
Some applications of quantitative types inside and outside type theory

Pierre VIAL
Équipe Gallinette

Inria (LS2N CNRS)

July 8, 2018

Intersection type theory P. Vial 0 1 /36

Where we lie

Non-Idempotent

Intersection

Type Theory

Curry-Howard
correspondence

characterizes:
• normalization

• complexity classes
• MSO-sat.

Quantitative
info.

Intersection type theory P. Vial 0 2 /36

Where we lie

Non-Idempotent

Intersection

Type Theory
Curry-Howard
correspondence

characterizes:
• normalization

• complexity classes
• MSO-sat.

Quantitative
info.

Intersection type theory P. Vial 0 2 /36

Where we lie

Non-Idempotent

Intersection

Type Theory
Curry-Howard
correspondence

characterizes:
• normalization
• complexity classes
• MSO-sat.

Quantitative
info.

Intersection type theory P. Vial 0 2 /36

Where we lie

Non-Idempotent

Intersection

Type Theory
Curry-Howard
correspondence

characterizes:
• normalization

• complexity classes
• MSO-sat.

Quantitative
info.

Intersection type theory P. Vial 0 2 /36

Where we lie

Non-Idempotent

Intersection

Type Theory
Curry-Howard
correspondence

characterizes:
• normalization

• complexity classes
• MSO-sat.

Quantitative
info.

Intersection type theory P. Vial 0 2 /36

Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 3 /36

Intersection types (overview)

Introduced by Coppo-Dezani (78-80) to “interpret more terms”
Charac. of Weak Norm. for λI-terms (no erasing β-step).

Extended later for λ-terms, head, weak or strong normalizatiion. . .

Filter models

Model-checking
Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion
schemes (HORS)

Kobayashi-Ong 09: MSO is decidable for higher-order programs

+ using intersection types to simplify Ong’s algorithm.

Refined by Grellois-Melliès 14-15

Complexity:
Upper bounds for reduction sequences (Gardner 94, de Carvalho 07) or exact
bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP’18).

Terui 06: upper bounds for terms in a red. sequence

De Benedetti-Ronchi della Roccha 16 : characterization of FPTIME

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 4 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 5 /36

Intuitions (syntax)

Naively, A ∧B stands for A ∩B:

t is of type A ∧B if t can be typed with A as well as B.

I : A→ A I : (A→ B)→ (A→ B)

I : (A→ A) ∧ ((A→ B)→ (A→ B))
∧ −intro (with I = λx.x)

Intersection = kind of finite polymorphism.

(A→ A) ∧ ((A→ B)→ (A→ B)) = double instance of ∀X.X → X

(with X = A and X = A→ B)

But less constrained :

assigning x : o ∧ (o→ o′) ∧ (o→ o)→ o is legal.

(not an instance of a polymorphic type except ∀X.X := False!)

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 6 /36

Intuitions (syntax)

Naively, A ∧B stands for A ∩B:

t is of type A ∧B if t can be typed with A as well as B.

I : A→ A I : (A→ B)→ (A→ B)

I : (A→ A) ∧ ((A→ B)→ (A→ B))
∧ −intro (with I = λx.x)

Intersection = kind of finite polymorphism.

(A→ A) ∧ ((A→ B)→ (A→ B)) = double instance of ∀X.X → X

(with X = A and X = A→ B)

But less constrained :

assigning x : o ∧ (o→ o′) ∧ (o→ o)→ o is legal.

(not an instance of a polymorphic type except ∀X.X := False!)

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 6 /36

Intuitions (syntax)

Naively, A ∧B stands for A ∩B:

t is of type A ∧B if t can be typed with A as well as B.

I : A→ A I : (A→ B)→ (A→ B)

I : (A→ A) ∧ ((A→ B)→ (A→ B))
∧ −intro (with I = λx.x)

Intersection = kind of finite polymorphism.

(A→ A) ∧ ((A→ B)→ (A→ B)) = double instance of ∀X.X → X

(with X = A and X = A→ B)

But less constrained :

assigning x : o ∧ (o→ o′) ∧ (o→ o)→ o is legal.

(not an instance of a polymorphic type except ∀X.X := False!)

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 6 /36

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
normalizes t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 7 /36

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
normalizes t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 7 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 8 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 9 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 10 /36

Contents

The case of the λ-calculus
Mechanics of non-idempotent intersection.

Certification of reduction strategies. Quantitative intersection.

Moving from various forms of normalization to others (head,
weak, strong. . .)

