The Expressive Power of Coinductive Rigid Types with non-Idempotent Intersection

Pierre VIAL IRIF, Paris 7 HOR 2016

June 25, 2016

Plan

INTRODUCTION

MULTISETS AND SEQUENCES

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Simple type systems (STS): Typable \Rightarrow Normalizable.

- Simple type systems (STS): Typable \Rightarrow Normalizable.
- ► Intersection type systems (ITS): Typable ⇔ Normalizable.

- Simple type systems (STS): Typable \Rightarrow Normalizable.
- Intersection type systems (ITS): Typable \Leftrightarrow Normalizable.
- STS: a variable *x* can be assigned only one type (that can be used several times).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Simple type systems (STS): Typable \Rightarrow Normalizable.
- Intersection type systems (ITS): Typable \Leftrightarrow Normalizable.
- STS: a variable *x* can be assigned only one type (that can be used several times).
- ► ITS: a variable can be typed several times, with different types. $x : A \land B \land B \land C$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Simple type systems (STS): Typable \Rightarrow Normalizable.
- Intersection type systems (ITS): Typable \Leftrightarrow Normalizable.
- STS: a variable *x* can be assigned only one type (that can be used several times).
- ► ITS: a variable can be typed several times, with different types. $x : A \land B \land B \land C$.
- ► *Example:* usually, *xx* cannot be typed in STS, but *xx* can be typed in ITS: if *x* is assigned $A \land (A \rightarrow B)$, then *xx* : *B* is derivable.

Intersection \wedge .

Associativity assumed. Commutativity $(A \land B = B \land A)$? Idempotency $(A \land A = A)$?

Intersection \wedge .

Associativity assumed. Commutativity $(A \land B = B \land A)$? Idempotency $(A \land A = A)$?

► Idempotent, commutative: A ∧ B ∧ A = A ∧ A ∧ B = A ∧ B. Paradigm: sets, {A, B, A} = {A, A, B} = {A, B}

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Intersection \wedge .

Associativity assumed. Commutativity $(A \land B = B \land A)$? Idempotency $(A \land A = A)$?

- Idempotent, commutative: $A \land B \land A = A \land A \land B = A \land B$. Paradigm: sets, $\{A, B, A\} = \{A, A, B\} = \{A, B\}$
- ▶ Non-Idempotent, commutative: $A \land B \land A = A \land A \land B \neq A \land B$. Paradigm: multisets, $[A, B, A] = [A, A, B] \neq [A, B]$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Intersection \wedge .

Associativity assumed. Commutativity $(A \land B = B \land A)$? Idempotency $(A \land A = A)$?

- Idempotent, commutative: $A \land B \land A = A \land A \land B = A \land B$. Paradigm: sets, $\{A, B, A\} = \{A, A, B\} = \{A, B\}$
- ▶ Non-Idempotent, commutative: $A \land B \land A = A \land A \land B \neq A \land B$. Paradigm: multisets, $[A, B, A] = [A, A, B] \neq [A, B]$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

▶ Non-Idempotent, non-commutative: $A \land B \land A \neq A \land A \land B$. Paradigm: lists, $(A, B, A) \neq (A, A, B) \neq (A, B)$ (this does not work).

Intersection \wedge .

Associativity assumed. Commutativity $(A \land B = B \land A)$? Idempotency $(A \land A = A)$?

- ► Idempotent, commutative: $A \land B \land A = A \land A \land B = A \land B$. Paradigm: sets, $\{A, B, A\} = \{A, A, B\} = \{A, B\}$
- ▶ Non-Idempotent, commutative: $A \land B \land A = A \land A \land B \neq A \land B$. Paradigm: multisets, $[A, B, A] = [A, A, B] \neq [A, B]$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

▶ Non-Idempotent, non-commutative: $A \land B \land A \neq A \land A \land B$. Paradigm: lists, $(A, B, A) \neq (A, A, B) \neq (A, B)$ (this does not work). In-between possibility: **rigidity** (paradigm: sequences)

CONTENTS OF THIS TALK

- ▶ We consider here two coinductive ITS, namely *M* and S
 - ► In *M* (adapted from Gardner[94]/de Carvalho[07]), intersection is represented by means of multisets.
 - In S, intersection is represented by means of sequences.

CONTENTS OF THIS TALK

- ▶ We consider here two coinductive ITS, namely *M* and S
 - In *M* (adapted from Gardner[94]/de Carvalho[07]), intersection is represented by means of multisets.
 - In S, intersection is represented by means of sequences.
- Forget about the order (inside a sequence):
 - A S-type *T* collapses into a \mathscr{M} -type $\overline{T} = \tau$
 - A S-context *C* collapses into a \mathcal{M} -context $\overline{C} = \Gamma$.
 - ► Likewise, a S-judgment collapses into a *M*-judgment.
 - Collapsing the judgments, a S-derivation P collapses into a \mathcal{M} -derivation $\overline{P} = \Pi$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

CONTENTS OF THIS TALK

- ▶ We consider here two coinductive ITS, namely *M* and S
 - In *M* (adapted from Gardner[94]/de Carvalho[07]), intersection is represented by means of multisets.
 - In S, intersection is represented by means of sequences.
- Forget about the order (inside a sequence):
 - A S-type *T* collapses into a \mathscr{M} -type $\overline{T} = \tau$
 - A S-context *C* collapses into a \mathcal{M} -context $\overline{C} = \Gamma$.
 - ► Likewise, a S-judgment collapses into a *M*-judgment.
 - Collapsing the judgments, a S-derivation P collapses into a \mathcal{M} -derivation $\overline{P} = \Pi$.
- ► Question 1 (full collapse?): for all *M*-derivation Π, is there a S-derivation *P* that collapses into Π ? (easy for types and contexts)

Plan

INTRODUCTION

Multisets and Sequences

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 If X is a set, let S(X) be the set of families of elements of X indexed by integers ≥ 2.

