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Intersection types (overview)

Introduced by Coppo-Dezani (78-80) to “interpret more terms”
Charac. of Weak Norm. for λI-terms (no erasing β-step).

Extended later for λ-terms, head, weak or strong normalizatiion. . .

Filter models

Model-checking
Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion
schemes (HORS)

Kobayashi-Ong 09: MSO is decidable for higher-order programs

+ using intersection types to simplify Ong’s algorithm.

Refined by Grellois-Melliès 14-15

Complexity:
Upper bounds for reduction sequences (Gardner 94, de Carvalho 07 ) or exact
bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP’18 ).

Terui 06: upper bounds for terms in a red. sequence

De Benedetti-Ronchi della Roccha 16 : characterization of FPTIME

Intersection type theory P. Vial 1 Overview (idempotent or not intersection types) 4 /36



Intersections types (Coppo, Dezani, 1980)

Goal

Equivalences of the form

“the program t is typable iff it can reach a terminal state”

Idea: several certificates to a same subprogram (next slides).

Proof: by the “circular” implications:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable

t is WN iff the leftmost-o. stategy terminates on t

nothing to do with types

Intersection types

Perhaps too expressive. . .

. . . but certify reduction strategies!
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Intuitions (syntax)

Naively, A ∧B stands for A ∩B:

t is of type A ∧B if t can be typed with A as well as B.

I : A→ A I : (A→ B)→ (A→ B)

I : (A→ A) ∧ ((A→ B)→ (A→ B))
∧ −intro (with I = λx.x)

Intersection = kind of finite polymorphism.

(A→ A) ∧ ((A→ B)→ (A→ B)) = double instance of ∀X.X → X

(with X = A and X = A→ B)

But less constrained :

assigning x : o ∧ (o→ o′) ∧ (o→ o)→ o is legal.

(not an instance of a polymorphic type except ∀X.X := False!)
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Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

Some reduction strategy
normalizes t

t can reach a
terminal state

t is typabletyping the
term. states

+ SE SR + extra arg.

obvious
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Ensuring Subject Expansion

x : A
ax

x : A
ax

x : A
ax

x : A ` r : B
abs

λx.r : A→ B
app

(λx.r)s : B

s : A

Πs

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-reduction.

s : A

s : A

s : A

Πs

Πs

Πs

r[s/x] : B

s : A1

s : A2

s : A3

Π1
s

Π2
s

Π3
s

r[s/x] : B

think of (λx.x x)I →β I I

Left occ. of I: (A→A)→(A→A)

Right occ. of I: A→A

Solution:
Allow several type assignments
for a same variable/subterm

x : A1 ∧A2 ∧A3

` x : Ai (i = 1, 2, 3)

x : ?
ax

x : ?
ax

x : ?
ax

x : ? ` r : B
abs

λx.r : ?→ B
app

(λx.r)s : B

s : ?

Πs
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Typing every normal form

Consider (y(x (λz.z))) (x (λz.z c))

We want x : E → F

λz.z : A→ A vs. λz.z c : (C → D)→ D

E = A→ B or E = (C → D)→ D?

Solution:
Allow several type assignments
for a same variable/subterm

Typing normal form: just structural induction (no clash).
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Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.
 Possibly many certificates (subderivations) for a subprogram.

 Size of certificates decreases.

Initial
certificate

Initial state
of the prog.

STOP
(cannot be

reduced more)

Terminal
state reached!!

Execution

Comparative (dis)advantages

Insanely difficult to type a particular program.

Whole type system easier to study!
Easier proofs of termination!

Easier proofs of characterization!

Easier to certify a reduction strategy!
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Head Normalization (λ)

x

head variable

t1

@ tq

@

λxp

Head Normal Form

r

λx
s

@

head redex

t1

@ tq

@

λxp

Head Reducible Term

the head reduction strategy
terminates on t

t is HN
(∃path from t to a HNF)

obvious

true but not obvious

Intersection types come to help!

t is head normalizing (HN) if ∃ reduction path from t to a HNF.

The head reduction strategy: reducing head redexes while it is possible.
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Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

(A ∧B) ∧ C ∼ A ∧ (B ∧ C), A ∧B ∼ B ∧A (assoc. and comm.)

Idempotency? A∧A ∼ A (Coppo-Dezani) or not (Gardner 94-de Carvalho 07)

idem: typing = qualitative info non-idem: qual. and quant.