λµ-calculus (classical logic)

Non-idempotent type theory adapts to more complicated
operational semantics

Infinitary calculi

Infinitary intersection type enables characterizing infinitary
normalization (Klop’s Problem).

Dealing with unsoundness.

Certification of an asymptotic reduction stategy.

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 11 /36

Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Intersection type theory P. Vial 2 Non-idempotent intersection types 12 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.

Intersection type theory P. Vial 2 Non-idempotent intersection types 13 /36

Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset) no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]

Intersection type theory P. Vial 2 Non-idempotent intersection types 14 /36

Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset) no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]

Intersection type theory P. Vial 2 Non-idempotent intersection types 14 /36

Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset) no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]

Intersection type theory P. Vial 2 Non-idempotent intersection types 14 /36

Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset) no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]

Intersection type theory P. Vial 2 Non-idempotent intersection types 14 /36

Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset) no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]

Intersection type theory P. Vial 2 Non-idempotent intersection types 14 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app
f : [[o]→ o, [o]→ o], x : [o] ` f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ]) + (x : [σ, τ]) = x : [σ, σ, τ]; y : [τ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!

Intersection type theory P. Vial 2 Non-idempotent intersection types 15 /36

Properties (R0)

Weighted Subject Reduction
Reduction preserves types and environments, and. . .
. . . head reduction strictly decreases the number of nodes of the deriv. tree (size).

(actually, holds for any typed redex)

Subject Expansion
Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ-term. Then equivalence between:

1 t is typable (in R0)

2 t is HN

3 the head reduction strategy terminates on t (certification!)

Bonus (quantitative information)

If Π types t, then size(Π) bounds the number of steps of the head red. strategy on t

Intersection type theory P. Vial 2 Non-idempotent intersection types 16 /36

Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN):
there is a path from t to a head normal form.

Weak normalization (WN):
there is at least one path from t to a β-Normal Form (NF)

Strong normalization (SN):
there is no infinite path starting at t.

SN ⇒ WN ⇒ HN

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN

Intersection type theory P. Vial 2 Non-idempotent intersection types 17 /36

Characterizing Weak and Strong Normalization

any arg. can be left untyped

non-erasable args must be typed

all args must be typed

HN System R0 sz(Π) bounds the number of
head reduction steps

WN System R0

+ unforgetfulness criterion
sz(Π) bounds the number
of leftmost-outermost red.
steps (and more)

SN Modify system R0

with choice operator
sz(Π) bounds the length of
any reduction path

Intersection type theory P. Vial 2 Non-idempotent intersection types 18 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Intersection type theory P. Vial 2 Non-idempotent intersection types 19 /36

Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Intersection type theory P. Vial 3 Resources for Classical Logic 20 /36

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

classical logic backtracking

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

judg. of the form A,A→ B ` A | B,C

Intersection type theory P. Vial 3 Resources for Classical Logic 21 /36

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

classical logic backtracking

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

judg. of the form A,A→ B ` A | B,C

Intersection type theory P. Vial 3 Resources for Classical Logic 21 /36

The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

classical logic backtracking

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

judg. of the form A,A→ B ` A | B,C

Intersection type theory P. Vial 3 Resources for Classical Logic 21 /36

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

Intersection type theory P. Vial 3 Resources for Classical Logic 22 /36

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style

Intersection type theory P. Vial 3 Resources for Classical Logic 22 /36

Peirce’s Law in Classical Natural Deduction

Intersection type theory P. Vial 3 Resources for Classical Logic 22 /36

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

` ((A→ B)→ A)→ A |

Focussed Style

In the right hand-side of Γ ` F |∆
1 active formula F

inactive formulas ∆

Intersection type theory P. Vial 3 Resources for Classical Logic 22 /36

Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

` ((A→ B)→ A)→ A |

Focussed Style

In the right hand-side of Γ ` F |∆
1 active formula F

inactive formulas ∆

Intersection type theory P. Vial 3 Resources for Classical Logic 22 /36

The λµ-calculus

Syntax: λ-calculus

+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B

Intersection type theory P. Vial 3 Resources for Classical Logic 24 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A

Intersection type theory P. Vial 3 Resources for Classical Logic 25 /36

System Hλµ (Head Normalization)

Weighted Subject Reduction + Subject Expansion

size(Π) =

 number of nodes of Π +

size of the type arities of all the names of commands +

multiplicities of arguments in all the app. nodes

Characterizes Head Normalization
adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:

Let t be a λµ-term. Equiv. between:

t is Hλµ-typable

t is HN

The head red. strategy terminates on t

+ quantitative info.