- If X is a set, let S(X) be the set of families of elements of X indexed by integers ≥ 2.
- ► Let $\vec{x} = (x_k)_{k \in K} \in S(X)$ and $k \in K$. Integers are seen as **tracks** and we say that x_k is placed on **track** k inside \vec{x} .

- If X is a set, let S(X) be the set of families of elements of X indexed by integers ≥ 2.
- ► Let $\vec{x} = (x_k)_{k \in K} \in S(X)$ and $k \in K$. Integers are seen as **tracks** and we say that x_k is placed on **track** k inside \vec{x} .
- ► The sequence (*x_k*)_{*k*∈{3, 5,9}} with *x*₃ = *x*, *x*₅ = *y*, *x*₉ = *z* will be written:

$$(3 \cdot x, 5 \cdot y, 9 \cdot z)$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

- If X is a set, let S(X) be the set of families of elements of X indexed by integers ≥ 2.
- ► Let $\vec{x} = (x_k)_{k \in K} \in S(X)$ and $k \in K$. Integers are seen as **tracks** and we say that x_k is placed on **track** k inside \vec{x} .
- ► The sequence (*x_k*)_{k∈{3, 5,9}} with *x*₃ = *x*, *x*₅ = *y*, *x*₉ = *z* will be written:

$$(3 \cdot x, 5 \cdot y, 9 \cdot z)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• We cannot always perform the union of sequences.

• $\mathcal{M}(X)$ be the set of multisets of elements of *X*.

- $\mathcal{M}(X)$ be the set of multisets of elements of *X*.
- Observation: *M*(X) is the quotient set S(X) / ¹/₌ where (x_k)_{k∈K} ¹/₌ (x'_k)_{k∈K'} if there is a bijection ρ : K → K' a bijection such that: ∀k ∈ K, x_k = x'_{ρ(k)}.

- $\mathcal{M}(X)$ be the set of multisets of elements of *X*.
- Observation: *M*(X) is the quotient set S(X)/ ¹/₌ where (x_k)_{k∈K} ¹/₌ (x'_k)_{k∈K'} if there is a bijection ρ : K → K' a bijection such that: ∀k ∈ K, x_k = x'_{ρ(k)}.

► *Example:* [x, y, x] is the **collapse** of $(2 \cdot x, 3 \cdot y, 5 \cdot x)$.

- $\mathcal{M}(X)$ be the set of multisets of elements of *X*.
- Observation: *M*(X) is the quotient set S(X) / ¹/₌ where (x_k)_{k∈K} ¹/₌ (x'_k)_{k∈K'} if there is a bijection ρ : K → K' a bijection such that: ∀k ∈ K, x_k = x'_{ρ(k)}.
- *Example:* [x, y, x] is the **collapse** of $(2 \cdot x, 3 \cdot y, 5 \cdot x)$.
- ► Equalities: [x, y, x] = [x, x, y] but (2 · x, 3 · y, 5 · x) ≠ (2 · x, 3 · x, 5 · y) Equality is said to be **tight** for sequences (synctactic equality) and **loose** for multisets.

(日) (日) (日) (日) (日) (日) (日) (日)

Plan

INTRODUCTION

Multisets and Sequences

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

STRICT INTERSECTION TYPES

• Let \mathscr{X} be a countable set of type variables (metavariable α).

- ► Simple Type System.
 - In a context Γ , $x : \sigma$. A judgment is of the form $\Gamma \vdash t : \tau$.
 - $\blacktriangleright \ \tau, \ \sigma \ ::= \ \alpha \ | \ \sigma \to \tau$

STRICT INTERSECTION TYPES

- Let \mathscr{X} be a countable set of type variables (metavariable α).
- ► Simple Type System.
 - In a context Γ , $x : \sigma$. A judgment is of the form $\Gamma \vdash t : \tau$.
 - $\blacktriangleright \ \tau, \ \sigma \ ::= \ \alpha \ | \ \sigma \to \tau$
- Intersection Type System:
 - In a context Γ , $x : \bigwedge_{i \in I} \sigma_i$. A judgment is of the form $\Gamma \vdash t : \tau$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

•
$$\tau, \sigma_i ::= \alpha \mid (\bigwedge_{i \in I} \sigma_i) \to \tau$$

STRICT INTERSECTION TYPES

- Let \mathscr{X} be a countable set of type variables (metavariable α).
- ► Simple Type System.
 - In a context Γ , $x : \sigma$. A judgment is of the form $\Gamma \vdash t : \tau$.
 - $\blacktriangleright \ \tau, \ \sigma \ ::= \ \alpha \ | \ \sigma \to \tau$
- Intersection Type System:
 - In a context Γ , $x : \bigwedge_{i \in I} \sigma_i$. A judgment is of the form $\Gamma \vdash t : \tau$.

