
INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

The Expressive Power
of Coinductive Rigid Types

with non-Idempotent Intersection

Pierre VIAL
IRIF, Paris 7
HOR 2016

June 25, 2016



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

PLAN

INTRODUCTION

MULTISETS AND SEQUENCES

TINKERING WITH INTERSECTION

TWO INFINITARY INTERSECTION TYPE SYSTEM

HYBRID DERIVATIONS AND INTERFACES

REPRESENTATION THEOREM

CONCLUSION



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

INTERSECTION TYPES

I Simple type systems (STS): Typable⇒ Normalizable.

I Intersection type systems (ITS): Typable⇔ Normalizable.

I STS: a variable x can be assigned only one type (that can be used
several times).

I ITS: a variable can be typed several times, with different types.
x : A ∧ B ∧ B ∧ C.

I Example: usually, xx cannot be typed in STS, but xx can be typed
in ITS: if x is assigned A ∧ (A→ B), then xx : B is derivable.
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WHAT KIND OF INTERSECTION?

Intersection ∧.
Associativity assumed. Commutativity (A ∧ B = B ∧ A) ? Idempotency (A ∧ A = A) ?

I Idempotent, commutative: A ∧ B ∧ A = A ∧ A ∧ B = A ∧ B.
Paradigm: sets, {A,B,A} = {A,A,B} = {A,B}

I Non-Idempotent, commutative: A ∧ B ∧ A = A ∧ A ∧ B 6= A ∧ B.
Paradigm: multisets, [A,B,A] = [A,A,B] 6= [A,B].

I Non-Idempotent, non-commutative: A ∧ B ∧ A 6= A ∧ A ∧ B.
Paradigm: lists, (A,B,A) 6= (A,A,B) 6= (A,B) (this does not work).

In-between possibility: rigidity (paradigm: sequences)
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CONTENTS OF THIS TALK

I We consider here two coinductive ITS, namely M and S

I In M (adapted from Gardner[94]/de Carvalho[07]), intersection is
represented by means of multisets.

I In S, intersection is represented by means of sequences.

I Forget about the order (inside a sequence):

I A S-type T collapses into a M -type T = τ

I A S-context C collapses into a M -context C = Γ.
I Likewise, a S-judgment collapses into a M -judgment.
I Collapsing the judgments, a S-derivation P collapses into a M -derivation

P = Π.

I Question 1 (full collapse?): for all M -derivation Π, is there a
S-derivation P that collapses into Π ? (easy for types and
contexts)
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SEQUENCES

I If X is a set, let S(X) be the set of families of elements of X
indexed by integers > 2.

I Let ~x = (xk)k∈K ∈ S(X) and k ∈ K.
Integers are seen as tracks and we say that xk is placed on track k
inside ~x.

I The sequence (xk)k∈{3, 5,9} with x3 = x, x5 = y, x9 = z will be
written:

(3 · x, 5 · y, 9 · z)

I We cannot always perform the union of sequences.
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COLLAPSING SEQUENCES INTO MULTISETS

I M (X) be the set of multisets of elements of X.

I Observation: M (X) is the quotient set S(X)/
1≡where

(xk)k∈K
1≡ (x′k)k∈K′ if there is a bijection ρ : K→ K′ a bijection

such that: ∀k ∈ K, xk = x′ρ(k).

I Example: [x, y, x] is the collapse of (2 · x, 3 · y, 5 · x).

I Equalities: [x, y, x] = [x, x, y] but (2 · x, 3 · y, 5 · x) 6= (2 · x, 3 · x, 5 · y)
Equality is said to be tight for sequences (synctactic equality)
and loose for multisets.
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STRICT INTERSECTION TYPES

I Let X be a countable set of type variables (metavariable α).

I Simple Type System.

I In a context Γ, x : σ. A judgment is of the form Γ ` t : τ .
I τ, σ ::= α | σ → τ

I Intersection Type System:

I In a context Γ, x :
∧
i∈I
σi. A judgment is of the form Γ ` t : τ .

