Sequence Types for Hereditary Permutators

Pierre VIAL Équipe Gallinette Inria - LS2N

June 25, 2019

TLCA Problem # 20

Characterization of a set of terms with an intersection type system

TLCA Problem # 20

Characterization of a set of terms with an intersection type system

more precisely, characterizing this set with a unique type

TLCA Problem # 20

TLCA Problem # 20

Characterization of a set of terms with an intersection type system more precisely, characterizing this set with a unique type Hereditary permutators ("invertible" terms) • Curry-Feys 58 • Dezani 76 • Bergstra-Klop 80

 $[{\bf Tatsuta} \ {\bf 08}]$ inductive case: not possible

[V. 17] coinductive type system can characterize infinitary semantics

coinductive type grammar

TLCA Problem # 20

TLCA Problem # 20

Definition (Hereditary Permutators)

t is a hereditary permutator (h.p.)

 $\Leftrightarrow t \text{ invertible in Scott's model}$

 $\Leftrightarrow t$ invertible for $\beta\eta$ -conversion w.r.t. composition $(\exists u, t \circ u =_{\beta\eta} u \circ t =_{\beta\eta} I)$

 $t \circ u := \lambda x.t(u x)$

Definition (Hereditary Permutators)

t is a hereditary permutator (h.p.)

- $\Leftrightarrow t \text{ invertible in Scott's model}$
- $\Leftrightarrow t$ invertible for $\beta\eta$ -conversion w.r.t. composition $(\exists u, t \circ u =_{\beta\eta} u \circ t =_{\beta\eta} I)$

 $t \circ u := \lambda x.t(u x)$

Characterization with Böhm trees

• For all $x \in \mathcal{V}$, the sets HP(x) of x-headed Hereditary Permutators (x-HP) $(x \in \mathcal{V})$ are defined by mutual coinduction:

$$\begin{array}{ccc} h_{1} \in \operatorname{HP}(x_{1}) & \dots & h_{n} \in \operatorname{HP}(x_{n}) & (n \geq 0, \sigma \in \mathfrak{S}_{n}, \; x_{i} \neq x, \; x_{i} \; \text{pairwise distinct}) \\ & & \text{and} \; h \to_{h}^{*} \lambda x_{1} \dots x_{n} . x \, h_{\sigma(1)} \dots h_{\sigma(n)} \\ & & h \in \operatorname{HP}(x) \end{array}$$

• t is a (closed) hereditary permutator iff $t \to_{h}^{*} \lambda x.h$ with $h \in HP(x)$ for some x.

See Barendregt, Chapter 21

2 Characterizing hereditary permutators

INTERSECTION TYPES (OVERVIEW)

- Introduced by Coppo-Dezani (78-80) to "interpret more terms"
 - Charac. of Weak Norm. for λI -terms (no erasing β -step).
 - Extended later for λ -terms, head, weak or strong normalization...
 - Filter models
- Model-checking
 - Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion schemes (HORS)
 - Kobayashi-Ong 09: MSO is decidable for higher-order programs

+ using intersection types to simplify Ong's algorithm.

- Refined by Grellois-Melliès 14-15
- Complexity analysis:
 - Upper bounds for reduction sequences (Gardner 94, de Carvalho 07) or exact bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP'18).
 - Terui 06: upper bounds for terms in a red. sequence
 - De Benedetti-Ronchi della Roccha 16: characterization of FPTIME

Problem: Impossible with an inductive inter. type system [Tatsuta, LiCS'08]

Problem: Impossible with an inductive inter. type system [Tatsuta, LiCS'08]

Solution? coinductive type system may characterize sets of terms with an infinitary behavior [V.,17]

 \rightsquigarrow e.g., the set of **infinitary WN** terms

(system S, sequential intersection)

Problem: Impossible with an inductive inter. type system [Tatsuta, LiCS'08]

Solution? coinductive type system may characterize sets of terms with an infinitary behavior [V.,17]

 \rightsquigarrow e.g., the set of **infinitary WN** terms

(system S, sequential intersection)

Step 1: characterize the set of h.p. in system S

 \rightsquigarrow find a set of types ${\mathscr P}$ s.t.

t typable with $P \in \mathscr{P}$ iff t is a h.p.