•
$$\tau, \sigma_i ::= \alpha \mid (\bigwedge_{i \in I} \sigma_i) \to \tau$$

 The application typing rule generally relies upon equality of intersection types (see next slide).

► Symple types:

$$\frac{\Gamma \vdash t : \sigma \rightarrow \tau \quad \Delta \vdash u : \sigma'}{\Gamma, \ \Delta \vdash t u : \tau} \text{ app }$$
Constraint: $\sigma = \sigma'$

(Γ and Δ do not type the same variables)

TYPING APPLICATION

► Intersection types:

$$\frac{\Gamma \vdash t : \bigwedge_{i \in I} \sigma_i \to \tau \qquad (\Delta_i \vdash u : \sigma'_i)^{i \in I'}}{\Gamma \cup \bigcup_{i \in I} \Delta_i \vdash t u : \tau} \text{ app }$$

< □ > < @ > < E > < E > E のQ@

TYPING APPLICATION

 $\begin{array}{c} \bullet \quad \text{Intersection types:} \\ \\ \frac{\Gamma \vdash t : \bigwedge_{i \in I} \sigma_i \to \tau \qquad (\Delta_i \vdash u : \sigma'_i)^{i \in I'}}{\Gamma \cup \bigcup_{i \in I} \Delta_i \vdash t u : \tau} \quad \text{app} \\ \\ \hline \text{Constraint:} \; \bigwedge_{i \in I} \sigma_i = \bigwedge_{i \in I'} \sigma'_i \end{array}$

► Intersection types: $\frac{\Gamma \vdash t : \bigwedge_{i \in I} \sigma_i \to \tau \qquad (\Delta_i \vdash u : \sigma'_i)^{i \in I'}}{\Gamma \cup \bigcup_{i \in I} \Delta_i \vdash t u : \tau} \text{ app}$ Constraint: $\bigwedge_{i \in I} \sigma_i = \bigwedge_{i \in I'} \sigma'_i$

Motto: $\mathscr{L} = \mathscr{R}$

• Idem Commutative ITS: i=set, $\wedge = \cup$: $\mathscr{L} = \mathscr{R}$ is $\{\sigma_i\}_{i \in I} = \{\sigma'_i\}_{i \in I'}$

► Intersection types:

$$\frac{\Gamma \vdash t : \bigwedge_{i \in I} \sigma_i \to \tau \qquad (\Delta_i \vdash u : \sigma'_i)^{i \in I'}}{\Gamma \cup \bigcup_{i \in I} \Delta_i \vdash t u : \tau} \text{ app}$$
Constraint: $\bigwedge_{i \in I} \sigma_i = \bigwedge_{i \in I'} \sigma'_i$ Motto: $\mathscr{L} = \mathscr{R}$

- Idem Commutative ITS: i=set, $\land = \cup$: $\mathscr{L} = \mathscr{R}$ is $\{\sigma_i\}_{i \in I} = \{\sigma'_i\}_{i \in I'}$
- ▶ Non-Idem Commutative ITS: i=multiset, $\land = +: \mathscr{L} = \mathscr{R}$ is $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$

► Intersection types:

$$\frac{\Gamma \vdash t : \bigwedge_{i \in I} \sigma_i \to \tau \qquad (\Delta_i \vdash u : \sigma'_i)^{i \in I'}}{\Gamma \cup \bigcup_{i \in I} \Delta_i \vdash t u : \tau} \text{ app}$$
Constraint: $\bigwedge_{i \in I} \sigma_i = \bigwedge_{i \in I'} \sigma'_i$ Motto: $\mathscr{L} = \mathscr{R}$

- Idem Commutative ITS: i=set, $\land = \cup$: $\mathscr{L} = \mathscr{R}$ is $\{\sigma_i\}_{i \in I} = \{\sigma'_i\}_{i \in I'}$
- ► Non-Idem Commutative ITS: i=multiset, $\land = +: \mathscr{L} = \mathscr{R}$ is $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$
- ▶ Rigid ITS: i=sequence, $\land = \cup$ (disjoint): L = R is $(S_k)_{k \in K} = (S'_k)_{k \in K'}$ (*C*(*x*), *D_k*(*x*) disjoint for all *x*)

・ロト・日本・日本・日本・日本・日本

Typing Rules of \mathcal{M}_0 (Gardner/de Carvalho)

Contexts (Γ , Δ **):** collection of $x : [\tau_i]_{i \in I}$.

$$\frac{\overline{x: [\tau] \vdash x: \tau}}{x: [\tau] \vdash x: \tau} ax \qquad \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \rightarrow \tau} abs$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \rightarrow \tau \qquad (\Delta_i \vdash u: \sigma'_i)^{i \in I'}}{\Gamma + \sum_{i \in I} \Delta_i \vdash t(u): \tau} app$$

Constraint in app: multiset equality $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$ must hold.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Typing Rules of \mathcal{M}_0 (Gardner/de Carvalho)

Contexts (Γ , Δ **):** collection of $x : [\tau_i]_{i \in I}$.

$$\frac{\overline{x: [\tau] \vdash x: \tau}}{x: [\tau] \vdash x: \tau} ax \qquad \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \rightarrow \tau} abs$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \rightarrow \tau}{\Gamma + \sum_{i \in I} \Delta_i \vdash t(u): \tau} app$$

Constraint in app: multiset equality $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$ must hold. Remark

- ► Multiset sum: $[\alpha, \beta, \alpha] + [\alpha, \beta, \gamma, \gamma] = [\alpha, \alpha, \alpha, \beta, \beta, \gamma, \gamma]$
- ► No implicit contraction: accumulation of typing information .

