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In a nutshell

TLCA Problem # 20

Characterization of a set of terms
with an intersection type system

more precisely, characterizing this set

with a unique type

Hereditary permutators
(“invertible” terms)

Curry-Feys 58

Dezani 76

Bergstra-Klop 80

[Tatsuta 08] inductive case: not
possible

[V. 17] coinductive type system can
characterize infinitary semantics

coinductive type
grammar

Today: using a coinductive type system
to characterize hereditary permutators

t is a h.p. iff ` t : ptyp
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An old problem. . .

Definition (Hereditary Permutators)

t is a hereditary permutator (h.p.)
⇔ t invertible in Scott’s model
⇔ t invertible for βη-conversion w.r.t. composition (∃u, t ◦ u =βη u ◦ t =βη I)

t ◦ u := λx.t(ux)

Characterization with Böhm trees

For all x ∈ V , the sets HP(x) of x-headed Hereditary Permutators (x-HP)
(x ∈ V ) are defined by mutual coinduction:

h1 ∈ HP(x1) . . . hn ∈ HP(xn) (n > 0, σ ∈ Sn, xi 6= x, xi pairwise distinct)
and h→∗h λx1 . . . xn.x hσ(1) . . . hσ(n)

h ∈ HP(x)

t is a (closed) hereditary permutator iff t→∗h λx.h with h ∈ HP(x) for some x.

See Barendregt, Chapter 21
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An old problem. . .

x

hσ(1) ∈ HP(xσ(1))

@

hσ(n−1) ∈ HP(xσ(n−1))

@

hσ(n) ∈ HP(xσ(n))

@

λxn

λx1

head normal form of a x-h.p.
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Plan

1 Intersection types and sequences

2 Characterizing hereditary permutators
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Intersection types (overview)

Introduced by Coppo-Dezani (78-80) to “interpret more terms”
Charac. of Weak Norm. for λI-terms (no erasing β-step).

Extended later for λ-terms, head, weak or strong normalizatiion. . .

Filter models

Model-checking
Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion
schemes (HORS)

Kobayashi-Ong 09: MSO is decidable for higher-order programs

+ using intersection types to simplify Ong’s algorithm.

Refined by Grellois-Melliès 14-15

Complexity analysis:
Upper bounds for reduction sequences (Gardner 94, de Carvalho 07 ) or exact
bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP’18 ).

Terui 06: upper bounds for terms in a red. sequence

De Benedetti-Ronchi della Roccha 16 : characterization of FPTIME
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Plan

Goal: Characterizing the set of h.p. with
a unique type

Problem: Impossible with an inductive inter.
type system [Tatsuta, LiCS’08]

Solution? coinductive type system may characterize
sets of terms with an infinitary behavior [V.,17]

 e.g., the set of infinitary WN terms

(system S, sequential intersection)

Step 1: characterize the set of h.p. in system S

 find a set of types P s.t.

t typable with P ∈P iff t is a h.p.

Step 2: give the set of h.p. a unique type

 quotient P and verify everything is right
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Why intersections types? (Coppo, Dezani, 1980)

Characterization in an intersection type system

Usually, equivalences of the form

“the program t is typable iff t is normalizing”

Idea: several certificates to a same subprogram (next slide).

Proof. Charac. obtained by by the “circular” proof scheme:

Some reduction strategy
normalizes t

e.g., the leftmost-o. strat.

t can reach a
terminal state

e.g., ∃ red. path to a β-NF
(Weak Normalization)

t is typable
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Intuitions (syntax)

Naively, A ∧B stands for A ∩B:

t is of type A ∧B if t can be typed with A as well as B.

I : A→ A I : (A→ B)→ (A→ B)

I : (A→ A) ∧ ((A→ B)→ (A→ B))
∧ −intro (with I = λx.x)

Intersection = kind of finite polymorphism.

(A→ A) ∧ ((A→ B)→ (A→ B)) = double instance of ∀X.X → X

(with X = A and X = A→ B)

But less constrained :

assigning x : o ∧ (o→ o′) ∧ (o→ o)→ o is legal.

(not an instance of a polymorphic type except ∀X.X := False!)
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Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):
Typing is stable under reduction.

Subject Expansion (SE):
Typing is stable under anti-
reduction.

SE is usually not verified by simple or

polymorphic type systems

t is typable

Some reduction strategy
normalizes t

t can reach a
normal form

SR + extra arg.

obvious

typing the NF + SE

reducibility cand.

non-trivial well-founded order.

non-idem. inter types: trivial
size of derivation decreases during red.
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Intersection types (Coppo-Dezani 80)

Type constructors: o ∈ O, → and ∧ (intersection).

Strict types:
no inter. on the right h.s. of →, e.g., (A ∧B)→ A, not A→ (B ∧ C)

 no intro/elim. rules for ∧

Assoc.: (A ∧B) ∧ C ∼ A ∧ (B ∧ C)

i.e. Γ ` t : (A∧B)∧C iff Γ ` t : A∧(B∧C)

Comm.: A ∧B ∼ B ∧A

Idempotency? A ∧A ∼ A

Typing= qualitative info. Typing= quantitative info.