Problem: Impossible with an inductive inter. type system [Tatsuta, LiCS'08]

Solution? coinductive type system may characterize sets of terms with an infinitary behavior [V.,17]

 \rightsquigarrow e.g., the set of **infinitary WN** terms

(system S, sequential intersection)

Step 1: characterize the set of h.p. in system S

 \rightsquigarrow find a set of types ${\mathcal P}$ s.t.

t typable with $P \in \mathscr{P}$ iff t is a h.p.

Step 2: give the set of h.p. a *unique* type

 \rightsquigarrow quotient ${\mathscr P}$ and verify everything is right

Why intersections types? (Coppo, Dezani, 1980)

Characterization in an intersection type system

Usually, equivalences of the form "the program t is typable iff t is normalizing"

Idea: several certificates to a same subprogram (next slide).

Why intersections types? (Coppo, Dezani, 1980)

Characterization in an intersection type system

Usually, equivalences of the form "the program t is typable iff t is normalizing"

Idea: several certificates to a same subprogram (next slide).

Proof. Charac. obtained by by the "circular" proof scheme:

Why intersections types? (Coppo, Dezani, 1980)

Characterization in an intersection type system

Usually, equivalences of the form "the program t is typable iff t is normalizing"

Idea: several certificates to a same subprogram (next slide).

Proof. Charac. obtained by by the "circular" proof scheme:

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

 $\frac{I: A \to A \qquad I: (A \to B) \to (A \to B)}{I: (A \to A) \land ((A \to B) \to (A \to B))} \land -\texttt{intro} \quad (with \ I = \lambda x.x)$

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

 $\begin{array}{l}t \text{ is of type } A \land B \text{ if } t \text{ can be typed with } A \text{ as well as } B.\\\\\hline\\I: (A \to A & I: (A \to B) \to (A \to B)\\\hline\\I: (A \to A) \land ((A \to B) \to (A \to B)) & \land -\texttt{intro} \quad (with \ I = \lambda x.x)\end{array}$

• Intersection = kind of *finite polymorphism*.

 $(A \to A) \land ((A \to B) \to (A \to B)) =$ **double** instance of $\forall X.X \to X$ (with X = A and $X = A \to B$)

INTUITIONS (SYNTAX)

• Naively, $A \wedge B$ stands for $A \cap B$:

 $\begin{array}{l}t \text{ is of type } A \land B \text{ if } t \text{ can be typed with } A \text{ as well as } B.\\\\\hline\\I: (A \to A) & I: (A \to B) \to (A \to B)\\\hline\\I: (A \to A) \land ((A \to B) \to (A \to B)) & \land -\texttt{intro} \quad (with \ I = \lambda x.x)\end{array}$

• Intersection = kind of *finite polymorphism*.

 $(A \to A) \land ((A \to B) \to (A \to B)) =$ **double** instance of $\forall X.X \to X$ (with X = A and $X = A \to B$)

• But less constrained:

assigning
$$x : o \land (o \to o') \land (o \to o) \to o$$
 is legal.
(not an instance of a polymorphic type except $\forall X.X := \texttt{False}!$)

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

 $SE \ is \ usually \ not \ verified \ by \ simple \ or \ polymorphic \ type \ systems$

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. Subject Expansion (SE): Typing is stable under antireduction.

t is typable SR + extra arg.Some reduction strategy normalizes t

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction. **Subject Expansion (SE)**: Typing is stable under antireduction.

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

Assoc.: $(A \land B) \land C \sim A \land (B \land C)$

i.e. $\Gamma \vdash t : (A \land B) \land C$ iff $\Gamma \vdash t : A \land (B \land C)$

Comm.: $A \land B \sim B \land A$

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

Assoc.: $(A \land B) \land C \sim A \land (B \land C)$

 $i.e.\ \Gamma \vdash t: (A {\wedge} B) {\wedge} C \text{ iff } \Gamma \vdash t: A {\wedge} (B {\wedge} C)$

Comm.: $A \wedge B \sim B \wedge A$

Idempotency? $A \wedge A \sim A$

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

• Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

• Collapsing $A \wedge B \wedge C$ into [A, B, C] (**multiset**) \rightsquigarrow no need for perm rules etc.

$$A \land B \land A := [A, B, A] = [A, A, B] \neq [A, B]$$
 $[A, B, A] = [A, B] + [A]$