EXAMPLE

Typing $\Delta = \lambda x.xx$ (with application arity = 3):

$\overline{x: [[\alpha, \beta, \alpha] \to \alpha] \vdash x: [\alpha, \beta, \alpha] \to \alpha}$	ax $\frac{1}{x: [\alpha] \vdash x: \alpha}$ ax	$\frac{1}{x:[\beta]\vdash x:\beta}$	$\frac{1}{x : [\alpha] \vdash x : \alpha} $
$x: [\alpha, \beta, \alpha, [\alpha, \beta, \alpha] \to \alpha] \vdash xx: \alpha$			- aj
$\vdash \lambda x$.	$xx: [\alpha, \beta, \alpha, [\alpha, \beta, \alpha] \to \alpha$	$] \rightarrow \alpha$	

< □ > < @ > < E > < E > E のQ@

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

$(\lambda x.r)s \rightarrow$	r[s/x]
------------------------------	--------

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Gamma + \sum_{i \in I} \Delta_i \quad \vdash r \ [s/x] : \tau$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\Pi \triangleright \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \triangleright \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Pi_{r} \begin{pmatrix} \Pi_{i} \\ \vdots \\ \Delta_{i} \vdash s : \sigma_{i} \end{pmatrix}^{i \in I}$$
$$\Gamma + \sum_{i \in I} \Delta_{i} \vdash r [s/x] : \tau$$

Vocabulary:

We say each **association** (between *x*-axiom leaves and arg-derivations) or **reduction choice**, yields a **reduced derivation** Π' typing r[s/x].

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

If $\Pi \triangleright \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \triangleright \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Pi_{r} \begin{pmatrix} \Pi_{i} \\ \vdots \\ \Delta_{i} \vdash s : \sigma_{i} \end{pmatrix}^{i \in I}$$
$$\Gamma + \sum_{i \in I} \Delta_{i} \vdash r [s/x] : \tau$$

Observation:

If a type σ occurs several times in $[\sigma_i]_{i \in I}$, there can be several associations, each one yielding a possibly different reduced derivation Π' .

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plan

INTRODUCTION

Multisets and Sequences

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

∞ -TERMS

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

$$f^{\omega} := f(f(f(\ldots)))$$

$$f = f(f^{\omega}) \text{ (fixpoint)}$$

$$f = f(f^{\omega}) \text{ (fixpoint)}$$

$$f = 0$$

$$f = 0$$

< □ > < @ > < E > < E > E のQ@

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

001-terms

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

001-terms

- Start from $b \in \operatorname{supp}(t)$
- Move \uparrow or \land

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- Start from $b \in \operatorname{supp}(t)$
- Move \uparrow or \land
- A leaf $\overset{\circ}{b}$ must be reached

< □ > < @ > < E > < E > E のQ@

- Start from $b \in \operatorname{supp}(t)$
- Move \uparrow or \land
- A leaf \mathring{b} must be reached
- ► _-induction on 001-terms

< □ > < @ > < E > < E > E のQ@

 Λ^{001} : the set of ∞ -terms *t* s.t.:

b is an infinite branch of $t \Rightarrow ad(b) = \infty$.

- Start from $b \in \operatorname{supp}(t)$
- Move \uparrow or \nwarrow
- A leaf \mathring{b} must be reached
- ► _-induction on 001-terms

The set Types is defined by the coinductive grammar

$$S_k, T ::= \alpha \mid (S_k)_{k \in K} \to T$$

< □ > < @ > < E > < E > E のQ@

The set Types is defined by the coinductive grammar

$$S_k, T ::= \alpha \mid (S_k)_{k \in K} \to T$$

• $(S_k)_{k \in K}$: sequence type (with $K \subseteq \mathbb{N} - \{0, 1\}$).

