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with an intersection type system (“invertible” terms)
@ Curry-Feys 58

more precisely, characterizing this set
with a unique type @ Dezani 76
@ Bergstra-Klop 80

[Tatsuta 08] inductive case: not [V. 17] coinductive type system can
possible characterize infinitary semantics
coinductive type
grammar

Today: using a coinductive type system
to characterize hereditary permutators
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AN OLD PROBLEM. . .

Definition (Hereditary Permutators)

t is a hereditary permutator (h.p.)
< t invertible in Scott’s model
< t invertible for Sn-conversion w.r.t. composition (3u, towu =g, uot =g, I)

towu:=Az.t(uz)
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AN OLD PROBLEM. . .

Definition (Hereditary Permutators)

t is a hereditary permutator (h.p.)
< t invertible in Scott’s model
< t invertible for Sn-conversion w.r.t. composition (3u, towu =g, uot =g, I)

towu:=Az.t(uz)

Characterization with Bohm trees

e For all z € ¥, the sets HP(z) of z-headed Hereditary Permutators (z-HP)
(z € ¥) are defined by mutual coinduction:

h1 € HP(z1) ... hn € HP(zy) (n>0,0 € 6n, x; # x, x; pairwise distinct)
and h =>f Az1 ... xn.zhyqy .. hopn

h € HP(x)

e tis a (closed) hereditary permutator iff t —; Ax.h with h € HP(z) for some z.

See Barendregt, Chapter 21
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AN OLD PROBLEM. . .

hcr(l) € Hp(xcr(l))

ho'(nfl) € HP(IO (nfl))

. ‘ v ho(n) € BP(Zg(n))
N/
@
&)
6=)

head normal form of a z-h.p.
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AN OLD PROBLEM. . .

hcr(l) € Hp(xcr(l))

ho'(nfl) € Hp(xo(nfl))
- l ha(n) S Hp(xa(rL))

head normal form of a z-h.p.

Sequence types for hereditary permutators
P. Vial 0

3 /22



PLan

© INTERSECTION TYPES AND SEQUENCES
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INTERSECTION TYPES (OVERVIEW )

e Introduced by Coppo-Dezani (78-80) to “interpret more terms”
o Charac. of Weak Norm. for AI-terms (no erasing [(-step).
o Extended later for A-terms, head, weak or strong normalizatiion. ..

o Filter models

e Model-checking

e Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion
schemes (HORS)

e Kobayashi-Ong 09: MSO is decidable for higher-order programs
+ using intersection types to simplify Ong’s algorithm.
o Refined by Grellois-Melliés 14-15

o Complexity analysis:

o Upper bounds for reduction sequences (Gardner 94, de Carvalho 07) or exact
bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP’18).

e Terui 06: upper bounds for terms in a red. sequence
o De Benedetti-Ronchi della Roccha 16: characterization of FPTIME
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PLan

Goal: Characterizing the set of h.p. with
a unique type
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Problem: Impossible with an inductive inter.
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Solution? coinductive type system may characterize
sets of terms with an infinitary behavior [V.,17]

~> e.g., the set of infinitary WN terms
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Solution? coinductive type system may characterize
sets of terms with an infinitary behavior [V.,17]

~> e.g., the set of infinitary WN terms

(system S, sequential intersection)

[Step 1: characterize the set of h.p. in system S ]

~> find a set of types & s.t.
t typable with P € 22 iff t is a h.p.
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Goal: Characterizing the set of h.p. with
a unique type

Problem: Impossible with an inductive inter.
type system [Tatsuta, LiCS’08]

Solution? coinductive type system may characterize
sets of terms with an infinitary behavior [V.,17]

~> e.g., the set of infinitary WN terms

(system S, sequential intersection)

[Step 1: characterize the set of h.p. in system S ]

~> find a set of types & s.t.
t typable with P € 22 iff t is a h.p.

[Step 2: give the set of h.p. a unique type ]

~> quotient & and verify everything is right
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WHY INTERSECTIONS TYPES? (CopPO, DEZANI, 1980)

Characterization in an intersection type system

Usually, equivalences of the form
“the program t is typable iff t is normalizing”

Idea: several certificates to a same subprogram (next slide).
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Usually, equivalences of the form
“the program t is typable iff t is normalizing”

Idea: several certificates to a same subprogram (next slide).