Sequence types for hereditary permutators P. Vial
Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\begin{array}{c} \displaystyle \frac{}{x: \ [\tau] \vdash x: \tau} \text{ ax } & \displaystyle \frac{\Gamma; \ x: \ [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: \ [\sigma_i]_{i \in I} \to \tau} \text{ abs } \\ \\ \displaystyle \frac{\Gamma \vdash t: \ [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underset{i \in I}{ } \Gamma_i \vdash tu: \tau} \text{ app } \end{array}$$

Remark

• Relevant system (no weakening, *cf.* ax-rule)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\begin{array}{c} \displaystyle \frac{}{x: \ [\tau] \vdash x: \tau} \text{ ax } & \displaystyle \frac{\Gamma; \ x: \ [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: \ [\sigma_i]_{i \in I} \rightarrow \tau} \text{ abs } \\ \\ \displaystyle \frac{\Gamma \vdash t: \ [\sigma_i]_{i \in I} \rightarrow \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + _{i \in I} \Gamma_i \vdash tu: \tau} \text{ app } \end{array}$$

Remark

- Relevant system (no weakening, cf. ax-rule)
- Non-idempotency $(\sigma \land \sigma \neq \sigma)$: in app-rule, pointwise multiset sum *e.g.*,

$$(x:[\sigma];y:[\tau]) + (x:[\sigma,\tau]) = x:[\sigma,\sigma,\tau];y:[\tau]$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \operatorname{ax} \qquad \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \to \tau} \operatorname{abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash_{i \in I} \Gamma_i \vdash t u: \tau} \operatorname{app}$$

Example

$$\frac{f:[o] \to o}{f:[o] \to o} \operatorname{ax} \qquad \frac{f:[o] \to o}{f:[o] \to o} \operatorname{ax} \qquad x:o}{f:[o] \to o} \operatorname{app} \qquad f(f:x):o$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\frac{}{x: [\tau] \vdash x: \tau} \operatorname{ax} \qquad \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \to \tau} \operatorname{abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underset{i \in I}{+} \Gamma_i \vdash tu: \tau} \operatorname{app}$$

Example

$$f: [o] \to o \text{ ax } \underbrace{ f: [o] \to o}_{f: [o] \to o} \text{ ax } \underbrace{ f: [o] \to o}_{f: [o] \to o} \text{ ax } \underbrace{ x: o}_{f: [o] \to o} \text{ app } \text{ app } f: [o] \to o, [o] \to o], x: [o] \vdash f(fx): o$$

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

$$\frac{}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + _{i \in I} \Gamma_i \vdash t u: \tau} \text{ app}$$

Head redexes always typed!

Types:
$$\tau, \sigma$$
 ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

intersection = multiset of types [σ_i]_{i∈I}
 only on the left-h.s of → (strictness)

sequence type (new intersection)

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma)$$
 vs. $[\sigma, \tau, \sigma]$

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$

sequence type (new intersection)

Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$$

 $vs. \ [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma, \sigma]$

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$$

vs. $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Why system S?

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$$

vs. $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Why system S?

• Coinduction necessary to *fully* type infinite NF

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$$

vs. $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Why system S?

- Coinduction necessary to *fully* type infinite NF
- Coinductive type grammar $\rightsquigarrow \Omega$ is typable (unsoundness)

System S - coinductive type grammar - replace $[\sigma_i]_{i \in I}$ with $(k \cdot \sigma_k)_{k \in K}$ sequence type (new intersection)

Tracking:
$$(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$$

vs. $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma]$

Why system S?

- Coinduction necessary to *fully* type infinite NF
- Coinductive type grammar $\rightsquigarrow \Omega$ is typable (unsoundness)
- Tracking necessary to recover soundness
 → approximability (= validity criterion, next slide)

System S allows characterizing infinitary weak normalization

 \bullet Order \leqslant on the set derivations based on truncation

 \bullet Order \leqslant on the set derivations based on truncation

$$\frac{x:[[o] \to o] \vdash x:[o] \to o}{x:[[o] \to o]; y:[o] \vdash x y:o}$$

• Order \leq on the set derivations based on truncation (black \leq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash x y: o}$$

• Order \leq on the set derivations based on truncation (black \leq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

 $P_1 \leqslant P_2 \rightsquigarrow P_1$ approximates P_2

• Order \leq on the set derivations based on truncation (black \leq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash x y: o}$$

 $P_1 \leqslant P_2 \rightsquigarrow P_1$ approximates P_2

• Approximability (def.): a S-derivation *P* is approximable if it is the supremum of its finite approximations