► The set Types is defined by the coinductive grammar

$$S_k, T ::= \alpha \mid (S_k)_{k \in K} \to T$$

- $(S_k)_{k \in K}$: sequence type (with $K \subseteq \mathbb{N} \{0, 1\}$).
- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$

•
$$(S_k)_{k\in K} \to T \equiv (S'_k)_{k\in K'} \to T'$$
 if $(S_k)_{k\in K} \equiv (S'_k)_{k'\in K'}$ and $T \equiv T'$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► The set Types is defined by the coinductive grammar

$$S_k, T ::= \alpha \mid (S_k)_{k \in K} \to T$$

- $(S_k)_{k \in K}$: sequence type (with $K \subseteq \mathbb{N} \{0, 1\}$).
- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - ► $(S_k)_{k \in K} \to T \equiv (S'_k)_{k \in K'} \to T'$ if $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$ and $T \equiv T'$.
 - $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$ if there is a bijection $\rho : K \to K'$ s.t. $\forall k \in K, S_k \equiv S'_{\sigma(k)}$ (such a ρ is called a **root isomorphism**).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► The set Types is defined by the coinductive grammar

$$S_k, T ::= \alpha \mid (S_k)_{k \in K} \to T$$

- $(S_k)_{k \in K}$: sequence type (with $K \subseteq \mathbb{N} \{0, 1\}$).
- ► The relation = (between types or seq. types) is defined coinductively:
 - $\blacktriangleright \ \alpha \equiv \alpha.$
 - ► $(S_k)_{k \in K} \to T \equiv (S'_k)_{k \in K'} \to T'$ if $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$ and $T \equiv T'$.
 - $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$ if there is a bijection $\rho : K \to K'$ s.t. $\forall k \in K, S_k \equiv S'_{\sigma(k)}$ (such a ρ is called a **root isomorphism**).
- ▶ Notion of full type (resp. sequence type) isomorphism when $T \equiv T'$ (resp. $(S_k)_{k \in K} \equiv (S'_k)_{k \in K'}$).

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{C \vdash t : T (\text{tr. 0})}{C - x \vdash \lambda x.t : C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t : (S_k)_{k \in K} \to T (\text{tr. 1}) \quad (D_k \vdash u : S'_k (\text{tr. k}))^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u) : T} \text{ app}$$

< □ > < @ > < E > < E > E のQ@

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} \xrightarrow{\text{ax}} \frac{C \vdash t: T (\text{tr. 0})}{C - x \vdash \lambda x.t: C(x) \to T} \xrightarrow{\text{abs}} \frac{C \vdash t: (S_k)_{k \in K} \to T (\text{tr. 1})}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \xrightarrow{\left(D_k \vdash u: S'_k (\text{tr. }k)\right)^{k \in K'}}_{\text{app}}$$

▶ Track constraints: in red, *e.g.* if *P* types an abstraction at position $a \in \mathbb{N}^*$, we must have $a \cdot 0 \in \text{supp}(P)$.

< □ > < @ > < E > < E > E のQ@

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} \xrightarrow{\text{ax}} \frac{C \vdash t: T (\text{tr. 0})}{C - x \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T (\text{tr. 1}) \quad (D_k \vdash u: S'_k (\text{tr. k}))^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{ app}$$

▶ Track constraints: in red, *e.g.* if *P* types an abstraction at position $a \in \mathbb{N}^*$, we must have $a \cdot 0 \in \text{supp}(P)$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► Application constraint 1: $(S_k)_{k \in K} = (S'_k)_{k' \in K'}$, also written L = R

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{\overline{x: (T)_k \vdash x: T}}{x: (T)_k \vdash x: T} \xrightarrow{\text{ax}} \frac{C \vdash t: T (\text{tr. 0})}{C - x \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T (\text{tr. 1}) \quad (D_k \vdash u: S'_k (\text{tr. k}))^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{ app}$$

- ▶ Track constraints: in red, *e.g.* if *P* types an abstraction at position $a \in \mathbb{N}^*$, we must have $a \cdot 0 \in \text{supp}(P)$.
- ► Application constraint 1: $(S_k)_{k \in K} = (S'_k)_{k' \in K'}$, also written L = R
- Application constraint 2: the contexts must be disjoint, so that no track conflict occurs.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Subject reduction is deterministic:

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅
 - During reduction, #5-ax will be replaced by P₅, even if there are other P_k concluded by S = S₅

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅
 - During reduction, #5-ax will be replaced by P₅, even if there are other P_k concluded by S = S₅

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Question 2: loss of expressivity compared to multiset intersection systems ?

- Subject reduction is deterministic:
 - Assume P types (λx.r)s. If there is an axiom rule typing x on track 5 (#5-ax), by typing constraint, there will also be an argument derivation P₅ typing s on track 5, concluded by exactly the same type S₅
 - During reduction, #5-ax will be replaced by P₅, even if there are other P_k concluded by S = S₅
- Question 2: loss of expressivity compared to multiset intersection systems ?
- Every symbol is identified (notion of biposition): possibility of trace a type through typing rules, of residual of a type after subj. red.
► We set
$$\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$$
.

System \mathcal{M}

► We set $\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$.

< □ > < @ > < E > < E > E のQ@

• Countable sum of multisets types: not a problem.

- ► We set $\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$.
- Countable sum of multisets types: not a problem.
- ▶ Rules of System *M*: the same as the rules of *M*₀ but taken coinductively and using the (multiset) types of Types_{*M*} and *M*(Types_{*M*}).

- ► We set $\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$.
- Countable sum of multisets types: not a problem.
- ▶ Rules of System *M*: the same as the rules of *M*₀ but taken coinductively and using the (multiset) types of Types *M* and *M*(Types *M*).
- The app-rule also relies on the multiset equality $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$.