Collapsing A ∧B ∧ C into [A,B,C] (multiset)  no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]
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System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

x : [τ ] ` x : τ
ax

Γ; x : [σi]i∈I ` t : τ

Γ ` λx.t : [σi]i∈I → τ
abs

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I

Γ +i∈I Γi ` t u : τ
app

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ ]) + (x : [σ, τ ]) = x : [σ, σ, τ ]; y : [τ ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes
always typed!
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Properties (R0)

Weighted Subject Reduction
Reduction preserves types and environments, and. . .
. . . head reduction strictly decreases the number of nodes of the deriv. tree (size).

(actually, holds for any typed redex)

Subject Expansion
Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ-term. Then equivalence between:

1 t is typable (in R0)

2 t is HN

3 the head reduction strategy terminates on t ( certification!)

Bonus (quantitative information)

If Π types t, then size(Π) bounds the number of steps of the head red. strategy on t
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Head vs Weak and Strong Normalization

Let t be a λ-term.

Head normalization (HN):
there is a path from t to a head normal form.

Weak normalization (WN):
there is at least one path from t to a β-Normal Form (NF)

Strong normalization (SN):
there is no infinite path starting at t.

SN ⇒ WN ⇒ HN

Nota Bene: yΩ HNF but not WN (λx.y)Ω WN but not SN
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Characterizing Weak and Strong Normalization

any arg. can be left untyped

non-erasable args must be typed

all args must be typed

HN System R0 sz(Π) bounds the number of
head reduction steps

WN System R0

+ unforgetfulness criterion
sz(Π) bounds the number
of leftmost-outermost red.
steps (and more)

SN Modify system R0

with choice operator
sz(Π) bounds the length of
any reduction path
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Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!
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Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives
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The Lambda-Mu Calculus

Intuit. logic + Peirce’s Law ((A→ B)→ A)→ A
gives classical logic.

Griffin 90: call−cc and Felleisen’s C-operator typable with Peirce’s Law
((A→ B)→ A)→ A

 the Curry-Howard iso extends to classical logic

classical logic backtracking

Parigot 92: λµ-calculus = computational interpretation of classical natural
deduction (e.g., vs. λ̄µµ̃).

judg. of the form A,A→ B ` A | B,C
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Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A

A ` A,B
` A→ B,A

(A→ B)→ A ` A,A
(A→ B)→ A ` A

` ((A→ B)→ A)→ A

Standard Style
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Peirce’s Law in Classical Natural Deduction

(A→ B)→ A ` (A→ B)→ A |

A ` A | B
A ` B | A

act

` A→ B | A
(A→ B)→ A ` A | A
(A→ B)→ A ` A |

` ((A→ B)→ A)→ A |

Focussed Style

In the right hand-side of Γ ` F |∆
1 active formula F

inactive formulas ∆
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The λµ-calculus

Syntax: λ-calculus

+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) :

((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



The λµ-calculus

Syntax: λ-calculus
+ names α, β, γ (store inactive formulas)

x1 : D, y : E ` t : C | α : A, β : B

+ two constructors [α]t (naming) and µα (µ-abs.)
de/activation

Typed and untyped version

Simply typable ⇒ SN

call−cc := λy.µα.[α]y(λx.µβ.[α]x) : ((A→ B)→ A)→ A

How do we adapt the non-idempotent machinery to λµ?

Intersection type theory P. Vial 3 Resources for Classical Logic 23 /36



Cut-elimination steps (classical case)

ax
x : A |∆1

ax
x : A |∆2

x : A ` t : B |∆
abs

λx.r : A→ B |∆
app

(λx.r)s : B |∆

Πs

s : A

A→ B |Ci
act

Ci |A→ B

C |A→ B
act

A→ B |C

Πs

s : A
app

B |C

Πs

A→ B |Ci
app

s : A

act
B |Ci
Ci |B

C |B
act

B |C

Duplication of s

Creation of app-rules

B saved instead of A → B
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The Typing System

Intersection: I,J := [Uk]k∈K U ,V =: 〈σk〉k∈K : Union

x : [U1,U2]; y : [V] ` t : U | α : 〈σ1, σ2〉, β : 〈τ1, τ2, τ3〉

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing
information.

app-rule based upon the admissible rule of ND:

A1 → B1 ∨ . . . ∨Ak → Bk A1 ∧ . . . ∧Ak
B1 ∨ . . . ∨Bk

(
vs.

A → B A

B

)

call−cc : [[[A]→B]→A]→ 〈A,A〉 vs. ((A→ B)→ A)→ A
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System Hλµ (Head Normalization)

Weighted Subject Reduction + Subject Expansion

size(Π) =

 number of nodes of Π +

size of the type arities of all the names of commands +

multiplicities of arguments in all the app. nodes

Characterizes Head Normalization
adaptable to Strong Normalization

Theorem [Kesner,V.,FSCD17]:

Let t be a λµ-term. Equiv. between:

t is Hλµ-typable

t is HN

The head red. strategy terminates on t

+ quantitative info.