• Order \leq on the set derivations based on truncation (black \leq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash x y: o}$$

 $P_1 \leqslant P_2 \rightsquigarrow P_1$ approximates P_2

• Approximability (def.): a S-derivation *P* is approximable if it is the supremum of its finite approximations

• Order \leq on the set derivations based on truncation (black \leq black+red)

$$\frac{x: [[o] \to o] \vdash x: [o] \to o}{x: [[o] \to o]; y: [o] \vdash y: o}$$

 $P_1 \leqslant P_2 \rightsquigarrow P_1$ approximates P_2

• Approximability (def.): a S-derivation *P* is approximable if it is the supremum of its finite approximations

Properties of system ${\tt S}$

2 Characterizing hereditary permutators

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

 h_1, \ldots, h_n headed by x_1, \ldots, x_n

h

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

 h_1, \ldots, h_n headed by x_1, \ldots, x_n

• we want $x: S \vdash h: T$ and $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

 h_1, \ldots, h_n headed by x_1, \ldots, x_n

• we want
$$x: S \vdash h: T$$
 and
 $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

 $h: \mathbf{T}$

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

 h_1, \ldots, h_n headed by x_1, \ldots, x_n

• we want
$$x: S \vdash h: T$$
 and
 $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

 $h: \mathbf{T}$

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

$$h_1, \ldots, h_n$$
 headed by x_1, \ldots, x_n

• we want
$$x: S \vdash h: T$$
 and
 $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

 h_1, \ldots, h_n headed by x_1, \ldots, x_n

• we want
$$x: S \vdash h: T$$
 and
 $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

$$S = T_{\sigma(1)} \rightarrow \dots \rightarrow T_{\sigma(n)} \rightarrow o$$

$$h_{\sigma(1)} : T_{\sigma(1)}$$

$$n_{\sigma(n-1)} : T_{\sigma(n-1)}$$

$$h_{\sigma(n)} : T_{\sigma(n)}$$

Goal:

Finding a set of pairs of types (S, T) s.t. $x: S \vdash h: T$ when h is x-h.p.

Tracks are ignored above! (ok for NF)

•
$$h = \lambda x_1 \dots x_n \dots x_{\sigma(1)} \dots h_{\sigma(n)}$$

$$h_1,\ldots,h_n$$
 headed by x_1,\ldots,x_n

• we want
$$x: S \vdash h: T$$
 and
 $x_1: S_1 \vdash h_1: T_1, \dots, x_n: S_n \vdash h_n T_n$

We obtain: $S = T_{\sigma(1)} \rightarrow \ldots \rightarrow T_{\sigma(n)} \rightarrow o$ and $T = S_1 \rightarrow \ldots \rightarrow S_n \rightarrow o$

Sequence types for hereditary permutators P. Vial

We obtain:

$$S = T_{\sigma(1)} \rightarrow \dots \rightarrow T_{\sigma(n)} \rightarrow o$$

and $T = S_1 \rightarrow \dots \rightarrow S_n \rightarrow o$

Sequence types for hereditary permutators P. Vial

Permutator pairs

• When o ranges over \mathcal{O} (the set of type atoms), the set PP(o) of o-permutator pairs (S, T), where S and T are S-types, is defined by mutual coinduction:

$$(S_1, T_1) \in \operatorname{PP}(o_1), \ldots, (S_n, T_n) \in \operatorname{PP}(o_n) \qquad \sigma \in \mathfrak{S}_n$$

 $((2 \cdot T_{\sigma(1)}) \to \ldots \to (2 \cdot T_{\sigma(n)}) \to o, (2 \cdot S_1) \to \ldots (2 \cdot S_n) \to o) \in \mathtt{PP}(o)$

We obtain:

$$S = T_{\sigma(1)} \rightarrow \ldots \rightarrow T_{\sigma(n)} \rightarrow o$$

and $T = S_1 \rightarrow \ldots \rightarrow S_n \rightarrow o$

Permutator pairs

• When o ranges over \mathcal{O} (the set of type atoms), the set PP(o) of o-permutator pairs (S, T), where S and T are S-types, is defined by mutual coinduction:

$$(S_1, T_1) \in \operatorname{PP}(o_1), \ldots, (S_n, T_n) \in \operatorname{PP}(o_n) \qquad \sigma \in \mathfrak{S}_n$$