- ► We set $\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$.
- Countable sum of multisets types: not a problem.
- ▶ Rules of System *M*: the same as the rules of *M*₀ but taken coinductively and using the (multiset) types of Types *M* and *M*(Types *M*).
- The app-rule also relies on the multiset equality $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$.

System \mathcal{M} (as system S) is unsound ($\Delta \Delta$ is typable).

- ► We set $\operatorname{Types}_{\mathscr{M}} := \operatorname{Types} / \equiv \operatorname{and} \mathscr{M}(\operatorname{Types}_{\mathscr{M}}) := \operatorname{S}(\operatorname{Types}) / \equiv$.
- Countable sum of multisets types: not a problem.
- ▶ Rules of System *M*: the same as the rules of *M*₀ but taken coinductively and using the (multiset) types of Types *M* and *M*(Types *M*).
- The app-rule also relies on the multiset equality $[\sigma_i]_{i \in I} = [\sigma'_i]_{i \in I'}$.
- System \mathcal{M} (as system S) is unsound ($\Delta \Delta$ is typable).
- Use of multisets: cannot distingish two occ. of the same type in a multiset, trace a type inside a derivation, define residuals of a type after sub. red.

Plan

INTRODUCTION

MULTISETS AND SEQUENCES

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ *P* is a tree, $A := \operatorname{supp}(P)$ and $P(a) = C(a) \vdash t|_a : T(a)$ for all *a*.

▲□▶▲@▶▲≧▶▲≣▶ = 差 = のへで

THE PROBLEM OF COLLAPSE

$$T(a) = C(a_1)(y_1) \rightarrow \ldots \rightarrow C(a_p)(y_p) \rightarrow \mathrm{Hd}^p(T(a))$$

- Every S-derivation *P* can be seen as a set of symbols, pointed by **bipositions** (a position points to a jugdment inside *P*, a biposition points to a type symbol (α, \rightarrow) inside a jugdment inside *P*).
- Evey biposition (or so...) comes from a biposition in a type given in an axiom rule.
 Notion of referent biposition (set ref(*P*)).
- ► In order to represent a *M*-derivation II by a S-derivation *P*, we must associate to all axioms rules a parser *T*(*a*) s.t. the **syntactic** equality L(*a*) = R(*a*) holds for **every** application node.
- For now, let us just loosen the **synctactic equality** condition in the app-rule.

Type system ${\tt S}_{\tt h}$ is obtained from ${\tt S}$ by replacing the <code>app-rule</code> by:

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \text{ (tr. 1)} \quad (D_k \vdash u: S'_k \text{ (tr. k)})^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{happ}$$

--/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constraint : $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$

Type system S_h is obtained from S by replacing the app-rule by:

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \text{ (tr. 1)} \quad (D_k \vdash u: S'_k \text{ (tr. k)})^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{happ}$$

Constraint : $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$

• Thus, condition L(a) = R(a) has been replaced by $L(a) \equiv R(a)$.

・ロト (四) (日) (日) (日) (日) (日)

--/

Type system S_h is obtained from S by replacing the app-rule by:

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \text{ (tr. 1)} \quad (D_k \vdash u: S'_k \text{ (tr. k)})^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{happ}$$

Constraint : $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$

• Thus, condition L(a) = R(a) has been replaced by $L(a) \equiv R(a)$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► Each hybrid derivation *P* collapses into a *M*-derivation Π.

Type system S_h is obtained from S by replacing the app-rule by:

$$\frac{C \vdash t: (S_k)_{k \in K} \to T \text{ (tr. 1)} \quad (D_k \vdash u: S'_k \text{ (tr. k)})^{k \in K'}}{C \cup \bigcup_{k \in K} D_k \vdash t(u): T} \text{happ}$$

Constraint : $(S_k)_{k \in K} \equiv (S'_k)_{k' \in K'}$

- Thus, condition L(a) = R(a) has been replaced by $L(a) \equiv R(a)$.
- ► Each hybrid derivation *P* collapses into a *M*-derivation Π.
- ► For any \mathcal{M} -derivation Π , easy to find a hybrid P s.t. $\overline{P} = \Pi$.

• Let *P* be a hybrid derivation typing *t*.

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.
 - Say $\rho_a(5) = 7$. Then, above *a*, there is an *x*-axiom rule on track 5 (#5-ax) and argument derivation $P|_{a.7}$ on track 7.

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.
 - Say $\rho_a(5) = 7$. Then, above *a*, there is an *x*-axiom rule on track 5 (#5-ax) and argument derivation $P|_{a.7}$ on track 7.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

▶ Then, during reduction, #5-ax must be replaced by *P*|_{*a*·7}

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.
 - Say $\rho_a(5) = 7$. Then, above *a*, there is an *x*-axiom rule on track 5 (#5-ax) and argument derivation $P|_{a.7}$ on track 7.
 - ▶ Then, during reduction, #5-ax must be replaced by *P*|_{*a*·7}
- Interfaces:
 - A complete interface is given by a family of (full) sequence type isomorphisms φ_a : L(a) → R(a) when a ranges over the app-nodes of P.

