Some applications of quantitative types inside and outside type theory

Pierre VIAL Équipe Gallinette Inria (LS2N CNRS)

July 8, 2018

Intersection type theory P. Vial

Non-Idempotent

Intersection

Type Theory

Non-Idempotent

Intersection

OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

2 Non-idempotent intersection types

3 Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Perspectives

INTERSECTION TYPES (OVERVIEW)

- Introduced by Coppo-Dezani (78-80) to "interpret more terms"
 - Charac. of Weak Norm. for λI -terms (no erasing β -step).
 - Extended later for λ -terms, head, weak or strong normalizatiion...
 - Filter models
- Model-checking
 - Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion schemes (HORS)
 - Kobayashi-Ong 09: MSO is decidable for higher-order programs

+ using intersection types to simplify Ong's algorithm.

- Refined by Grellois-Melliès 14-15
- Complexity:
 - Upper bounds for reduction sequences (Gardner 94, de Carvalho 07) or exact bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP'18).
 - Terui 06: upper bounds for terms in a red. sequence
 - De Benedetti-Ronchi della Roccha 16: characterization of FPTIME

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

 $\frac{I: A \to A \qquad I: (A \to B) \to (A \to B)}{I: (A \to A) \land ((A \to B) \to (A \to B))} \land -\texttt{intro} \quad (with \ I = \lambda x.x)$

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

$$\begin{array}{ll} I: A \to A & I: (A \to B) \to (A \to B) \\ \hline I: (A \to A) \land ((A \to B) \to (A \to B)) \\ \end{array} \land -\texttt{intro} \quad (with \ I = \lambda x.x) \end{array}$$

• Intersection = kind of *finite polymorphism*.

 $(A \to A) \land ((A \to B) \to (A \to B)) =$ double instance of $\forall X.X \to X$ (with X = A and $X = A \to B$)

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

$$\begin{array}{ll} I: A \to A & I: (A \to B) \to (A \to B) \\ \hline I: (A \to A) \land ((A \to B) \to (A \to B)) \\ \end{array} \land -\texttt{intro} \quad (with \ I = \lambda x.x) \end{array}$$

• Intersection = kind of *finite polymorphism*.

 $(A \to A) \land ((A \to B) \to (A \to B)) =$ **double** instance of $\forall X.X \to X$ (with X = A and $X = A \to B$)

• But less constrained:

assigning
$$x : o \land (o \to o') \land (o \to o) \to o$$
 is legal.

(not an instance of a polymorphic type except $\forall X.X := \texttt{False}!$)

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

SE is usually not verified by simple or polymorphic type systems

SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

SE is usually not verified by simple or polymorphic type systems

Subject Reduction (SR): Typing is stable under reduction.

Subject Reduction (SR): Typing is stable under reduction.

Subject Expansion (SE): Typing is stable under anti-reduction.

Subject Expansion (SE): Typing is stable under anti-reduction.

think of
$$(\lambda x.x x)I \rightarrow_{\beta} II$$

- Left occ. of I: $(A \rightarrow A) \rightarrow (A \rightarrow A)$
- Right occ. of $I: A \rightarrow A$

• Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \text{ vs. } \lambda z.zc: (C \to D) \to D$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \text{ vs. } \lambda z.zc: (C \to D) \to D$

 $E = A \rightarrow B$ or $E = (C \rightarrow D) \rightarrow D$?

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \text{ vs. } \lambda z.zc: (C \to D) \to D$

$$E = A \rightarrow B$$
 or $E = (C \rightarrow D) \rightarrow D$?

Solution:

• Allow several type assignments for a same variable/subterm

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A vs. \lambda z.zc: (C \to D) \to D$

 $E = A \rightarrow B$ or $E = (C \rightarrow D) \rightarrow D$?

- Solution: Allow several type assignments for a same variable/subterm
- Typing normal form: just structural induction (no clash).

NON-IDEMPOTENCY

Computation causes **duplication**.
Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \leadsto Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \leadsto Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Computation causes **duplication**.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- \rightsquigarrow Possibly many certificates (subderivations) for a subprogram.
- \rightsquigarrow Size of certificates decreases.