Proof. Charac. obtained by by the “circular” proof scheme:
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t can reach a Some reduction strategy
terminal state normalizes ¢
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WHY INTERSECTIONS TYPES? (CopPO, DEZANI, 1980)

Characterization in an intersection type system

Usually, equivalences of the form
“the program t is typable iff t is normalizing”

Idea: several certificates to a same subprogram (next slide).

Proof. Charac. obtained by by the “circular” proof scheme:

t is typable

t can reach a Some reduction strategy
terminal state normalizes ¢
e.g., 3 red. path to a B-NF e.g., the leftmost-o. strat.
(Weak Normalization)
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INTUITIONS (SYNTAX)

e Naively, A A B stands for AN B:
t is of type AN B if t can be typed with A as well as B.
I:A— A I:(A—B)— (A—B)
I:(A—A)AN(A—B)— (A— B))

A —intro  (with I = A\z.x)
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t is of type AN B if t can be typed with A as well as B.
I:A— A I:(A—B)— (A—B)
I:(A—A)AN(A—B)— (A— B))

A —intro  (with I = A\z.x)

o Intersection = kind of finite polymorphism.

(A— A)AN((A— B) = (A — B)) = double instance of VX.X — X
(with X = A and X = A — B)
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INTUITIONS (SYNTAX)

e Naively, A A B stands for AN B:
t is of type AN B if t can be typed with A as well as B.
I:A— A I:(A—B)— (A—B)
I:(A—A)AN(A—B)— (A— B))

A —intro  (with I = A\z.x)

o Intersection = kind of finite polymorphism.

(A— A)AN((A— B) = (A — B)) = double instance of VX.X — X
(with X = A and X = A — B)

o But less constrained:
assigning x : 0 A (0 — 0') A (0 — 0) = o is legal.

(not an instance of a polymorphic type except VX.X := False!)
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SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Expansion (SE):
Typing is stable under anti-
reduction.

Subject Reduction (SR):
Typing is stable under reduction.

SE is usually not verified by simple or

polymorphic type systems
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A good intersection type system should enjoy:

Subject Reduction (SR): §Ub,JQCt AExpar;)sllon (iE) .
Typing is stable under reduction. ypmg 15 stable  under —anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

t is typable

SR + extra arg.

Some reduction strategy
normalizes ¢

Sequence types for hereditary permutators
P. Vial 1 INTERSECTION TYPES AND SEQUENCES

9 /22



SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): §Ub,JQCt AExpar;)sllon (iE) .
Typing is stable under reduction. ypmg 15 stable  under —anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

t is typable

SR + extra arg.

t can reach a Some reduction strategy
normal form normalizes ¢

obvious
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Subject Reduction (SR): §Ub,JQCt AExpar;)sllon (iE) .
Typing is stable under reduction. ypmg 15 stable  under —anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

t is typable

typing the NF + SE

t can reach a
normal form

SR + extra arg.

Some reduction strategy
normalizes ¢

obvious
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SUBJECT REDUCTION AND SUBJECT EXPANSION

A good intersection type system should enjoy:

Subject Reduction (SR): §Ub,JQCt AExpar;)sllon (iE) .
Typing is stable under reduction. ypmg 15 stable  under —anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

t is typable

typing the NF + SE

t can reach a
normal form

Some reduction strategy
normalizes ¢

obvious @ reducibility cand.

@ non-trivial well-founded order.

@ non-idem. inter types: trivial
size of derivation decreases during red.
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INTERSECTION TYPES (COPPO-DEZANI 80)

e Type constructors: o € &, — and A (intersection).
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INTERSECTION TYPES (COPPO-DEZANI 80)
e Type constructors: o € €, — and A (intersection).
e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A
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e Type constructors: o € €, — and A (intersection).
e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A

[Assoc.: (A/\B)/\CNA/\(B/\C)] [Comm.:A/\BwB/\A ]
ie. TEt: (AAB)AC T T Ft: AN(BAC)
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INTERSECTION TYPES (COPPO-DEZANI 80)
e Type constructors: o € €, — and A (intersection).
e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A

[Assoc.: (A/\B)/\CNA/\(B/\C’)] [Comm.:A/\BNB/\A ]
ie. TEt: (AAB)AC T T Ft: AN(BAC)

[Idempotency? ANA~A ]
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INTERSECTION TYPES (COPPO-DEZANI 80)
e Type constructors: o € €, — and A (intersection).
e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A