 $((2 \cdot T_{\sigma(1)}) \to \ldots \to (2 \cdot T_{\sigma(n)}) \to o, (2 \cdot S_1) \to \ldots (2 \cdot S_n) \to o) \in \mathtt{PP}(o)$

Permutator pairs

• When o ranges over \mathcal{O} (the set of type atoms), the set PP(o) of o-permutator pairs (S,T), where S and T are S-types, is defined by mutual coinduction:

$$(S_1, T_1) \in \operatorname{PP}(o_1), \ldots, (S_n, T_n) \in \operatorname{PP}(o_n) \qquad \sigma \in \mathfrak{S}_n$$

 $((2 \cdot T_{\sigma(1)}) \to \ldots \to (2 \cdot T_{\sigma(n)}) \to o, (2 \cdot S_1) \to \ldots (2 \cdot S_n) \to o) \in \mathtt{PP}(o)$

A pair (S,T) ∈ PP(o) is said to be proper, if, for all o' ∈ O, o' occurs at most once in S and in T. The set of proper o-permutator pairs is denoted PPP(o).

Permutator pairs

• When o ranges over \mathcal{O} (the set of type atoms), the set PP(o) of o-permutator pairs (S,T), where S and T are S-types, is defined by mutual coinduction:

$$(S_1, T_1) \in \operatorname{PP}(o_1), \ldots, (S_n, T_n) \in \operatorname{PP}(o_n) \qquad \sigma \in \mathfrak{S}_n$$

 $((2 \cdot T_{\sigma(1)}) \to \ldots \to (2 \cdot T_{\sigma(n)}) \to o, (2 \cdot S_1) \to \ldots (2 \cdot S_n) \to o) \in \mathtt{PP}(o)$

A pair (S,T) ∈ PP(o) is said to be proper, if, for all o' ∈ O, o' occurs at most once in S and in T. The set of proper o-permutator pairs is denoted PPP(o).

Characterization of h.p. in system S

- t is a x-h.p. iff $x: (2 \cdot S) \vdash t: T$ for some $(S, T) \in \mathsf{PPP}$
- t is a h.p. iff $\vdash t : (2 \cdot S) \to T$ for some $(S,T) \in PPP$.
- For ∞ -NF: \Rightarrow (animation) \Leftarrow : use properness
- non-NF: use ∞ -subj. reduction and expansion

Characterization in system S

- t is a x-h.p. iff $x : (2 \cdot S) \vdash t : T$ (with (S, T) perm. pair)
- t is a h.p. iff $\vdash t : (2 \cdot S) \to T$

Proof.

- NF case: previous slide
- Use infinitary subject reduction and expansion

Characterization in system S

- t is a x-h.p. iff $x : (2 \cdot S) \vdash t : T$ (with (S, T) perm. pair) - t is a h.p. iff $\vdash t : (2 \cdot S) \rightarrow T$

Proof.

- NF case: previous slide
- Use infinitary subject reduction and expansion

Question: how to give a unique type to all h.p.?

Characterization in system S

- t is a x-h.p. iff $x : (2 \cdot S) \vdash t : T$ (with (S, T) perm. pair) - t is a h.p. iff $\vdash t : (2 \cdot S) \rightarrow T$

Proof.

- NF case: previous slide
- Use infinitary subject reduction and expansion

Question: how to give a unique type to all h.p.?

Idea: "collapse" the $(2 \cdot S) \to T$

Characterization in system S

- t is a x-h.p. iff $x : (2 \cdot S) \vdash t : T$ (with (S, T) perm. pair) - t is a h.p. iff $\vdash t : (2 \cdot S) \rightarrow T$

Proof.

- NF case: previous slide
- Use infinitary subject reduction and expansion

Question: how to give a unique type to all h.p.?

Idea: "collapse" the $(2 \cdot S) \to T$

Does this preserve type soundness/completeness?