Small-step version.
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Plan

1 Overview (idempotent or not intersection types)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives
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Infinitary calculi

Infinitary λ-trees provide various semantics to the λ-calculus.
Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

Infinite λ-calculi Kennaway, Klop, Sleep and de Vries [97]

7 variants
only 3 have a good behavior (partial infinitary confluence),

respectively recovering Böhm, L-L and Berar. trees as infinite NF.

Main idea:

Productive terms

may not terminate. . .

. . . but keep on outputting info.
(e.g., sub-HNF)

sound infinite red. sequence

vs.

Meaningless terms

do not output any info. ever
(even a head variable)

unsound infinite red. sequences
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Productive vs. Unproductive Reduction

Productive reduction: ∆f := λx.f(xx) Yf := ∆f∆f ”Curry f”

→ → → → → . . .→ fn(Yf )→ . . .→∞ fω

Unproductive reduction: let ∆ = λx.x x, Ω = ∆ ∆

Ω→ Ω→ Ω→ Ω→ Ω→ Ω→ . . .
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Klop’s Problem and System S

Klop’s Problem: characterizing ∞-WN with inter. types

Tatsuta [07]: an inductive ITS cannot do it.

Can a coinductive ITS characterize the set of ∞-WN
terms?

Multiset intersection:

⊕ syntax-direction

	 non-determinism of proof red.

	 lack tracking:
[σ, τ, σ] = [σ

?
, τ ] + [σ

?
].

Retrieving soundness

coind. type grammars
 unsoundness (Ω typable)

using a validity criterion
 Need for tracking

Solution: sequential intersection

System S
 replace [σi]i∈I with (k · σk)k∈K

Tracking: (3 · σ, 5 · τ, 9 · σ) = (3 · σ, 5 · τ) ] (9 · σ)
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Characterization of infinitary WN

Proposition

In System S:

Validity (aka approximability) can be defined.

SR: typing is stable by productive ∞-reduction.

SE: approximable typing stable by productive ∞-expansion.

Theorem (V,LiCS’17)

A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable
derivation  Klop’s Problem solved

The hereditary head reduction strategy is complete for infinitary weak
normalization.

Bonus: positive answer to TLCA Problem #20

System S also provides a type-theoretic characterization of the hereditary
permutations (not possible in the inductive case, Tatsuta [LiCS’07]).
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Confluence in the infinitary calculi

In the infinitary calculi:

confluence
only up to the collapsing of the meaningless terms

Let YI = (λx.I(xx))(λx.I(xx))

YI → I(YI) → . . . → In(YI) →∞ Iω

↓
2

Ω

Structure of proofs Kennaway et al. 96, Czjaka 14

Using an intermediary calculi ε satisfying confluence.

Translating the red. sequences of the ∞-calculi into the ε-calc
via technical lemmas of the form:

Lemma: if t→∞ t′ HNF, then t→∗h t′0 HNF (finite sequence)

Can inductive non-idem. inter. type systems help
simplify proofs of infinitary confluence?
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The story continues. . .

Intersection types via Grothendieck construction
[Mazza,Pellissier,V, POPL2018]

Categorical generalization of ITS à la Melliès-Zeilberger.

Type systems = 2-operads (see below).

Type systems as 2-operads

Level 1: Γ ` t : B t = multimorphism from Γ to B.

Level 2: if Γ ` t : B
SR
 Γ ` t′ : B,

t t′ = 2-morphism from t to t′.

Construction of an ITS via a Grothendieck construction (pullbacks).

Modularity: retrieving automatically
e.g., Coppo-Dezani, Gardner, R0, call-by-value + Hλµ (use cyclic 2-operads)

Damiano Mazza
Polyadic approximations and intersection
types (ITRS/DCM joint invited talk)
Sunday 4:30 pm, Maths Seminar C5

Luc Pellissier
Generalized generalized species of structure and
resource modalities (Linearity/TLLA)
Sunday 2 pm, Blavatnik Seminar Room 1
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Doggy bag

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

Very simple
operational semantics

Adapts to other higher-order calculi
e.g., feat. classical logic

Adapts to the infinitary calculus

Delia Kesner
Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5
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Quantitative types: from Foundations to Ap-
plications (ITRS/DCM joint invited talk)
Sunday 9 am, Maths Seminar C5
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Thank you

Thank you for your attention!

next talk in Floc

Every λ-term is meaningful in the infinitary
relation model (Lics)
Monday 5:20 pm, Math LT3
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