[Assoc.: (A/\B)/\CNA/\(B/\C’)] [Comm.:A/\BwBAA ]
ie. THt: (AAB)AC if T -t : AN(BAC)
Yes Idempotency? ANA~ A No
Coppo-Dezani 80 Gardner 94 - de Carvalho 07
Typing= qualitative info. ] [Typing: quantitative info.
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INTERSECTION TYPES (COPPO-DEZANI 80)
e Type constructors: o € €, — and A (intersection).
e Strict types:

no inter. on the right h.s. of —, e.g., (AANB) = A, not A — (BAC)

~ no intro/elim. rules for A

[Assoc.: (A/\B)/\CNA/\(B/\C’)] [Comm.:A/\BNB/\A ]
ie. TEt: (AAB)AC T T Ft: AN(BAC)

Yes Idempotency? ANA~ A No

Coppo-Dezani 80 Gardner 94 - de Carvalho 07

Typing= qualitative info. ] [Typing: quantitative info.

e Collapsing AA B A C into [A, B,C] (multiset) ~~ no need for perm rules etc.
ANBNA:=[A B, Al =[A A B]+#[A, B [A, B, Al =[A, B] + [4]
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o | [olier—T

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o | [olier—T

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

Iy x:(oilierbt:T

) . ax abs
T [T} Tr:T Pl_Al'.t:[O-i}igj_)T
F"t:[O’i]iejﬁT (Pil—uzai)iez
app
P4+ libFtu:T
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: 7,0 u= o | [olier—T

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

ax sz foiierbt:T

.—;_. abs
z:[rlFx:T Tk Xxt:[oilier = 7

Trt:foilier =7 (Tilku:oi)ier
P4+ libFtu:T

app

Remark

o Relevant system (no weakening, cf. ax-rule)
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: T, 0 = 0 | [Ui]ieI—H'

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

ax sz foiierbt:T

.—;_. abs
z:[rlFx:T Tk Xxt:[oilier = 7

Trt:foilier =7 (Tilku:oi)ier
P4+ libFtu:T

app

Remark

o Relevant system (no weakening, cf. ax-rule)

o Non-idempotency (o Ao # 0):
in app-rule, pointwise multiset sum e.g.,

(z:[olyy: 1)+ (x:[o,7]) =2 :[0,0,7];y:[7]
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: T, 0 = 0 | [Ui]ieI—H'

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

sz foiierbt:T

) . ax abs
€T [T} T FFAZ'.t:[O'iL;g[*)T
Trt:foilier =7 (Tilku:oi)ier
app
P4+ libFtu:T
Ezxample
ax ax
filo)—o z:o0
ax app
filo] —o fz:o
app
f(fz):o
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: T, 0 = 0 | [Ui]ieI—H'

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

sz foiierbt:T

) . ax abs
T [T} Tr:T Fl—AiL'.t:[Uz‘hg]*)T
FFt:[O’i]iEI%T (]._‘,'Fuzai)iez
app
P4+ libFtu:T
Ezxample
ax ax
filo)—o z:o0
ax app
f:lo—o fx:o
app
fillol = o,[o] = o],z :[o] F f(fz):0
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: T, 0 = 0 | [Ui]ieI—H'

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

sz foiierbt:T

) . ax abs
€T [T} T FFAZ'.t:[O'iL;e]*)T
FFt:[O’i]iEI%T (FZ‘FU:O'Z‘)ZE[
app
P4+ libFtu:T
Head redexes
always typed!
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SYSTEM Zy (GARDNER 94-DE CARVALHO 07)

Types: T, 0 = 0 | [Ui]ieI—H'

@ intersection = multiset of types [o;]icr

@ only on the left-h.s of — (strictness)

ax sz foiierbt:T

.—;_. abs
z:[rlFx:T Tk Xxt:[oilier = 7

Trt:foilier =7 (Tilku:oi)ier
P4+ libFtu:T

app

Head redexes

always typed!

but an arg. may
be typed 0 time
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
'k Az.r:fo1,02,01] = 7 AfFs:or  Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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From a typing of ()\x.r)s ... to a typing of T[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Lk Azor:fo1,00,00] = 7 AfFs:or  Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
Pk Az.r:fo,02,001] > 7 Afks:or  Agbsior Abbs:og
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- ax
z:foi] Fxion
- ax :

z:fo1] Fxion

————ax
z:[o2] ko2

. Iy 11, Hlf
05 z:[o1,00,01] Fr:7
abs
Pk Az.r:fo,02,001] > 7 AfFs:or  Agbsios Abbs:iog
a

F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T[S/{E]

—ax
z:foi] Fxioq
—ax :
z:[o1] Fxioq : [By relevance and non—idempotency!]