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.
 - Say $\rho_a(5) = 7$. Then, above *a*, there is an *x*-axiom rule on track 5 (#5-ax) and argument derivation $P|_{a.7}$ on track 7.
 - ▶ Then, during reduction, #5-ax must be replaced by *P*|*a*.7
- Interfaces:
 - A complete interface is given by a family of (full) sequence type isomorphisms φ_a : L(a) → R(a) when a ranges over the app-nodes of P.
 - ► If *b* is the pos. of a redex, notion of residuals (of positions, bipositions and interfaces) after firing the redex *P*.

- Let *P* be a hybrid derivation typing *t*.
 - If *a* corresponds to a redex $(\lambda x.r)s$ inside *t*, a root isomorphism $\rho_a : L(a) \to R(a)$ tells us how to perform subject reduction.
 - Say $\rho_a(5) = 7$. Then, above *a*, there is an *x*-axiom rule on track 5 (#5-ax) and argument derivation $P|_{a.7}$ on track 7.
 - ▶ Then, during reduction, #5-ax must be replaced by *P*|*a*.7
- Interfaces:
 - A complete interface is given by a family of (full) sequence type isomorphisms φ_a : L(a) → R(a) when a ranges over the app-nodes of P.
 - ► If *b* is the pos. of a redex, notion of residuals (of positions, bipositions and interfaces) after firing the redex *P*.
- An operable derivation is a hybrid derivation endowed with a complete interface (for each app-rule).

Lemma

Let Π a \mathscr{M} -derivation typing t and a reduction sequence \mathscr{R} (of length $\leq \omega$) and P a hybrid representative of Π . Any reduction choice sequence along \mathscr{R} can be built-in inside a complete interface for P.

Lemma

Let Π a \mathscr{M} -derivation typing t and a reduction sequence \mathscr{R} (of length $\leq \omega$) and P a hybrid representative of Π . Any reduction choice sequence along \mathscr{R} can be built-in inside a complete interface for P.

Intuition of the Proof:

• Consider a reduction sequence $t_0 \xrightarrow{b_0} t_1 \xrightarrow{b_1} t_2 \xrightarrow{b_2} \dots$

Lemma

Let Π a \mathcal{M} -derivation typing *t* and a reduction sequence \mathscr{R} (of length $\leq \omega$) and *P* a hybrid representative of Π . Any reduction choice sequence along \mathscr{R} can be built-in inside a complete interface for *P*.

Intuition of the Proof:

- Consider a reduction sequence $t_0 \xrightarrow{b_0} t_1 \xrightarrow{b_1} t_2 \xrightarrow{b_2} \dots$
- Reduction step by reduction step, choose an interface *I_i* representing the reduction choice (w.r.t. the derivation *P_i* typing *t_i* the *i*-th of the sequence). It produces a reduced derivation *P_{i+1}* typing *t_{i+1}*.

Lemma

Let Π a \mathcal{M} -derivation typing *t* and a reduction sequence \mathscr{R} (of length $\leq \omega$) and *P* a hybrid representative of Π . Any reduction choice sequence along \mathscr{R} can be built-in inside a complete interface for *P*.

Intuition of the Proof:

- Consider a reduction sequence $t_0 \xrightarrow{b_0} t_1 \xrightarrow{b_1} t_2 \xrightarrow{b_2} \dots$
- Reduction step by reduction step, choose an interface *I_i* representing the reduction choice (w.r.t. the derivation *P_i* typing *t_i* the *i*-th of the sequence). It produces a reduced derivation *P_{i+1}* typing *t_{i+1}*.
- Since each interface isomorphism of the reduced derivation is a residual an interface isomorphism, interface *I_i* can be lifted to *P*.

Plan

INTRODUCTION

MULTISETS AND SEQUENCES

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

REPRESENTATION THEOREM

CONCLUSION

Restatement

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Claim

Every operable derivation *P* is isomorphic to a trivial derivation.

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Claim

Every operable derivation *P* is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : $P_1 \rightarrow P_2$?

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Claim

Every operable derivation *P* is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : $P_1 \rightarrow P_2$?

• A well-behaved bijection from $supp(P_1)$ to $supp(P_2)$.

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

Claim

Every operable derivation *P* is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : $P_1 \rightarrow P_2$?

- A well-behaved bijection from $supp(P_1)$ to $supp(P_2)$.
- ▶ Between each associated axioms rules of *P*₁ and *P*₂, a type isomorphism (w.r.t. the former bijection).
RESTATEMENT

Theorem For all \mathcal{M} -derivation Π , there is a trivial S-derivation P that collapses into Π .

Claim

Every operable derivation *P* is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : $P_1 \rightarrow P_2$?

- A well-behaved bijection from $supp(P_1)$ to $supp(P_2)$.
- ▶ Between each associated axioms rules of *P*₁ and *P*₂, a type isomorphism (w.r.t. the former bijection).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► Commutation with interface isomorphisms of *P*₁ and *P*₂.

Mainly a matter of finding good track values for referent bipositions.

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.

< □ > < @ > < E > < E > E のQ@

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.
- Each interface isomorphism ϕ_a induces a partial function ϕ_a from ref(*P*) to ref(*P*): ϕ_a tells us which tracks should be equal to have L(a) = R(a).