I τ, σi ::= α | (
∧
i∈I
σi)→ τ

I The application typing rule generally relies upon equality of
intersection types (see next slide).
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TYPING APPLICATION

I Symple types:
Γ ` t : σ → τ ∆ ` u : σ′

app
Γ, ∆ ` t u : τ

Constraint: σ = σ′ (Γ and ∆ do not type the same variables)

I Idem Commutative ITS: i=set, ∧ = ∪: L = R is {σi}i∈I = {σ′i }i∈I′

I Non-Idem Commutative ITS: i=multiset, ∧ = +: L = R is [σi]i∈I = [σ′i ]i∈I′

I Rigid ITS: i=sequence, ∧ = ∪ (disjoint): L = R is (Sk)k∈K = (S′k)k∈K′

(C(x),Dk(x) disjoint for all x)
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TYPING APPLICATION

I Intersection types:
Γ ` t :

∧
i∈I
σi → τ (∆i ` u : σ′i )

i∈I′

app
Γ ∪

⋃
i∈I

∆i ` t u : τ
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TYPING APPLICATION

I Intersection types:
Γ ` t :

∧
i∈I
σi → τ (∆i ` u : σ′i )

i∈I′

app
Γ ∪

⋃
i∈I

∆i ` t u : τ

Constraint:
∧
i∈I
σi =

∧
i∈I′

σ′
i Motto: L = R

I Idem Commutative ITS: i=set, ∧ = ∪: L = R is {σi}i∈I = {σ′i }i∈I′

I Non-Idem Commutative ITS: i=multiset, ∧ = +: L = R is [σi]i∈I = [σ′i ]i∈I′

I Rigid ITS: i=sequence, ∧ = ∪ (disjoint): L = R is (Sk)k∈K = (S′k)k∈K′

(C(x),Dk(x) disjoint for all x)
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TYPING RULES OF M0 (GARDNER/DE CARVALHO)

Contexts (Γ,∆): collection of x : [τi]i∈I.

ax
x : [τ ] ` x : τ

Γ, x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ

Γ ` t : [σi]i∈I → τ (∆i ` u : σ′
i )

i∈I′

app
Γ +

∑
i∈I

∆i ` t(u) : τ

Constraint in app: multiset equality [σi]i∈I = [σ′
i ]i∈I′ must hold.

Remark

I Multiset sum: [α, β, α] + [α, β, γ, γ] = [α, α, α, β, β, γ, γ]

I No implicit contraction: accumulation of typing information .
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∆i ` t(u) : τ

Constraint in app: multiset equality [σi]i∈I = [σ′
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Remark
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I No implicit contraction: accumulation of typing information .
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EXAMPLE

Typing ∆ = λx.xx (with application arity = 3):

ax
x : [[α, β, α]→ α] ` x : [α, β, α]→ α

ax
x : [α] ` x : α

ax
x : [β] ` x : β

ax
x : [α] ` x : α

app
x : [α, β, α, [α, β, α]→ α] ` xx : α

abs
` λx.xx : [α, β, α, [α, β, α]→ α]→ α
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SUBJECT REDUCTION PROPERTY FOR M0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ
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SUBJECT REDUCTION PROPERTY FOR M0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ

Vocabulary:
We say each association (between x-axiom leaves and arg-derivations) or
reduction choice, yields a reduced derivation Π′ typing r[s/x].

(λx.r)s→ r[s/x]

Πr

Γ ` r : τ+
∑
i∈I

∆i [s/x]

σi

( )i ∈ IΠi

∆i ` s :



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

SUBJECT REDUCTION PROPERTY FOR M0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ

Observation:
If a type σ occurs several times in [σi]i∈I , there can be several associations,
each one yielding a possibly different reduced derivation Π′.

(λx.r)s→ r[s/x]

Πr

Γ ` r : τ+
∑
i∈I

∆i [s/x]

σi

( )i ∈ IΠi

∆i ` s :
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∞-TERMS

Variable x

x

Abstraction λx.u

u

0

λx

Application u v

2

v

1

u

@
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001-TERMS

Λ001: the set of∞-terms t s.t.:

b is an infinite branch of t⇒ ad(b) =∞.

f ω := f (f (f (. . .)))
i.e. fω = f (fω) (fixpoint)

f

@f

@f

@f

@f

@

Infinite rightward
branch
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001-TERMS

Λ001: the set of∞-terms t s.t.:

b is an infinite branch of t⇒ ad(b) =∞.