— Y aX
x:lo2] Fxion

. 1y I, Iy
05 z:[o1,00,01] Fr:7
abs
'k Az.r:fo1,02,01] = 7 Afksior Axksioa Abbs:o
a

F—i—A‘l‘—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %0

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

ax

z:[o2] b z:[og

. 1y I, Iy
I; x:lo1,02,01)Fr:7
abs
't Az.r:fo1,00,01] = T AtFsiol]  Asbs:og A‘{I—s;app
F—i—A‘f—i—Al{—i—AgF()\x.r)s: T
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SUBJECT REDUCTION AND EXPANSION IN %

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

- _ax
. z:[o1] -z oy
z:[o1] -z oy :

ax

z:[o2] b z:[og

. Iy 11, Hlf
I; x:lo1,02,01)Fr:7
abs

LBz leremort—=T AtFsiol]  Asbs:og A‘{I—s;app
F:I:A_(;_:l-—é-lb——i——&z'"_@@TT’)SZT
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SUBJECT REDUCTION AND EXPANSION IN %

From a typing of ()\x.r)s ... to a typing of T‘[S/{E]

Al{}js:al
Afts:o1 :

Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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/'\
—

AfFs:oq

Al{ }—s ezl [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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From a typing of ()\x.r)s ... to a typing of T[S/{E]
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—

Al{}js:al

AfFs:on [Non-determinism of SRJ
Ayt s:09

T4+ A+ AL 4 Aok rls/a]: 7
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]

System S

- coinductive type grammar
- replace [0]ier with((k- o) rek]
v

sequence type (new intersection)
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]

System S

- coinductive type grammar
- replace [0]ier with((k- o) rek]
v

sequence type (new intersection)

(3-0,5-7,9-0) vs. [0,7,0]
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]

System S

- coinductive type grammar
- replace [0]ier with((k- o) rek]
v

sequence type (new intersection)

Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-0)
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v

sequence type (new intersection)
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sequence type (new intersection)

Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-0)

vs. [0,7,0] = [c?f, 7]+ [C{]

Why system S?
e Coinduction necessary to fully type infinite NF
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]

System S

- coinductive type grammar
- replace [0]ier with((k- o) rek]
v

sequence type (new intersection)

Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-0)
vs. [o,7,0] =[g,7] + [g]
Why system S?

e Coinduction necessary to fully type infinite NF

e Coinductive type grammar ~  is typable (unsoundness)
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SYSTEM S AND SEQUENCE TYPES [V., Lics’17]

System S

- coinductive type grammar
- replace [0]ier with((k- o) rek]
v

sequence type (new intersection)

Tracking: (3-0,5-7,9-0)=(3-0,5-7)W(9-0)

vs. [o,T,0] = [gﬁ]“"[f{]

Why system S?
e Coinduction necessary to fully type infinite NF
e Coinductive type grammar ~  is typable (unsoundness)

e Tracking necessary to recover soundness
~ approximability (= validity criterion, next slide)

[Systern S allows characterizing infinitary weak norrnalization]
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APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation

z:[[]=otz:[]—o0

x : [[o] = o] Fzy:o

Sequence types for hereditary permutators
P. Vial 1 INTERSECTION TYPES AND SEQUENCES 14 /22



APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation

z:[o] 2ol x:[o] =0 y:lolFy:o
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APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation (black < black+red)

z:[o] 2ol x:[o]—=o0 y:lolFy:o

z:[o] = oy:[oFzy:o
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APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation (black < black+red)

z:[o] 2ol x:[o]—=o0 y:lolFy:o
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P, < P, ~ P, approximates P
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APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation (black < black+red)

z:[o] 2ol x:[o]—=o0 y:lolFy:o

z:[o] = oy:[oFzy:o

P, < P, ~ P, approximates P

o Approximability (def.): a S-derivation P is approximable if it is the
supremum of its finite approximations
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@ Order < on the set derivations based on truncation (black < black+red)

z:[o] 2ol x:[o]—=o0 y:lolFy:o

z:[o] = oy:[oFzy:o
P, < P, ~~ P, approximates P»
o Approximability (def.): a S-derivation P is approximable if it is the

supremum of its finite approximations
S —
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APPROXIMABILITY (INTUITIONS)