Coppo-Dezani 80 Gardner 94 - de Carvalho 07

Yes No

Collapsing A ∧B ∧ C into [A,B,C] (multiset)  no need for perm rules etc.

A ∧B ∧A := [A,B,A] = [A,A,B] 6= [A,B] [A,B,A] = [A,B] + [A]
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System R0 (Gardner 94-de Carvalho 07)

Types: τ, σ ::= o | [σi]i∈I → τ

intersection = multiset of types [σi]i∈I

only on the left-h.s of → (strictness)

ax
x : [τ ] ` x : τ

Γ; x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ

Γ ` t : [σi]i∈I → τ (Γi ` u : σi)i∈I
app

Γ +i∈I Γi ` t u : τ

Remark

Relevant system (no weakening, cf. ax-rule)

Non-idempotency (σ ∧ σ 6= σ):
in app-rule, pointwise multiset sum e.g.,

(x : [σ]; y : [τ ]) + (x : [σ, τ ]) = x : [σ, σ, τ ]; y : [τ ]

Example

ax
f : [o]→ o

ax
x : o

app
f x : o

ax
f : [o]→ o

app

f : [[o]→ o, [o]→ o], x : [o] `

f(f x) : o

Head redexes

always typed!

but an arg. may

be typed 0 time

Sequence types for hereditary permutators
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Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x : [σ1, σ2, σ1] ` r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

∆a
1 `s :σ1

Πa
1

∆2`s :σ2

Π2

∆b
1`s :σ1

Πb
1

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆a
1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1

∆b
1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x :̀ r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x :̀ r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



Subject reduction and expansion in R0

From a typing of (λx.r)s . . . to a typing of r[s/x]

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆a

1 `s :σ1

Πa
1

∆a
1 `s :σ1

Πa
1

∆b
1`s :σ1

Πb
1

Non-determinism of SR

ax
x : [σ2] ` x :σ2

ax
x : [σ2] ` x :σ2

∆2`s :σ2

Π2

ax
x : [σ1] ` x :σ1

ax
x : [σ1] ` x :σ1∆b

1`s :σ1

Πb
1

∆b
1`s :σ1

Πb
1

∆a
1 `s :σ1

Πa
1

Γ; x :̀ r : τ
abs

Γ ` λx.r : [σ1, σ2, σ1]→ τ
app

Γ + ∆a
1 + ∆b

1 + ∆2 ` (λx.r)s : τ

Γ + ∆a
1 + ∆b

1 + ∆2 ` r[s/x] : τ

By relevance and non-idempotency!

Sequence types for hereditary permutators
P. Vial 1 Intersection types and sequences 12 /22



System S and sequence types [V., Lics’17]

System S
- coinductive type grammar
- replace [σi]i∈I with (k ·σk)k∈K

sequence type (new intersection)

Tracking:

(3 · σ, 5 · τ, 9 · σ)

= (3 · σ, 5 · τ) ] (9 · σ)

vs. [σ, τ, σ]

vs. [σ, τ, σ] = [σ
?
, τ ] + [σ

?
]

Why system S?

Coinduction necessary to fully type infinite NF

Coinductive type grammar  Ω is typable (unsoundness)

Tracking necessary to recover soundness
 approximability (= validity criterion, next slide)

System S allows characterizing infinitary weak normalization
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Approximability (intuitions)

Order 6 on the set derivations based on truncation

(black 6 black+red)

x : [[

o

]→ o] ` x : [

o

]→ o

x : [[o]→ o]

; y : [o]

` x y : o

P1 6 P2  P1 approximates P2

Approximability (def.): a S-derivation P is approximable if it is the
supremum of its finite approximations

Some derivations do not

have finite approximations

(e.g., typings of Ω)
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Properties of system S
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Plan

1 Intersection types and sequences

2 Characterizing hereditary permutators
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Typing normal h.p. with permutator pairs

Goal:
Finding a set of pairs of types (S, T ) s.t.

x : S ` h : T when h is x-h.p.
Tracks are ignored above! (ok for NF)

h = λx1 . . . xn.x hσ(1) . . . hσ(n)

h1, . . . , hn headed by x1, . . . , xn

we want x : S ` h : T and
x1 : S1 ` h1 : T1,. . . , xn : Sn ` hn Tn

We obtain:
S = Tσ(1)→ . . .→Tσ(n)→o

and T = S1→ . . .→Sn→o

Permutator pairs

When o ranges over O (the set of type atoms), the set PP(o) of
o-permutator pairs (S, T ), where S and T are S-types, is
defined by mutual coinduction:

(S1, T1) ∈ PP(o1), . . . , (Sn, Tn) ∈ PP(on) σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PP(o)

A pair (S, T ) ∈ PP(o) is said to be proper, if, for all o′ ∈ O, o′

occurs at most once in S and in T . The set of proper
o-permutator pairs is denoted PPP(o).

Characterization of h.p. in system S

t is a x-h.p. iff x : (2·S) ` t : T for some (S, T ) ∈ PPP

t is a h.p. iff ` t : (2 · S)→ T for some (S, T ) ∈ PPP.