Permutator schemes of degree d

Let $d \in \mathbb{N}$. A *x*-permutator scheme of degree *d* is a term *t* whose Böhm tree is equal to that of a *x*-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

- Any term t is a 0-p.s.
- $h = \lambda x x_1 x_2 \cdot (x (\lambda x_{1,1} x_{1,2} \cdot x_2 t_1 t_2)) (\lambda x_{2,1} \cdot x_1 t_3)$ is a 2-p.s. $(t_{1,2,3}:\text{terms})$

Permutator schemes of degree d

Let $d \in \mathbb{N}$. A *x*-permutator scheme of degree *d* is a term *t* whose Böhm tree is equal to that of a *x*-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

- Any term t is a 0-p.s.
- $h = \lambda x x_1 x_2 (x (\lambda x_{1,1} x_{1,2} x_2 t_1 t_2)) (\lambda x_{2,1} x_1 t_3)$ is a 2-p.s. $(t_{1,2,3}:\text{terms})$

Proper permutator pairs of degree d

PPP_d: truncations $((S)^{\leqslant d}, (T)^{\leqslant d})$ of a proper permutator pair at domain depth < d (finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Permutator schemes of degree d

Let $d \in \mathbb{N}$. A *x*-permutator scheme of degree *d* is a term *t* whose Böhm tree is equal to that of a *x*-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

- Any term t is a 0-p.s.
- $h = \lambda x x_1 x_2 (x (\lambda x_{1,1} x_{1,2} x_2 t_1 t_2)) (\lambda x_{2,1} x_1 t_3)$ is a 2-p.s. $(t_{1,2,3}:\text{terms})$

Proper permutator pairs of degree d

 \mathtt{PPP}_d : truncations $((S)^{\leqslant d}, (T)^{\leqslant d})$ of a proper permutator pair at domain depth < d (finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Characterization in system S

t is a d-p.s. headed by x iff $x : (2 \cdot S) \vdash t : T$ (with $(S, T) \in \mathsf{PPP}_d$)

Permutator schemes of degree d

Let $d \in \mathbb{N}$. A *x*-permutator scheme of degree *d* is a term *t* whose Böhm tree is equal to that of a *x*-h.p. for applicative depth < d.

Applicative depth: number of nestings inside arguments.

- Any term t is a 0-p.s.
- $h = \lambda x x_1 x_2 (x (\lambda x_{1,1} x_{1,2} x_2 t_1 t_2)) (\lambda x_{2,1} x_1 t_3)$ is a 2-p.s. $(t_{1,2,3}:\text{terms})$

Proper permutator pairs of degree d

 \mathtt{PPP}_d : truncations $((S)^{\leqslant d}, (T)^{\leqslant d})$ of a proper permutator pair at domain depth < d (finite types!)

Domain depth: number of nestings inside left-hand sides of arrows

Characterization in system S

t is a d-p.s. headed by x iff $x : (2 \cdot S) \vdash t : T$ (with $(S,T) \in \mathsf{PPP}_d$)

Compatible truncation

$$x: (2 \cdot S) \vdash t: T$$
 iff, for all $d \in \mathbb{N}, x: (2 \cdot (S)^{\leqslant d}) \vdash t: (T)^{\leqslant d}$

Sequence types for hereditary permutators P. Vial

$\mathrm{System}~S_{hp}$

System $S_{hp} = System S +$

"Infinitary rule":		
$x:(2\cdot S)\vdash t:T$	$(S,T)\in \mathtt{PPP}$	hn
$\boxed{ \qquad \qquad \vdash \lambda x.t: \mathtt{ptyp} }$		пр

 $\begin{bmatrix} \textbf{``Finitary'' rule (level d for all d):} \\ x: (2 \cdot S) \vdash t: T \quad (S, T) \in \mathtt{PPP}_d \\ \hline \vdash \lambda x.t: \mathtt{ptyp}_d \\ \texttt{hp}_d \end{bmatrix}$

$\mathrm{System}~S_{hp}$

System $S_{hp} = System S +$

 $\begin{array}{l} \textbf{Approximability} \text{ extended with the rule} \\ \texttt{ptyp}_d \leqslant \texttt{ptyp} \text{ for all } d \end{array}$

$\mathrm{System}~S_{hp}$

System $S_{hp} = System S +$

 $\begin{aligned} & \underbrace{x:(2\cdot S) \vdash t:T \quad (S,T) \in \mathtt{PPP}}_{\vdash \lambda x.t:\,\mathtt{ptyp}} \ \mathtt{hp} \end{aligned}$

$$\label{eq:Finitary} \begin{array}{l} \textbf{``Finitary'' rule (level d for all d):} \\ \\ \hline \\ \frac{x:(2\cdot S) \vdash t:T \quad (S,T) \in \mathtt{PPP}_d}{\vdash \lambda x.t:\mathtt{ptyp}_d} \mathtt{hp}_d \end{array}$$

Approximability extended with the rule $ptyp_d \leq ptyp$ for all d

Lemma (inversion for normal forms)

Let t be a (finite or not) normal form. Then $\vdash t : ptyp$ iff t is a hereditary permutator.