Comparative (dis)advantages

- Insanely difficult to type a particular program.
- Whole type system **easier** to study!
 - Easier proofs of **termination**!
 - Easier proofs of characterization!
 - Easier to certify a reduction strategy!

CONTENTS

The case of the λ -calculus

- Mechanics of non-idempotent intersection.
- Certification of reduction strategies. Quantitative intersection.
- Moving from various forms of normalization to others (head, weak, strong...)

$\lambda\mu$ -calculus (classical logic)

• Non-idempotent type theory adapts to more complicated operational semantics

Infinitary calculi

- Infinitary intersection type enables characterizing infinitary normalization (Klop's Problem).
- Dealing with unsoundness.
- Certification of an asymptotic reduction stategy.

OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

2 Non-idempotent intersection types

Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Perspectives

• t is head normalizing (HN) if \exists reduction path from t to a HNF.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• $(A \land B) \land C \sim A \land (B \land C), A \land B \sim B \land A$ (assoc. and comm.)

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

- $(A \land B) \land C \sim A \land (B \land C), A \land B \sim B \land A$ (assoc. and comm.)
- Idempotency? $A \wedge A \sim A$ (Coppo-Dezani) or not (Gardner 94-de Carvalho 07) idem: typing = qualitative info non-idem: qual. and quant.

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• $(A \land B) \land C \sim A \land (B \land C), A \land B \sim B \land A$ (assoc. and comm.)

• Idempotency? $A \wedge A \sim A$ (Coppo-Dezani) or not (Gardner 94-de Carvalho 07) idem: typing = qualitative info non-idem: qual. and quant.

• Collapsing $A \wedge B \wedge C$ into [A, B, C] (multiset) \rightsquigarrow no need for perm rules etc.

 $A \land B \land A := [A, B, A] = [A, A, B] \neq [A, B]$ [A, B, A] = [A, B] + [A]

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\frac{\Gamma; x : [\sigma_i]_{i \in I} \vdash t : \tau}{\Gamma \vdash \lambda x.t : [\sigma_i]_{i \in I} \to \tau} abs$$

$$\frac{\Gamma \vdash t : [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash i : \tau} (\Gamma_i \vdash u : \sigma_i)_{i \in I}} app$$

Remark

• Relevant system (no weakening, cf. ax-rule)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\frac{\Gamma; x : [\sigma_i]_{i \in I} \vdash t : \tau}{\Gamma \vdash \lambda x.t : [\sigma_i]_{i \in I} \to \tau} abs$$

$$\frac{\Gamma \vdash t : [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash i : [\sigma_i]_{i \in I} \to \tau} (\Gamma_i \vdash u : \sigma_i)_{i \in I} app$$

Remark

- Relevant system (no weakening, cf. ax-rule)
- Non-idempotency $(\sigma \land \sigma \neq \sigma)$:

in app-rule, pointwise multiset sum e.g.,

$$(x:[\pmb{\sigma}];y:[\pmb{\tau}])+(x:[\pmb{\sigma},\pmb{\tau}])=x:[\pmb{\sigma},\pmb{\sigma},\pmb{\tau}];y:[\pmb{\tau}]$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Example

$$\frac{f:[o] \to o}{f:[o] \to o} \operatorname{ax} \qquad \frac{f:[o] \to o}{f:[o] \to o} \operatorname{ax} \qquad x:o}{f:[o] \to o} \operatorname{app} \qquad f(f:x):o$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Example

$$f:[o] \to o \text{ ax } \underbrace{f:[o] \to o}_{f:[o] \to o} \text{ ax } \underbrace{f:[o] \to o}_{f:[o] \to o} \text{ ax } \underbrace{x:o}_{f:[o] \to o} \text{ app } f:[o] \to o, [o] \to o], x:[o] \vdash f(fx):o$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Head redexes always typed!

Properties (\mathscr{R}_0)

• Weighted Subject Reduction

- Reduction preserves types and environments, and...
- ... *head* reduction strictly decreases the number of nodes of the deriv. tree (size).