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.
- Each interface isomorphism ϕ_a induces a partial function ϕ_a from ref(*P*) to ref(*P*): ϕ_a tells us which tracks should be equal to have L(a) = R(a).
- This induces a first order theory on track values at ref. biposition. We must check that this theory does not equate two tracks of **brother** referents.

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.
- Each interface isomorphism ϕ_a induces a partial function ϕ_a from ref(*P*) to ref(*P*): ϕ_a tells us which tracks should be equal to have L(a) = R(a).
- This induces a first order theory on track values at ref. biposition. We must check that this theory does not equate two tracks of **brother** referents.
- Each referent biposition is in $dom(\tilde{\phi}_a) \cup codom(\tilde{\phi}_a)$ for at most one *a* in positive polarity (resp. negative polarity). Uniqueness of **consumption**.

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.
- Each interface isomorphism ϕ_a induces a partial function ϕ_a from ref(*P*) to ref(*P*): ϕ_a tells us which tracks should be equal to have L(a) = R(a).
- This induces a first order theory on track values at ref. biposition. We must check that this theory does not equate two tracks of **brother** referents.
- Each referent biposition is in $dom(\tilde{\phi}_a) \cup codom(\tilde{\phi}_a)$ for at most one *a* in positive polarity (resp. negative polarity). Uniqueness of **consumption**.
- When a referent biposition occurs negatively in dom($\tilde{\phi}_a$), then a redex is hiding somewhere. It can be avoided by an *ad hoc* reduction strategy (**collapsing strategy**).

- Mainly a matter of finding good track values for referent bipositions.
- ► Typability (in S) ⇒ normalizability. Reasoning on NF and expanding cannot work.
- Each interface isomorphism ϕ_a induces a partial function ϕ_a from ref(*P*) to ref(*P*): ϕ_a tells us which tracks should be equal to have L(a) = R(a).
- This induces a first order theory on track values at ref. biposition. We must check that this theory does not equate two tracks of **brother** referents.
- Each referent biposition is in $dom(\tilde{\phi}_a) \cup codom(\tilde{\phi}_a)$ for at most one *a* in positive polarity (resp. negative polarity). Uniqueness of **consumption**.
- ► When a referent biposition occurs negatively in dom(φ̃_a), then a redex is hiding somewhere. It can be avoided by an *ad hoc* reduction strategy (collapsing strategy).
- At last, we notice that $\tilde{\phi}_a(r_1) = r_2$ implies $\operatorname{ad}(r_1) < \operatorname{ad}(r_2)$ when r_1 occurs with a positive polarity.

Plan

INTRODUCTION

MULTISETS AND SEQUENCES

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

Representation Theorem

CONCLUSION

System S (i=sequence) is very low-level compared to system *M* (i=multiset). A S-derivation can easily collapse into a *M*-derivation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- System S (i=sequence) is very low-level compared to system M (i=multiset). A S-derivation can easily collapse into a M-derivation.
- System S is more fine-grained (derivations can be parsed, proper notions of residuals, possibility to express a useful validity criterion w.r.t. WN).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- System S (i=sequence) is very low-level compared to system M (i=multiset). A S-derivation can easily collapse into a M-derivation.
- System S is more fine-grained (derivations can be parsed, proper notions of residuals, possibility to express a useful validity criterion w.r.t. WN).
- However, the use of syntactic equality (in system S) seems very limitative and constraining compared to the use of multiset equality (in system *M*).

- System S (i=sequence) is very low-level compared to system M (i=multiset). A S-derivation can easily collapse into a M-derivation.
- System S is more fine-grained (derivations can be parsed, proper notions of residuals, possibility to express a useful validity criterion w.r.t. WN).
- However, the use of syntactic equality (in system S) seems very limitative and constraining compared to the use of multiset equality (in system *M*).
- Representation Theorem: actually no loss of expressivity in system S since every *M*-derivation can be represented by mean of a S-derivation alongside with its heuristic dynamic features (reduction choices).

- System S (i=sequence) is very low-level compared to system M (i=multiset). A S-derivation can easily collapse into a M-derivation.
- System S is more fine-grained (derivations can be parsed, proper notions of residuals, possibility to express a useful validity criterion w.r.t. WN).
- However, the use of syntactic equality (in system S) seems very limitative and constraining compared to the use of multiset equality (in system *M*).
- Representation Theorem: actually no loss of expressivity in system S since every *M*-derivation can be represented by mean of a S-derivation alongside with its heuristic dynamic features (reduction choices).

< □ > < @ > < E > < E > E のQ@

Proving that every term is typable in *M* ?

- System S (i=sequence) is very low-level compared to system M (i=multiset). A S-derivation can easily collapse into a M-derivation.
- System S is more fine-grained (derivations can be parsed, proper notions of residuals, possibility to express a useful validity criterion w.r.t. WN).
- However, the use of syntactic equality (in system S) seems very limitative and constraining compared to the use of multiset equality (in system *M*).
- Representation Theorem: actually no loss of expressivity in system S since every *M*-derivation can be represented by mean of a S-derivation alongside with its heuristic dynamic features (reduction choices).
- Proving that every term is typable in *M* ?
- Modify S to obtain a type theoretic characterization of strongly normalizing (SN) terms in Λ⁰⁰¹ ?

Thank you for your attention !

< □ > < @ > < E > < E > E のQ@