- For ∞-NF: ⇒ (animation) ⇐: use properness

- non-NF: use ∞-subj. reduction and expansion

x

S

= Tσ(1)→ . . .→Tσ(n)→o

hσ(1)

: Tσ(1)

@

hσ(n−1)

:Tσ(n−1)

@

hσ(n)

: Tσ(n)

@ : o

λxn

Sn→o

λx1

h

: T

= S1→ . . .→Sn→o
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hσ(n−1):Tσ(n−1)

@

hσ(n) : Tσ(n)

@ : o

λxn Sn→o

λx1

h : T = S1→ . . .→Sn→o
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Typing normal h.p. with permutator pairs

Goal:
Finding a set of pairs of types (S, T ) s.t.

x : S ` h : T when h is x-h.p.
Tracks are ignored above! (ok for NF)

h = λx1 . . . xn.x hσ(1) . . . hσ(n)

h1, . . . , hn headed by x1, . . . , xn

we want x : S ` h : T and
x1 : S1 ` h1 : T1,. . . , xn : Sn ` hn Tn

We obtain:
S = Tσ(1)→ . . .→Tσ(n)→o

and T = S1→ . . .→Sn→o

Permutator pairs

When o ranges over O (the set of type atoms), the set PP(o) of
o-permutator pairs (S, T ), where S and T are S-types, is
defined by mutual coinduction:

(S1, T1) ∈ PP(o1), . . . , (Sn, Tn) ∈ PP(on) σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PP(o)

A pair (S, T ) ∈ PP(o) is said to be proper, if, for all o′ ∈ O, o′

occurs at most once in S and in T . The set of proper
o-permutator pairs is denoted PPP(o).

Characterization of h.p. in system S
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Towards quotienting

Characterization in system S

- t is a x-h.p. iff x : (2·S) ` t : T (with (S, T ) perm. pair)
- t is a h.p. iff ` t : (2·S)→ T

Proof.
NF case: previous slide

Use infinitary subject reduction and expansion

Question: how to give a unique type to all h.p.?

Idea: “collapse” the (2·S)→ T

Does this preserve type soundness/completeness?
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Truncation

Permutator schemes of degree d

Let d ∈ N. A x-permutator scheme of degree d is a term t whose Böhm tree is
equal to that of a x-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

Any term t is a 0-p.s.

h = λxx1x2.(x (λx1,1x1,2.x2 t1 t2))(λx2,1.x1 t3) is a 2-p.s. (t1,2,3:terms)

Proper permutator pairs of degree d

PPPd: truncations ((S)6d, (T )6d) of a proper permutator pair at domain depth < d
(finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Characterization in system S

t is a d-p.s. headed by x iff x : (2·S) ` t : T (with (S, T ) ∈ PPPd)

Compatible truncation

x : (2·S) ` t : T iff, for all d ∈ N, x : (2·(S)6d) ` t : (T )6d
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System Shp

System Shp = System S +

“Finitary” rule (level d for all d):

x : (2 · S) ` t : T (S, T ) ∈ PPPd
hpd` λx.t : ptypd

“Infinitary rule”:

x : (2 · S) ` t : T (S, T ) ∈ PPP
hp

` λx.t : ptyp

Approximability extended with the rule
ptypd 6 ptyp for all d

Lemma (inversion for normal forms)

Let t be a (finite or not) normal form. Then ` t : ptyp iff t is a hereditary
permutator.

Lemma (compatible truncation in Shp)

Let t be a (finite or not) normal form. Then ` t : ptyp iff t ` t : ptypd.
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Dynamic properties and final characterization

Finitary soundness

If P proves C ` t : T in Shp and P is finite, then t is HN.

Infinitary subject reduction in Shp

If t→∞ t′ and C ` t : T then C ` t′ : T .

t→∞t′: ∞-productive reduction path, possibly computing the Böhm tree of t

Infinitary subject expansion in Shp

If t→∞ t′ and C ` t′ : T , then C ` t : T .

Approximability is crucial for ∞-subj. exp.!

From ∞-s.r. and s.e. + inversion for NF + truncation:

A unique type for hereditary permutators

For all terms t, t is a h.p. iff ` t : ptyp in system Shp.
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Summary and future work

Contribution: characterizing hereditary permutators with a unique type

Not possible in the inductive case (not r.e.)

System S: coinductive variant of non-idempotent intersection types:

elements of multisets annotated with tracks
allows recovering soundness w. approximability (=validity criterion).

In system S, h.p. characterized with proper permutator pairs.

System Shp: “collapsing” proper permutator pairs using constant ptyp.
ptyp approximated by ptypd  approximability extends to Shp.

Truncation lemma for t NF:

` t : ptyp approximated by ` t : ptypd (for all d ∈ N)

Shp: infinitary subject reduction and expansion
 retrieving methods of finitary intersection type systems

Soundness and completeness w.r.t. h.p.: t is a h.p. iff ` t : ptyp in Shp

Future work: Other sets of terms with infinitary behaviors

inc. normalization in other ∞-calculi
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