(actually, holds for any typed redex)

• Subject Expansion

• Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ -term. Then equivalence between:

- t is typable (in \mathscr{R}_0)
- \bigcirc t is HN

 \bigcirc the head reduction strategy terminates on t (\rightsquigarrow certification!)

Bonus (quantitative information)

If Π types t, then size(Π) bounds the number of steps of the head red. strategy on t

HEAD VS WEAK AND STRONG NORMALIZATION

Let t be a λ -term.

• Head normalization (HN):

there is a path from t to a head normal form.

• Weak normalization (WN):

there is at least one path from t to a β -Normal Form (NF)

• Strong normalization (SN):

there is no infinite path starting at t.

 $\mathrm{SN} \Rightarrow \mathrm{WN} \Rightarrow \mathrm{HN}$

Nota Bene: $y \Omega$ HNF but not WN

 $(\lambda x.y)\Omega$ WN but not SN

CHARACTERIZING WEAK AND STRONG NORMALIZATION

HN	System \mathscr{R}_0 any arg. can be left untyped	$sz(\Pi)$ bounds the number of <i>head</i> reduction steps
WN	$\begin{array}{c} \text{System } \mathscr{R}_0 \\ + \textbf{unforgetfulness criterion} \\ \hline \textit{non-erasable args must be typed} \end{array}$	$sz(\Pi)$ bounds the number of leftmost-outermost red. steps (and more)
SN	Modify system \mathscr{R}_0 with choice operator <i>all</i> args must be typed	$sz(\Pi)$ bounds the length of any reduction path

Subject reduction and expansion in \mathscr{R}_0

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

Subject reduction and expansion in \mathscr{R}_0

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

2 Non-idempotent intersection types

3 Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Perspectives

The Lambda-Mu Calculus

• Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.

The Lambda-Mu Calculus

- Intuit. logic + Peirce's Law $((A \rightarrow B) \rightarrow A) \rightarrow A$ gives classical logic.
- Griffin 90: call-cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$

 \rightsquigarrow the $\mathbf{Curry}\textbf{-}\mathbf{Howard}$ iso extends to classical logic

$$\fbox{classical logic} \xleftarrow{} backtracking}$$

THE LAMBDA-MU CALCULUS

- Intuit. logic + Peirce's Law $((A \rightarrow B) \rightarrow A) \rightarrow A$ gives classical logic.
- Griffin 90: call-cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$

 \rightsquigarrow the $\mathbf{Curry}\textbf{-}\mathbf{Howard}$ iso extends to classical logic

• Parigot 92: $\lambda \mu$ -calculus = computational interpretation of classical natural deduction (e.g., vs. $\overline{\lambda} \mu \tilde{\mu}$).

judg. of the form $A, A \to B \vdash A \mid B, C$

Standard Style

Standard Style

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

• 1 active formula *F*

• inactive formulas Δ

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

• 1 active formula *F*

• inactive formulas Δ

• Syntax: λ -calculus

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas)

 $x_1: D, y: E \vdash t: C \mid \alpha: A, \beta: B$

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas) $x_1 : D, y : E \vdash t : C \mid \alpha : A, \beta : B$ + two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.) $\frac{de/activation}{de/activation}$

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas) $x_1 : D, y : E \vdash t : C \mid \alpha : A, \beta : B$ + two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.) $\frac{de/activation}{de/activation}$

• Typed and untyped version

Simply typable \Rightarrow SN

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas) $x_1 : D, y : E \vdash t : C \mid \alpha : A, \beta : B$ + two constructors $[\alpha]t$ (naming) and $\mu \alpha$ (μ -abs.) $\frac{de/activation}{de}$

• Typed and untyped version

Simply typable \Rightarrow SN

• call-cc := $\lambda y.\mu \alpha.[\alpha]y(\lambda x.\mu \beta.[\alpha]x)$:

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas) $x_1 : D, y : E \vdash t : C \mid \alpha : A, \beta : B$ + two constructors $[\alpha]t$ (naming) and $\mu \alpha$ (μ -abs.) $\frac{de/activation}{de/activation}$

