1·2 = z2. Observe that, if b ∈ Bhp and n = ar(t|b), then hvp(b) = b · 0n · 1n ∈ Bhp.578

We just write ob instead of ι(hvp(t|b)), so that ob will be the type atom assigned to the head579

variable y = t(hvp(b)) of t|b, which is a x-HP.580

Moreover, for b ∈ Bhp, then t|b is of the form λx1 . . . xn.x hxσ1 . . . hxσn with n = ar(t|bb) >581

0, y = xb and σ ∈ Sn. We then denote by σb the permutator σ and we set b(k) = b·0n ·1k−1 ·2582

for 1 6 k 6 n, so that b(k) is the position of hxσn . For 1 6 k 6 n, we also abusively write583

b(σ(k)) instead of b(σb(k)). We then set, for all b ∈ Bhp:584

F(b) = (2 · Yb(σ(1)))→ . . .→ (2 · Yb(σ(n)))→ ob
G(b) = (2 ·Xb(1))→ . . .→ (2 ·Xb(n))→ ob

585

We may then implement (eq1) and (eq2) by coinductively defining, for all b ∈ Bhp,586

S(b) = F(b)[S(b′)/Xb′ , T (b′)/Yb′]b′∈Bhp

T (b) = G(b)[S(b′)/Xb′ , T (b′)/Yb′]b′∈Bhp
587

The definition of S(b) and T (b) is well founded since if Xb′ or Yb′ occur at position c in588

S(b) or T (b), then ad(c) > 0. By construction, for all b ∈ Bhp, (S(b), T (b)) is a proper per-589

mutator pair. Let us now construct a quantitative S-derivation P , such that, for all b ∈ Bhp,590

P (b) = xb : (2 ·S(b)) ` t|b : T (b). In particular, with b = ε, we will have P �x : (2 ·S) ` t : T591

with S = S(ε) and T = T (ε). Since t is a normal form, by Lemma 16, P will be approximable,592

which will conclude the proof.593

594

Construction of P : we now build P . The construction is illustrated with Fig. 2. The notation595

〈·〉 indicates the position, e.g., 〈b0〉 means that the node labelled with x1 is at position b0.596

Let b ∈ supp(t). There are three possibilities:597

t(b) = y for some y ∈ V : then b = b0 · 0n · 1n with b0 ∈ Bhp and n > 0.598

t(b) = @: then b = b0 · 0n · 1i with b0 ∈ Bhp, n > 0 and i < n.599

t(b) = λy for some y ∈ V : then b = b0 · 0i with b0 ∈ Bhp and i < n = ar(t|b0).600

Let b0 ∈ Bhp. Then t|b0 is of the form h = λx1 . . . xn.y hσ(1) . . . hσ(n) for some n > 0,601

σ ∈ Sn and h1, . . . , hn hereditary permutators respectively headed with x1, . . . , xn. Before602

defining the judgments in P , we give some preliminary notations and observations: we set603

bj = b0 · 0n · 1n−j · 2 so that bj is the position of hσ(j) for 0 6 j 6 n. In particular, bj ∈ Bhp
604

and S(bj), T (bj) are defined. We also set b′j = bσ−1(j). The type of hσ(j) is intended to605

P. Vial 23:17

x〈b0 · 0n · 1n〉

S = Tσ(1)→ . . .→Tσ(n)→ob0

hσ(1) : Tσ(1)〈b1〉
headed by xσ(1) : Sσ(1)

@
hσ(n−1):Tσ(n−1)〈bn−1〉

@

hσ(n) : Tσ(n)〈bn〉
headed by xσ(n) : Sσ(n)

@ 〈b0 · 0n〉: ob0

λxn Sn→o

λx1 〈b0〉

h : T = S1→ . . .→Sn→o
Figure 2 Typing a hereditary permutator

be T (bj) and that of xσ(j) to be S(bj). The type of xj is S(bj). We may now define P (b)606

case-wise:607

For b = b0 · 0n · 1i with i 6 n, then t|b = y hσ(1) . . . hσ(k) with k = n − i, so that608

fv(t|b) = {y, xσ(1), . . . , xσ(k)}.609

We define:610

P (b) = y : (2·S(b)), xσ(1) : (2·S(b1)), . . . , xσ(k) : (2·S(bk)) ` t|b : T (b1)→ . . .→T (bk)→ob611