•b

• b̊ (leaf) I Start from
b ∈ supp(t)

I Move ↑ or↖
I A leaf b̊ must

be reached

I ↘-induction
on 001-terms
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RIGID TYPES (SYSTEM S)

I The set Types is defined by the coinductive grammar

Sk, T ::= α | (Sk)k∈K → T

I (Sk)k∈K: sequence type (with K ⊆ N− {0, 1}).

I The relation ≡ (between types or seq. types) is defined
coinductively:

I α ≡ α.
I (Sk)k∈K → T ≡ (S′k)k∈K′ → T′ if (Sk)k∈K ≡ (S′k)k′∈K′ and T ≡ T′.

I (Sk)k∈K ≡ (S′k)k∈K′ if there is a bijection ρ : K→ K′ s.t. ∀k ∈ K, Sk ≡ S′
σ(k)

(such a ρ is called a root isomorphism).

I Notion of full type (resp. sequence type) isomorphism when
T ≡ T′ (resp. (Sk)k∈K ≡ (S′

k)k∈K′ ).
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S-DERIVATIONS

The set Deriv of rigid derivations is coinductively generated by:

ax
x : (T)k ` x : T

C ` t : T (tr. 0)
abs

C− x ` λx.t : C(x)→ T

C ` t : (Sk)k∈K → T (tr. 1)
(

Dk ` u : S′k (tr. k)
)k∈K′

app
C ∪

⋃
k∈K

Dk ` t(u) : T

I Track constraints: in red, e.g. if P types an abstraction at position a ∈ N∗,
we must have a · 0 ∈ supp(P).

I Application constraint 1: (Sk)k∈K = (S′k)k′∈K′ , also written L = R
I Application constraint 2: the contexts must be disjoint, so that no track

conflict occurs.
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MAIN FEATURES

I Subject reduction is deterministic:

I Assume P types (λx.r)s. If there is an axiom rule typing x on track 5
(#5-ax), by typing constraint, there will also be an argument derivation P5

typing s on track 5, concluded by exactly the same type S5
I During reduction, #5-ax will be replaced by P5, even if there are other Pk

concluded by S = S5

I Question 2: loss of expressivity compared to multiset
intersection systems ?

I Every symbol is identified (notion of biposition): possibility of
trace a type through typing rules, of residual of a type after subj.
red.
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SYSTEM M

I We set TypesM := Types / ≡ and M (TypesM ) := S(Types)/ ≡.

I Countable sum of multisets types: not a problem.

I Rules of System M : the same as the rules of M0 but taken
coinductively and using the (multiset) types of TypesM and
M (TypesM ).

I The app-rule also relies on the multiset equality [σi]i∈I = [σ′
i ]i∈I′ .

I System M (as system S) is unsound (∆ ∆ is typable).

I Use of multisets: cannot distingish two occ. of the same type in a
multiset, trace a type inside a derivation, define residuals of a
type after sub. red.
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GLOBAL TYPING CONSTRAINTS

I P is a tree, A := supp(P) and P(a) = C(a) ` t|a : T(a) for all a.

•a

Question 1:
how do we get L(a) = R(a)
for all app-node a?
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• å (axiom)

T(a) = C(a1)(y1)→ . . .→ C(ap)(yp)→ Hdq(T(̊a))

created by abstraction 	

directly created in an axiom ⊕

Notion of referent biposition

Question 1:
how do we get L(a) = R(a)
for all app-node a?



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

THE PROBLEM OF COLLAPSE

T(a) = C(a1)(y1)→ . . .→ C(ap)(yp)→ Hdp(T(̊a))

I Every S-derivation P can be seen as a set of symbols, pointed by
bipositions (a position points to a jugdment inside P, a biposition
points to a type symbol (α,→) inside a jugdment inside P).

I Evey biposition (or so...) comes from a biposition in a type given in an
axiom rule.
Notion of referent biposition (set ref(P)).

I In order to represent a M -derivation Π by a S-derivation P, we must
associate to all axioms rules a parser T(a) s.t. the syntactic equality
L(a) = R(a) holds for every application node.

I For now, let us just loosen the synctactic equality condition in the
app-rule.
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HYBRID DERIVATIONS

Type system Sh is obtained from S by replacing the app-rule by:

C ` t : (Sk)k∈K → T (tr. 1) (Dk ` u : S′
k (tr. k) )

k∈K′

happ
C ∪

⋃
k∈K

Dk ` t(u) : T

Constraint : (Sk)k∈K ≡ (S′
k)k′∈K′

I Thus, condition L(a) = R(a) has been replaced by L(a) ≡ R(a).