• Typed and untyped version

Simply typable \Rightarrow SN

• call-cc := $\lambda y.\mu \alpha.[\alpha]y(\lambda x.\mu \beta.[\alpha]x) : ((A \to B) \to A) \to A$

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas) $x_1 : D, y : E \vdash t : C \mid \alpha : A, \beta : B$ + two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.) $\frac{de/activation}{de/activation}$

• Typed and untyped version

Simply typable \Rightarrow SN

• call-cc := $\lambda y.\mu \alpha.[\alpha]y(\lambda x.\mu \beta.[\alpha]x): ((A \to B) \to A) \to A$

How do we adapt the non-idempotent machinery to $\lambda \mu$?

Intersection: $\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$

 $\mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}$: Union

THE TYPING SYSTEM

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Syntax-direction, relevance, multiplicative rules, **accumulation of typing information**.

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Syntax-direction, relevance, multiplicative rules, **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND:

$$\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$$

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Syntax-direction, relevance, multiplicative rules, **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND:

$$\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B A}{B} \right)$$

$$\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \text{vs.} \qquad ((A \to B) \to A) \to A]$$

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} & \mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}: \ \textbf{Union} \\ & \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Syntax-direction, relevance, multiplicative rules, **accumulation of typing information**.

• app-rule based upon the *admissible* rule of ND:

 $\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k}{B_1 \lor \ldots \lor B_k} \qquad \left(vs. \frac{A \to B \quad A}{B} \right)$

$$\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \text{vs.} \qquad ((A \to B) \to A) \to A \rangle$$
System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

 $\left[\mathtt{size}(\Pi) = \left\{ \begin{array}{l} \mathtt{number of nodes of } \Pi + \\ \mathtt{size of the } \mathtt{type \ arities of all the names of commands } + \\ \mathtt{multiplicities of arguments in all the } \mathtt{app. nodes} \end{array} \right.$

System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

 $\mathtt{size}(\Pi) = \begin{cases} \text{number of nodes of } \Pi + \\ \text{size of the } \mathtt{type arities of all the names of commands } + \\ \mathtt{multiplicities of arguments in all the } \mathtt{app. nodes} \end{cases}$

Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner, V., FSCD17]:

Let t be a $\lambda\mu$ -term. Equiv. between: • t is $\mathcal{H}_{\lambda\mu}$ -typable • t is HN

- The head red. strategy terminates on t

+ quantitative info.

System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

 $\mathtt{size}(\Pi) = \begin{cases} \text{number of nodes of } \Pi + \\ \text{size of the } \mathtt{type \ arities \ of all the names of commands } + \\ \mathtt{multiplicities \ of arguments \ in \ all \ the } \mathtt{app. nodes} \end{cases}$

Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner, V., FSCD17]:

Let t be a $\lambda\mu$ -term. Equiv. between: • t is $\mathcal{H}_{\lambda\mu}$ -typable • t is HN

- The head red. strategy terminates on t

+ quantitative info.

• Small-step version.

OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

2 Non-idempotent intersection types

3 Resources for Classical Logic

4 Infinite types and productive reduction

5 Perspectives

Infinitary λ-trees provide various semantics to the λ-calculus.
 Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

INFINITARY CALCULI

• Infinitary λ -trees provide various semantics to the λ -calculus.

Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

• Infinite $\lambda\text{-calculi}$

Kennaway, Klop, Sleep and de Vries [97]

- 7 variants
- only **3** have a **good behavior** (partial infinitary confluence), respectively recovering Böhm, L-L and Berar. trees as infinite NF.

INFINITARY CALCULI

• Infinitary λ -trees provide various semantics to the λ -calculus.

Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

• Infinite λ -calculi

Kennaway, Klop, Sleep and de Vries [97]

- 7 variants
- only **3** have a **good behavior** (partial infinitary confluence), respectively recovering Böhm, L-L and Berar. trees as infinite NF.
- Main idea:

Productive terms

- may not terminate...
- ... but keep on outputting info. (*e.g.*, sub-HNF)
- *sound* infinite red. sequence

Meaningless terms

vs.