@ Order < on the set derivations based on truncation (black < black+red)

z:[o] 2ol x:[o]—=o0 y:lolFy:o

z:[o] = oy:[oFzy:o
P, < P, ~~ P, approximates P»
o Approximability (def.): a S-derivation P is approximable if it is the

supremum of its finite approximations
S —

Some derivations do not
have finite approximations

(e.g., typings of Q)
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PROPERTIES OF SYSTEM S
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© CHARACTERIZING HEREDITARY PERMUTATORS
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

Goal:

Finding a set of pairs of types (S, T) s.t.
x: St h:T when h is z-h.p.
Tracks are ignored above! (ok for NF')
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Goal:

Finding a set of pairs of types (S, T) s.t.
x: St h:T when h is z-h.p.
Tracks are ignored above! (ok for NF')

e h= )\1131 ...xn.xho(l) ...ha(n)
hi,...,hy, headed by z1,..., 2,
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x: St h:T when h is z-h.p.
Tracks are ignored above! (ok for NF')
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

S
Goal:
\ hoy : To(1) Finding a set of pairs of types (S,T) s.t.
e v x: St h:T when h is z-h.p.
homp-1): T5 1) Tracks are ignored above! (ok for NF)

e h= )\1131 ...xn.xho(l) ...ha(n)
hi,...,hy, headed by z1,..., 2,

e wewant x: SHh:T and
1'1:Sll—hliT1,...,xn:Sn|—hnTn

hon) + Ton)
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

S

\ ho() + To()
OV

ha(n—l): T(‘r(n—l)

hon) + Ton)
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

S

\ ho() + To()
OV

ha(n—l): T(‘r(n—l)

hon) + Ton)

h:T=5—...—-S,—o0
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

S = To‘(l)_) e —>T(,(n)—>o

ho@) : To(r

ha(n—l): T(‘r(n—l)

hon) + Ton)

h:T=5—...—-S,—o0
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

S = To‘(l)_) e —>T(,(n)—>o

ho@) : To(r

ha(n—l): T(‘r(n—l)

hon) + Ton)

h:T=5—...—-S,—o0

Sequence types for hereditary permutators
P. Vial

Finding a set of pairs of types (S, T) s.t.
x: St h:T when h is z-h.p.

Tracks are ignored above! (ok for NF')

e h= )\1131 ...Ltn.xho(l) ...ha(n)
hi,...,hy, headed by z1,..., 2,

e wewant x: SHh:T and
1’1:Sll—hliT1,...,xn:Sn|—hnTn

S = Ta(l)—) - —)Tg(n)—)o

and T =S51—...—=S,—0
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

We obtain:
S = Tg(l)—) - —)Tg(n)—)O
and T'= S1—...—=>S,—o
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

Permutator pairs

e When o ranges over & (the set of type atoms), the set PP(0) of
o-permutator pairs (S,7), where S and T are S-types, is
defined by mutual coinduction:

(S1,T1) € PP(01),..., (Sn,Th) € PP(0n) o€ Gy

(2-To)) = - = (2 To(n)) = 0,(2-51) = ... (2 Sp) — 0) € PP(0)

We obtain:
S = Ta(l)—> . —)Tg(m—)O
and T =S51—...—=S,—0
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

Permutator pairs

e When o ranges over & (the set of type atoms), the set PP(0) of
o-permutator pairs (S,7), where S and T are S-types, is
defined by mutual coinduction:

(S1,T1) € PP(01),..., (Sn,Th) € PP(0n) o€ Gy

(2-To)) = - = (2 To(n)) = 0,(2-51) = ... (2 Sp) — 0) € PP(0)

e A pair (S,T) € PP(0) is said to be proper, if, for all o’ € &, o'
occurs at most once in S and in T'. The set of proper
o-permutator pairs is denoted PPP(0).
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TYPING NORMAL H.P. WITH PERMUTATOR PAIRS

Permutator pairs

e When o ranges over & (the set of type atoms), the set PP(0) of
o-permutator pairs (S,7), where S and T are S-types, is
defined by mutual coinduction:

(S1,T1) € PP(01),..., (Sn,Th) € PP(0n) o€ Gy

(2-To)) = - = (2 To(n)) = 0,(2-51) = ... (2 Sp) — 0) € PP(0)

e A pair (S,T) € PP(0) is said to be proper, if, for all o’ € &, o'
occurs at most once in S and in T'. The set of proper
o-permutator pairs is denoted PPP(0).