I Each hybrid derivation P collapses into a M -derivation Π.

I For any M -derivation Π, easy to find a hybrid P s.t. P = Π.
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OPERABLE DERIVATION

I Let P be a hybrid derivation typing t.

I If a corresponds to a redex (λx.r)s inside t, a root isomorphism
ρa : L(a)→ R(a) tells us how to perform subject reduction.

I Say ρa(5) = 7. Then, above a, there is an x-axiom rule on track 5 (#5-ax)
and argument derivation P|a·7 on track 7.

I Then, during reduction, #5-ax must be replaced by P|a·7

I Interfaces:

I A complete interface is given by a family of (full) sequence type
isomorphisms φa : L(a)→ R(a) when a ranges over the app-nodes of P.

I If b is the pos. of a redex, notion of residuals (of positions, bipositions and
interfaces) after firing the redex P.

I An operable derivation is a hybrid derivation endowed with a
complete interface (for each app-rule).
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REPRESENTATION LEMMA

Lemma
Let Π a M -derivation typing t and a reduction sequence R (of length
6 ω) and P a hybrid representative of Π.
Any reduction choice sequence along R can be built-in inside a
complete interface for P.

Intuition of the Proof:

I Consider a reduction sequence t0
b0→ t1

b1→ t2
b2→ . . ..

I Reduction step by reduction step, choose an interface Ii representing the
reduction choice (w.r.t. the derivation Pi typing ti the i-th of the sequence).
It produces a reduced derivation Pi+1 typing ti+1.

I Since each interface isomorphism of the reduced derivation is a residual an
interface isomorphism, interface Ii can be lifted to P.
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RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?
I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?
I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?

I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?
I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?
I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

RESTATEMENT

Theorem
For all M -derivation Π, there is a trivial S-derivation P that collapses
into Π.

Claim
Every operable derivation P is isomorphic to a trivial derivation.

Question: what is a isomorphism of o.d. Ψ : P1 → P2 ?
I A well-behaved bijection from supp(P1) to supp(P2).

I Between each associated axioms rules of P1 and P2, a type isomorphism (w.r.t.
the former bijection).

I Commutation with interface isomorphisms of P1 and P2.



INTRODUCTION MULTISETS AND SEQUENCES TINKERING WITH INTERSECTION TWO INFINITARY INTERSECTION TYPE SYSTEM HYBRID DERIVATIONS AND INTERFACES REPRESENTATION THEOREM CONCLUSION

A FEW IDEAS

I Mainly a matter of finding good track values for referent bipositions.

I Typability (in S) ; normalizability. Reasoning on NF and expanding cannot
work.

I Each interface isomorphism φa induces a partial function φ̃a from ref(P) to
ref(P): φ̃a tells us which tracks should be equal to have L(a) = R(a).

I This induces a first order theory on track values at ref. biposition. We must
check that this theory does not equate two tracks of brother referents.

I Each referent biposition is in dom(φ̃a) ∪ codom(φ̃a) for at most one a in positive
polarity (resp. negative polarity). Uniqueness of consumption.

I When a referent biposition occurs negatively in dom(φ̃a), then a redex is hiding
somewhere. It can be avoided by an ad hoc reduction strategy (collapsing
strategy).

I At last, we notice that φ̃a(r1) = r2 implies ad(r1) < ad(r2) when r1 occurs with a
positive polarity.
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SUMMARY AND FUTURE WORKS

I System S (i=sequence) is very low-level compared to system M
(i=multiset). A S-derivation can easily collapse into a M -derivation.

I System S is more fine-grained (derivations can be parsed, proper
notions of residuals, possibility to express a useful validity criterion
w.r.t. WN).

I However, the use of syntactic equality (in system S) seems very
limitative and constraining compared to the use of multiset equality (in
system M ).

I Representation Theorem: actually no loss of expressivity in system S
since every M -derivation can be represented by mean of a S-derivation
alongside with its heuristic dynamic features (reduction choices).

I Proving that every term is typable in M ?

I Modify S to obtain a type theoretic characterization of strongly
normalizing (SN) terms in Λ001 ?
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QUESTIONS

Thank you for your attention !
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