Small-step version.

Intersection type theory P. Vial 3 Resources for Classical Logic 26 /36

System Hλµ (Head Normalization)

Weighted Subject Reduction + Subject Expansion

size(Π) =

 number of nodes of Π +

size of the type arities of all the names of commands +

multiplicities of arguments in all the app. nodes

Characterizes Head Normalization
adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:

Let t be a λµ-term. Equiv. between:

t is Hλµ-typable

t is HN

The head red. strategy terminates on t

+ quantitative info.

Small-step version.

Intersection type theory P. Vial 3 Resources for Classical Logic 26 /36

System Hλµ (Head Normalization)

Weighted Subject Reduction + Subject Expansion

size(Π) =

 number of nodes of Π +

size of the type arities of all the names of commands +

multiplicities of arguments in all the app. nodes

Characterizes Head Normalization
adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:

Let t be a λµ-term. Equiv. between:

t is Hλµ-typable

t is HN

The head red. strategy terminates on t

+ quantitative info.

Small-step version.

Intersection type theory P. Vial 3 Resources for Classical Logic 26 /36

Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Intersection type theory P. Vial 4 Infinite types and productive reduction 27 /36

Infinitary calculi

Infinitary λ-trees provide various semantics to the λ-calculus.
Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

Infinite λ-calculi Kennaway, Klop, Sleep and de Vries [97]

7 variants
only 3 have a good behavior (partial infinitary confluence),

respectively recovering Böhm, L-L and Berar. trees as infinite NF.

Main idea:

Productive terms

may not terminate. . .

. . . but keep on outputting info.
(e.g., sub-HNF)

sound infinite red. sequence

vs.

Meaningless terms

do not output any info. ever
(even a head variable)

unsound infinite red. sequences

Intersection type theory P. Vial 4 Infinite types and productive reduction 28 /36

Infinitary calculi

Infinitary λ-trees provide various semantics to the λ-calculus.
Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

Infinite λ-calculi Kennaway, Klop, Sleep and de Vries [97]

7 variants
only 3 have a good behavior (partial infinitary confluence),

respectively recovering Böhm, L-L and Berar. trees as infinite NF.

Main idea:

Productive terms

may not terminate. . .

. . . but keep on outputting info.
(e.g., sub-HNF)

sound infinite red. sequence

vs.

Meaningless terms

do not output any info. ever
(even a head variable)

unsound infinite red. sequences

Intersection type theory P. Vial 4 Infinite types and productive reduction 28 /36

Infinitary calculi

Infinitary λ-trees provide various semantics to the λ-calculus.
Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

Infinite λ-calculi Kennaway, Klop, Sleep and de Vries [97]

7 variants
only 3 have a good behavior (partial infinitary confluence),

respectively recovering Böhm, L-L and Berar. trees as infinite NF.

Main idea:

Productive terms

may not terminate. . .

. . . but keep on outputting info.
(e.g., sub-HNF)

sound infinite red. sequence

vs.

Meaningless terms

do not output any info. ever
(even a head variable)

unsound infinite red. sequences

Intersection type theory P. Vial 4 Infinite types and productive reduction 28 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

→ → → → → . . .→ fn(Yf)→ . . .→∞ fω

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

Yf

f

@f

@f

@f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Yf not WN

Yf is ∞-WN

∞-NF: fω = f(fω)
(Böhm tree)

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

Yf → f(Yf)→ f2(Yf)→ f3(Yf)→ f4(Yf)→ . . .→ fn(Yf)→ . . .→∞ fω

f

@f

@f

@f

@f

@

Yf not WN

Yf is ∞-WN

∞-NF: fω = f(fω)
(Böhm tree)

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .

Intersection type theory P. Vial 4 Infinite types and productive reduction 29 /36

Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · σ)

Intersection type theory P. Vial 4 Infinite types and productive reduction 30 /36

Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · σ)

Intersection type theory P. Vial 4 Infinite types and productive reduction 30 /36

Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · σ)

Intersection type theory P. Vial 4 Infinite types and productive reduction 30 /36

Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · σ)

Intersection type theory P. Vial 4 Infinite types and productive reduction 30 /36

Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ)] (9 · σ)

Intersection type theory P. Vial 4 Infinite types and productive reduction 30 /36

Characterization of infinitary WN

Proposition

In System S:

Validity (aka approximability) can be defined.

SR: typing is stable by productive ∞-reduction.

SE: approximable typing stable by productive ∞-expansion.