Characterization of h.p. in sys
o tisaz-h.p. iff x: (2-S)F¢t: T for some (S,T) € PPP
o tisah.p. iff —¢t:(2-S5) — T for some (S,T) € PPP.

- For co-NF: = (animation)  <=: use properness
- non-NF: use co-subj. reduction and expansion
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TOWARDS QUOTIENTING

Characterization in system S
-tisaz-hp. iff z:(2-S)Ft:T (with (S,T") perm. pair)
-tisahp. iff-t:(2-5) =T

Proof.
o NF case: previous slide

o Use infinitary subject reduction and expansion
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-tisaz-hp. iff z:(2-S)Ft:T (with (S,T") perm. pair)
-tisahp. iff-t:(2-5) =T

Proof.
o NF case: previous slide

o Use infinitary subject reduction and expansion

[Question: how to give a unique type to all h.p.?]
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-tisahp. iff-t:(2-5) =T

Proof.
o NF case: previous slide

o Use infinitary subject reduction and expansion

[Question: how to give a unique type to all h.p.?]

[Idea: “collapse” the (2-S) = T ]
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TOWARDS QUOTIENTING

Characterization in system S
-tisaz-hp. iff z:(2-S)Ft:T (with (S,T") perm. pair)
-tisahp. iff-t:(2-5) =T

Proof.
o NF case: previous slide

o Use infinitary subject reduction and expansion

[Question: how to give a unique type to all h.p.?]

[Idea: “collapse” the (2-S) = T ]

Does this preserve type soundness/completeness?
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TRUNCATION

Permutator schemes of degree d

Let d € N. A z-permutator scheme of degree d is a term ¢ whose Bohm tree is
equal to that of a z-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

e Any term t is a 0-p.s.

o h=Xzxi1z2.(x (Ax1,1%1,2.2 1 t2))(Ax2,1.71 t3) is & 2-p.s. (t1,2,3:terms)
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TRUNCATION

Permutator schemes of degree d

Let d € N. A z-permutator scheme of degree d is a term ¢ whose Bohm tree is
equal to that of a z-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.
e Any term t is a 0-p.s.

e h=\z .’1:1.732.(33 ()\36171.1‘1’2.1’2 t1 tz))()\$2,1.,’131 t3) is a 2-p.s. (tlﬁg,gzterms)

Proper permutator pairs of degree d

PPP,: truncations ((S)S%, (T)S9) of a proper permutator pair at domain depth < d
(finite types!)

Domain depth: number of nestings inside left-hand sides of arrows
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Permutator schemes of degree d

Let d € N. A z-permutator scheme of degree d is a term ¢ whose Bohm tree is
equal to that of a z-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.
e Any term t is a 0-p.s.

o h=MAzx12z2.(x (Ax1,1%1,2.2 1 t2))(Ax2,1.71 t3) is & 2-p.s. (f1,2,3:terms)

Proper permutator pairs of degree d

PPP,: truncations ((S)S%, (T)S9) of a proper permutator pair at domain depth < d
(finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Characterization in system S

t is a d-p.s. headed by z iff z: (2-S) k¢ : T (with (S,T) € PPPy)
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TRUNCATION

Permutator schemes of degree d

Let d € N. A z-permutator scheme of degree d is a term ¢ whose Bohm tree is
equal to that of a z-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.
e Any term t is a 0-p.s.

o h=MAzx12z2.(x (Ax1,1%1,2.2 1 t2))(Ax2,1.71 t3) is & 2-p.s. (f1,2,3:terms)

Proper permutator pairs of degree d

PPP,: truncations ((S)S%, (T)S9) of a proper permutator pair at domain depth < d
(finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Characterization in system S
t is a d-p.s. headed by z iff z: (2-S) k¢ : T (with (S,T) € PPPy)

Compatible truncation

x:(2:S)Ft:Tiff foralld e N, z: (2-(S)SY) Ft: (T)S?
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SYSTEM Spp