- do not output any info. ever (even a head variable)
- unsound infinite red. sequences

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to \mathbf{f}(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to \mathbf{f}^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to \mathbf{f}^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $\Upsilon_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $\Upsilon_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to {}^{\infty} f^{\omega}$

Productive reduction: $\Delta_f := \lambda x.f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

 $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \ldots \to f^n(\mathbf{Y}_f) \to \ldots \to^{\infty} f^{\omega}$

Unproductive reduction: let $\Delta = \lambda x . x x$, $\Omega = \Delta \Delta$

 $\Omega \to \Omega \to \Omega \to \Omega \to \Omega \to \Omega \to \ldots$

• Klop's Problem: characterizing ∞ -WN with inter. types

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

Multiset intersection:

- \oplus syntax-direction
- \ominus non-determinism of proof red.
- \ominus lack **tracking**:

$$[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$$

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

Multiset intersection:

- \oplus syntax-direction
- \ominus non-determinism of proof red.
- \ominus lack **tracking**:

$$[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma].$$

Retrieving soundness

- coind. type grammars
 → unsoundness (Ω typable)
- using a validity criterion
 → Need for tracking

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

Multiset intersection:

- \oplus syntax-direction
- \ominus non-determinism of proof red.
- $\begin{array}{l} \ominus \ \ \text{lack tracking:} \\ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]. \end{array}$

Retrieving soundness

- coind. type grammars
 → unsoundness (Ω typable)
- using a validity criterion
 → Need for tracking

• Solution: sequential intersection

System S \rightsquigarrow replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$

• Tracking:

$$(3 \cdot \boldsymbol{\sigma}, 5 \cdot \boldsymbol{\tau}, 9 \cdot \boldsymbol{\sigma}) = (3 \cdot \boldsymbol{\sigma}, 5 \cdot \boldsymbol{\tau}) \uplus (9 \cdot \boldsymbol{\sigma})$$

CHARACTERIZATION OF INFINITARY WN

Proposition

In System S:

- Validity (aka *approximability*) can be defined.
- SR: typing is stable by productive ∞ -reduction.
- SE: approximable typing stable by productive ∞ -expansion.

Theorem (V,LiCS'17)

- A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable derivation → Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

CHARACTERIZATION OF INFINITARY WN

Proposition

In System ${\tt S:}$

- Validity (aka *approximability*) can be defined.
- SR: typing is stable by productive ∞ -reduction.
- SE: approximable typing stable by productive ∞ -expansion.

Theorem (V,LiCS'17)

- A ∞-term t is ∞-WN iff t is unforgetfully typable by means of an approximable derivation → Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Bonus: positive answer to TLCA Problem #20

System S also provides a type-theoretic characterization of the **hereditary permutations** (not possible in the inductive case, Tatsuta [LiCS'07]).

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• Let
$$\mathbf{Y}_I = (\lambda x.I(x\,x))(\lambda x.I(x\,x))$$

 $\mathbf{Y}_I \rightarrow I(\mathbf{Y}_I) \rightarrow \dots \rightarrow I^n(\mathbf{Y}_I) \rightarrow^{\infty} I^{\omega}$
 \downarrow_2
 Ω

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• Let
$$\mathbf{Y}_I = (\lambda x.I(x\,x))(\lambda x.I(x\,x))$$

 $\mathbf{Y}_I \rightarrow I(\mathbf{Y}_I) \rightarrow \dots \rightarrow I^n(\mathbf{Y}_I) \rightarrow^{\infty} I^{\omega}$
 \downarrow_2
 Ω

• Structure of proofs

Kennaway et al. 96, Czjaka 14

• Using an intermediary calculi ε satisfying confluence.