Theorem (V,LiCS’17)

A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable
derivation Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Bonus: positive answer to TLCA Problem #20

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LiCS’07]).

Intersection type theory P. Vial 4 Infinite types and productive reduction 31 /36

Characterization of infinitary WN

Proposition

In System S:

Validity (aka approximability) can be defined.

SR: typing is stable by productive ∞-reduction.

SE: approximable typing stable by productive ∞-expansion.

Theorem (V,LiCS’17)

A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable
derivation Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Bonus: positive answer to TLCA Problem #20

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LiCS’07]).

Intersection type theory P. Vial 4 Infinite types and productive reduction 31 /36

Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?

Intersection type theory P. Vial 4 Infinite types and productive reduction 32 /36

Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?

Intersection type theory P. Vial 4 Infinite types and productive reduction 32 /36

Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?

Intersection type theory P. Vial 4 Infinite types and productive reduction 32 /36

Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?

Intersection type theory P. Vial 4 Infinite types and productive reduction 32 /36

Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?

Intersection type theory P. Vial 4 Infinite types and productive reduction 32 /36

Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Intersection type theory P. Vial 5 Perspectives 33 /36

The story continues. . .

Intersection types via Grothendieck construction
[Mazza,Pellissier,V, POPL2018]

Categorical generalization of ITS à la Melliès-Zeilberger.

Type systems = 2-operads (see below).

Type systems as 2-operads

Level 1: Γ ` t : B t = multimorphism from Γ to B.

Level 2: if Γ ` t : B
SR
 Γ ` t′ : B,

t t′ = 2-morphism from t to t′.

Construction of an ITS via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
e.g., Coppo-Dezani, Gardner, R0, call-by-value + Hλµ (use cyclic 2-operads)

Damiano Mazza
Polyadic approximations and intersection
types (ITRS/DCM joint invited talk)
Sunday 4:30 pm, Maths Seminar C5

Luc Pellissier
Generalized generalized species of structure and
resource modalities (Linearity/TLLA)
Sunday 2 pm, Blavatnik Seminar Room 1

Intersection type theory P. Vial 5 Perspectives 34 /36

The story continues. . .

Intersection types via Grothendieck construction
[Mazza,Pellissier,V, POPL2018]

Categorical generalization of ITS à la Melliès-Zeilberger.

Type systems = 2-operads (see below).

Type systems as 2-operads

Level 1: Γ ` t : B t = multimorphism from Γ to B.

Level 2: if Γ ` t : B
SR
 Γ ` t′ : B,

t t′ = 2-morphism from t to t′.

Construction of an ITS via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
e.g., Coppo-Dezani, Gardner, R0, call-by-value + Hλµ (use cyclic 2-operads)

Damiano Mazza
Polyadic approximations and intersection
types (ITRS/DCM joint invited talk)
Sunday 4:30 pm, Maths Seminar C5

Luc Pellissier
Generalized generalized species of structure and
resource modalities (Linearity/TLLA)
Sunday 2 pm, Blavatnik Seminar Room 1

Intersection type theory P. Vial 5 Perspectives 34 /36

The story continues. . .

Intersection types via Grothendieck construction
[Mazza,Pellissier,V, POPL2018]

Categorical generalization of ITS à la Melliès-Zeilberger.

Type systems = 2-operads (see below).

Type systems as 2-operads

Level 1: Γ ` t : B t = multimorphism from Γ to B.

Level 2: if Γ ` t : B
SR
 Γ ` t′ : B,

t t′ = 2-morphism from t to t′.

Construction of an ITS via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
e.g., Coppo-Dezani, Gardner, R0, call-by-value + Hλµ (use cyclic 2-operads)

Damiano Mazza
Polyadic approximations and intersection
types (ITRS/DCM joint invited talk)
Sunday 4:30 pm, Maths Seminar C5

Luc Pellissier
Generalized generalized species of structure and
resource modalities (Linearity/TLLA)
Sunday 2 pm, Blavatnik Seminar Room 1

Intersection type theory P. Vial 5 Perspectives 34 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5

Intersection type theory P. Vial 5 Perspectives 35 /36

Thank you

Thank you for your attention!

next talk in Floc

Every λ-term is meaningful in the infinitary
relation model (Lics)
Monday 5:20 pm, Math LT3

Intersection type theory P. Vial 5 Perspectives 36 /36

	Overview (idempotent or not intersection types)
	Non-idempotent intersection types
	Resources for Classical Logic
	Infinite types and productive reduction
	Perspectives