System S,, = System S +

“Infinitary rule”: “Finitary” rule (level d for all d):
z:(2-S)rFt:T (S, T) € PPP z:(2-S)Ft:T (S,T) € PPPy
hp hp
F Az.t:ptyp F Az.t:ptyp, ¢
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SYSTEM Spp

System S,, = System S +

“Infinitary rule”: “Finitary” rule (level d for all d):

z:(2-S)rFt:T (S, T) € PPP z:(2-S)Ft:T (S,T) € PPPy
hp

hp,
F Az.t:ptyp F Az.t:ptyp,

Approximability extended with the rule
ptyp, < ptyp for all d
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SYSTEM Spp

System S,, = System S +

“Infinitary rule”: “Finitary” rule (level d for all d):

z:(2-S)rFt:T (S, T) € PPP z:(2-S)Ft:T (S,T) € PPPy
hp

hp,
F Az.t:ptyp F Az.t:ptyp,

Approximability extended with the rule
ptyp, < ptyp for all d

Lemma (inversion for normal forms)

Let ¢ be a (finite or not) normal form. Then F ¢ : ptyp iff ¢ is a hereditary
permutator.
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SYSTEM Spp

System S,, = System S +

“Infinitary rule”: “Finitary” rule (level d for all d):

z:(2-S)rFt:T (S, T) € PPP z:(2-S)Ft:T (S,T) € PPPy
hp

hp,
F Az.t:ptyp F Az.t:ptyp,

Approximability extended with the rule
ptyp, < ptyp for all d

Lemma (inversion for normal forms)

Let ¢ be a (finite or not) normal form. Then F ¢ : ptyp iff ¢ is a hereditary
permutator.

Lemma (compatible truncation in Spp)

Let ¢ be a (finite or not) normal form. Then F ¢ : ptyp iff ¢ - ¢ : ptyp,.
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DYNAMIC PROPERTIES AND FINAL CHARACTERIZATION

Finitary soundness
If P proves C'-1t:T in Sy, and P is finite, then ¢ is HN.
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DYNAMIC PROPERTIES AND FINAL CHARACTERIZATION

Finitary soundness
If P proves C'-1t:T in Sy, and P is finite, then ¢ is HN.

Infinitary subject reduction in Spp

Ift >t and Ck+t:T then CHt :T.

oo/

t— : oo-productive reduction path, possibly computing the Bohm tree of ¢
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DYNAMIC PROPERTIES AND FINAL CHARACTERIZATION

Finitary soundness
If P proves C'-1t:T in Sy, and P is finite, then ¢ is HN.

Infinitary subject reduction in Spp

Ift >t and Ck+t:T then CHt :T.

oo/

t— : oo-productive reduction path, possibly computing the Bohm tree of ¢

Infinitary subject expansion in Sy

Ift -t and CHt :T,then C+t:T.

Approximability is crucial for co-subj. exp.!
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DYNAMIC PROPERTIES AND FINAL CHARACTERIZATION

Finitary soundness
If P proves C'-1t:T in Sy, and P is finite, then ¢ is HN.

Infinitary subject reduction in Spp

Ift >t and Ck+t:T then CHt :T.

oo/

t— : oo-productive reduction path, possibly computing the Bohm tree of ¢

Infinitary subject expansion in Sy

Ift -t and CHt :T,then C+t:T.

Approximability is crucial for co-subj. exp.!

From oo-s.r. and s.e. + inversion for NF + truncation:

A unique type for hereditary permutators

For all terms ¢, ¢t is a h.p. iff - ¢ : ptyp in system Syp.
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SUMMARY AND FUTURE WORK

[Contribution: characterizing hereditary permutators with a unique type]

Not possible in the inductive case (not r.e.)

System S: coinductive variant of non-idempotent intersection types:

e clements of multisets annotated with tracks
o allows recovering soundness w. approximability (=validity criterion).

@ In system S, h.p. characterized with proper permutator pairs.

@ System Spp: “collapsing” proper permutator pairs using constant ptyp.
ptyp approximated by ptyp, ~» approximability extends to Spp.

@ Truncation lemma for ¢ NF:

=t : ptyp approximated by F t : ptyp, (for all d € N)

Snp: infinitary subject reduction and expansion
~~ retrieving methods of finitary intersection type systems

@ Soundness and completeness w.r.t. h.p.: tis a h.p. iff - ¢ : ptyp in Syp

[Future work: Other sets of terms with infinitary behaviors]

inc. normalization in other co-calculi
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