In particular, when i = n, P (b) = y : (2·S(b0)) ` y : S(b0).612

For b = b0 · 0i with i 6 n, then t|b = λxi+1 . . . xn.y hσ(1) . . . hσ(n), so that fv(t|b) =613

{y, x1, . . . , xi}. We define:614

P (b) = y : (2 · S(b)), x1 : (2 · S(b′1)), . . . , xi : (2 · S(b′i)) ` t|b : S(b′i)→ . . . S(b′n)→ ob615

Note that the definition agree with the previous case when i = n. In the case i = 0 i.e.,616

b = b0, we obtain y : (2 · S(b0)) ` t|b0 : T (b0) as expected.617

Thus, P (b) is defined for all b ∈ supp(t). We just need to check that P is a correct618

derivation. For this, let us use the same notations and observe then that, for 1 6 i 6 n619

P (bi) = xσ(i) : (2 · S(bi)) ` hσ(i) : T (bi), which proves that every application and abstraction620

node has correct premises in the case-wise definition of P (b) above. J621

A.2 Approximating permutator pairs622

The lemma below is enough to prove Lemma 26:623

I Lemma 35. If t is a 001-NF and P �x : (2·S) ` t : P is approximable, where (S, T) ∈ PPP,624

then, for all d ∈ N, there is a finite Pd 6 P such that Pd � x : (2 · (S)6d) ` t : (T)6d.625

Proof. By Theorem 22, t is a hereditary permutator. Assume that t = λx1 . . . xp.x t1 . . . tp626

with x 6= xi, S = (2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o and T = (2 · S1)→ . . .→ (2 · Sn)→ o.627

By syntax-direction of system S, P is of the form given by Fig. 1. In particular, we have628

unique subderivations P1, . . . , Pp of P at applicative depth 1, respectively typing t1, . . . , tp.629

We proceed by induction on d.630

CVIT 2016

23:18 Typing Hereditary Permutators

Case d = 0. We set S0 = T0 = ()→ . . .→ ()→ o (arity n) so that (S0, T0) ∈ PPP0. Let

P0 =

ax
x : (2 · S0) ` s : S0

app
x : (2 · S0) ` x t1 : ()→ . . . ()→ o (arity n− 1)

app
...

app
x : (2 · S0) ` x t1 . . . tp : ()→ . . . ()→ o (arity n− p)

abs
x : (2·S0) ` λx1.x t1 . . . tp : ()→ . . . ()→ o (arity n− p+ 1)

abs
...

abs
x : (2·S0) ` λx1 . . . xp.x t1 . . . tp : T0

By construction, P0 6 P .631

Case d > 0: by the induction hypothesis, there are P d−1
i 6 Pi concluding with xσ(i) :

(2·(Sσ(i))6d−1 ` ti : (Tσ(i))6d−1. We set:

Pd =

ax
x : (2·(S)6d) ` x : (S)6d P d−1

1 app
... P d−1

p
app

x : (2·(S)6d), x1 : (2·(Sσ(1))6d−1), . . . ` x t1 . . . tp : (2·(Tσ(p+1))6d−1)→o
abs

...
abs

x : (2·(S)6d) ` t : (T)6d

Since P d−1
i 6 Pi for 1 6 i 6 p, we conclude that Pd 6 P as expected.632

J633

	Infinite terms and types
	Infinite Lambda Terms
	The computation of Böhm trees
	System S (sequential intersection)
	Approximability
	Soundness and completeness for system S
	Characterizing hereditary permutators
	A unique type to rule them all
	Permutator schemes
	System Shp

	Appendix
	Hereditary permutars are typable with permutator pairs
	Approximating permutator pairs