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• Let
$$\mathbf{Y}_I = (\lambda x.I(x\,x))(\lambda x.I(x\,x))$$

 $\mathbf{Y}_I \rightarrow I(\mathbf{Y}_I) \rightarrow \dots \rightarrow I^n(\mathbf{Y}_I) \rightarrow^{\infty} I^{\omega}$
 \downarrow_2
 Ω

• Structure of proofs

Kennaway et al. 96, Czjaka 14

- Using an intermediary calculi ε satisfying confluence.
- Translating the red. sequences of the ∞ -calculi into the ε -calc via technical lemmas of the form:

Lemma: if $t \to \infty t'$ HNF, then $t \to_{\mathbf{h}}^{*} t'_{\mathbf{0}}$ HNF (finite sequence)

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• Let
$$\mathbf{Y}_I = (\lambda x.I(x\,x))(\lambda x.I(x\,x))$$

 $\mathbf{Y}_I \to I(\mathbf{Y}_I) \to \dots \to I^n(\mathbf{Y}_I) \to^{\infty} I^{\omega}$
 \downarrow_2
 Ω

• Structure of proofs

Kennaway et al. 96, Czjaka 14

- Using an intermediary calculi ε satisfying confluence.
- Translating the red. sequences of the ∞ -calculi into the ε -calc

via technical lemmas of the form:

Lemma: if $t \to_{\infty} t'$ HNF, then $t \to_{h}^{*} t'_{0}$ HNF (finite sequence)

Can *inductive* non-idem. inter. type systems help simplify proofs of infinitary confluence?

OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)

2 Non-idempotent intersection types

3 Resources for Classical Logic

INFINITE TYPES AND PRODUCTIVE REDUCTION

5 Perspectives

Intersection types via Grothendieck construction [Mazza,Pellissier,V, POPL2018]

- Categorical generalization of ITS à la Melliès-Zeilberger.
- Type systems = 2-operads (see below).

Type systems as 2-operads

- Level 1: $\Gamma \vdash t : B$ t = multimorphism from Γ to B.
- Level 2: if $\Gamma \vdash t : B \xrightarrow{SR} \Gamma \vdash t' : B$, $t \rightsquigarrow t' = 2$ -morphism from t to t'.
 - Construction of an ITS via a Grothendieck construction (pullbacks).
 - Modularity: retrieving automatically e.g., Coppo-Dezani, Gardner, \mathscr{R}_0 , call-by-value + $\mathcal{H}_{\lambda\mu}$ (use cyclic 2-operads)

Intersection types via Grothendieck construction [Mazza,Pellissier,V, POPL2018]

- Categorical generalization of ITS à la Melliès-Zeilberger.
- Type systems = 2-operads (see below).

Intersection types via Grothendieck construction [Mazza,Pellissier,V, POPL2018]

- Categorical generalization of ITS à la Melliès-Zeilberger.
- Type systems = 2-operads (see below).

Damiano Mazza Polyadic approximations and intersection types (ITRS/DCM joint invited talk) Sunday 4:30 pm, Maths Seminar C5

> Luc Pellissier Generalized generalized species of structure and resource modalities (Linearity/TLLA) Sunday 2 pm, Blavatnik Seminar Room 1

Doggy bag

Intersection types characterize

various **semantic** properties

+ bring info. on operational semantics!

Doggy bag

Intersection types characterize

various **semantic** properties

+ bring info. on operational semantics!

Non-idempotency:

forbid duplication of typing deriv.

Doggy bag

typing brings quali. and quanti. info.

Adapts to other higher-order calculi e.g., feat. classical logic

Adapts to other higher-order calculi e.g., feat. classical logic

Adapts to the infinitary calculus

Intersection types characterize

various **semantic** properties

+ bring info. on operational semantics!

Non-idempotency:

forbid duplication of typing deriv.

Intersection types characterize

various **semantic** properties

+ bring info. on operational semantics!

Non-idempotency:

forbid duplication of typing deriv.

Delia Kesner

Quantitative types: from Foundations to Applications (ITRS/DCM joint invited talk) Sunday 9 am, Maths Seminar C5

Thank you for your attention!

next talk in Floc

Every λ -term is meaningful in the infinitary relation model (Lics) Monday 5:20 pm, Math LT3