${\rm System}~S_{hp}$

System $S_{hp} = System S +$

 $\begin{aligned} & \underbrace{ \begin{array}{c} \text{``Infinitary rule'':} \\ \\ \underline{x:(2\cdot S) \vdash t:T \quad (S,T) \in \mathtt{PPP}} \\ \\ \hline \quad \vdash \lambda x.t:\mathtt{ptyp} \end{array} \mathtt{hp} \end{aligned} }_{ \end{aligned} }$

$$\label{eq:Finitary} \begin{array}{l} \textbf{``Finitary'' rule (level d for all d):} \\ \\ \hline \\ \frac{x:(2\cdot S) \vdash t:T \quad (S,T) \in \mathtt{PPP}_d}{\vdash \lambda x.t:\mathtt{ptyp}_d} \mathtt{hp}_d \end{array}$$

 $\begin{array}{l} \textbf{Approximability} \text{ extended with the rule} \\ \texttt{ptyp}_d \leqslant \texttt{ptyp} \text{ for all } d \end{array}$

Lemma (inversion for normal forms)

Let t be a (finite or not) normal form. Then $\vdash t : ptyp$ iff t is a hereditary permutator.

Lemma (compatible truncation in S_{hp})

Let t be a (finite or not) normal form. Then $\vdash t : ptyp$ iff $t \vdash t : ptyp_d$.

Finitary soundness

If P proves $C \vdash t : T$ in S_{hp} and P is finite, then t is HN.

Finitary soundness

If P proves $C \vdash t : T$ in S_{hp} and P is finite, then t is HN.

Infinitary subject reduction in S_{hp}

If $t \to \infty t'$ and $C \vdash t : T$ then $C \vdash t' : T$.

Finitary soundness

If P proves $C \vdash t : T$ in S_{hp} and P is finite, then t is HN.

Infinitary subject reduction in S_{hp}

If $t \to \infty t'$ and $C \vdash t : T$ then $C \vdash t' : T$.

 $t {\rightarrow}^\infty t'{:}$ ∞-productive reduction path, possibly computing the Böhm tree of t

Infinitary subject expansion in S_{hp}

If $t \to \infty t'$ and $C \vdash t' : T$, then $C \vdash t : T$.

Approximability is crucial for ∞ -subj. exp.!

Finitary soundness

If P proves $C \vdash t : T$ in S_{hp} and P is finite, then t is HN.

Infinitary subject reduction in S_{hp}

If $t \to \infty t'$ and $C \vdash t : T$ then $C \vdash t' : T$.

 $t \rightarrow {}^{\infty}t'$: ∞ -productive reduction path, possibly computing the Böhm tree of t

Infinitary subject expansion in S_{hp}

If $t \to \infty t'$ and $C \vdash t' : T$, then $C \vdash t : T$.

Approximability is crucial for ∞ -subj. exp.!

From ∞ -s.r. and s.e. + inversion for NF + truncation:

A unique type for hereditary permutators

For all terms t, t is a h.p. iff $\vdash t : ptyp$ in system S_{hp} .

SUMMARY AND FUTURE WORK

Contribution: characterizing hereditary permutators with a unique type

- Not possible in the inductive case (not r.e.)
- System S: coinductive variant of non-idempotent intersection types:
 - elements of multisets annotated with tracks
 - allows recovering soundness w. **approximability** (=validity criterion).
- In system S, h.p. characterized with proper permutator pairs.
- System S_{hp} : "collapsing" proper permutator pairs using constant ptyp. ptyp approximated by $ptyp_d \rightarrow approximability$ extends to S_{hp} .
- Truncation lemma for t NF:

 $\vdash t : ptyp approximated by \vdash t : ptyp_d (for all d \in \mathbb{N})$

- S_{hp}: infinitary subject reduction and expansion → retrieving methods of finitary intersection type systems
- Soundness and completeness w.r.t. h.p.: t is a h.p. iff $\vdash t$: ptyp in S_{hp}

Future work: Other sets of terms with infinitary behaviors

inc. normalization in other \infty-calculi