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TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

INVARIANTS OF EXECUTION

I In the course of its execution, a program passes through
different states.

I The state of a program at the beginning of the execution and at
its end may be very different.

I Finding a denotation to a program = assigning to it an invariant
of execution (i.e. an object that must the same for all its states).

I The denotation of a program gives us some informations about
its behaviour. Usually, dynamical information (related to its
execution).

I Usually, the information by a denotation implies that the
concerned program is terminating.

I Another use of denotations: equating or separating programs
i.e. two states that have different denotations cannot be
instances of the same program.
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TYPES AS INVARIANTS OF EXECUTION

I λ-terms: programs, β-reduction step: execution step.

I Normalizability: termination.
Many variants: head-n, weak-n, strong-n,...

I Types: check statically (without reducing) that a term is
normalizable (soundness of a type system).

I Typing: assigning formulas (called types) to variables.
The type of a λ-term can be computed, if some typing rules are
respected.

I When a type system enjoys subject reduction and expansion,
types are execution invariants (and they usually provide us with
models of λ-calculus).
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NON-TERMINATING PROGRAMS

I Often given an ”empty” denotation (a model that equates all the
non-terminating terms is said to be sensible). However:

I Not all non-terminating progams are meaningless.
(For instance, streams, a program keeping on printing the list of prime numbers,
fixpoint combinators. . . )

I Some programs are non terminating but productive.

I Many possible definitions or variants of sound non termination
Klop and alii[95], Endrullis,Polonsky and alii[15]
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CONTRIBUTIONS

Using type theory, we build a completely unsound type system and
a non-sensible model of pure λ-calculus in which:

I Every term has a non-empty denotation (including the mute
terms).

I Terms are discriminated according to their order (the maximal
number of abs that prefixes a reduct).

Related works

I Jacopino[75]: easy terms (t is easy if it can be consistently
equated to any other term)

I Berarducci[96]: mute terms (”The most undefined terms”).

I Bucciarelli,Carraro,Favro,Salibra[15]: Graph easy Sets of mute
lambda terms, TCS.
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λ-TERMS AS LABELLED TREES
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Position: finite sequence in {0, 1, 2}∗, e.g. 0 · 0 · 2 · 1 · 2.
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β-REDUCTION
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(UN)SOUNDNESS

I If a Type System is able to type a non (weakly) head-normalizing
term (e.g. Ω = ∆ ∆), it is said here to be unsound.

I If a Type System is able to type every term, it is said to be
completely unsound.

I With SR and SE, a completely unsound type system should yield
a model for pure λ-calculus.
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TYPING RULES OF R0 (GARDNER/DE CARVALHO)

Types (τ, σi): τ, σi := o ∈ O | [σi]i∈I → τ .

Context (Γ,∆): assign intersection types to variables.

ax
x : [τ ] ` x : τ

Γ, x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ

Γ ` t : [σi]i∈I → τ (∆i ` u : σi )i∈I
app

Γ +i∈I ∆i ` t u : τ

Examples:

ax
x : [τ ] ` x : τ

abs
` λx.x : [τ ]→ τ

ax
x : [τ ] ` x : τ

abs
x : [τ ] ` λy.x : [ ]→ τ
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RELEVANCE VS IRRELEVANCE

I Observation: In system R0, λx.x (resp. λy.x) can only be typed
with a type of the form [τ ]→ τ (resp. [ ]→ τ ).

I System R0 is said to be relevant: weakening is not allowed.

For instance, a type is used when it is assigned:

ax
x : [σ] ` x : σ

I If we replace ax by axw:

i0 ∈ I
axw

Γ; x : [σi]i∈I ` x : σi0

... we obtain an irrelevant system, called R0,w.

I In R0,w, we may derive:

axw
x : [τ, τ1, τ1] ` x : τ

abs
` λx.x : [τ, τ1, τ2]→ τ

axw
x : [τ ], y : [τ ] ` x : τ

abs
x : [τ ] ` λy.x : [τ ]→ τ
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SUBJECT REDUCTION PROPERTY FOR R0

If Π B Γ ` t : τ and t→ t′, then ∃Π′ B Γ ` t′ : τ

(λx.r)s→ r[s/x]

Πr

Γ ` r : τ, x : [σi]i∈I

( )i ∈ IΠi

∆i ` s : σi

abs
Γ ` λx.r : [σi]i∈I → τ

app
Γ +

∑
i∈I

∆i ` (λx.r)s : τ
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INDUCTIVE VS COINDUCTIVE TYPES

Examples with Simple Types

Inductive type:
o1 → o2 → o1

→

o1→

o2o1

Coinductive type:
Aref = Aref→Aref

→

→

→→

→

→→
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INDUCTIVE VS COINDUCTIVE TYPES

Examples with Simple Types

Inductive type:
o1 → o2 → o1

→

o1→

o2o1

Coinductive type:
Aref = Aref→Aref

→

→

→→

→

→→

Aref is a reflexive type.
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COINDUCTIVE TYPE SYSTEMS

I We consider two new type systems R and Rw, having the same
rules as R0 and R0,w, but using coinductive types.

I We define (coinductively) ρ by ρ = [ρ]ω → ρ.

I Due to irrelevancy, every term is typable in Rw (complete
unsoundness of Rw).

I Claim: Let t be a term. If Γ(x) = [ρ]ω for all free variable x of t,
then Γ ` t : ρ is derivable in Rw.

Proof.

Γ; x : [ρ]ω ` t : ρ
abs

Γ ` λx.t : [ρ]ω→ρ (= ρ)

Γ ` t : ρ (= [ρ]ω→ρ) (Γ ` u : ρ)ω
app

Γ ` t u : ρ
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RELEVANT COINDUCTIVE TYPES

I In R (relevant), λy.x can still be typed only with types of the
form [ ]→ τ .

I More generally, if x not free in t and BΓ ` t : τ , then τ = [ ]→ τ0
for some τ0.

I In R, the typing rules constrain [ ] to appear.
Failure of the previous argument.

I Question: what is the set of typable terms in R ?
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Question: what is the set of typable terms in R ?

I In the finite case: type Normal Forms and proceed by expansion.

I Problem for coinductive Types: no form of normalization is granted (e.g. Ω

typable in R).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.
System S collapses on R. Thus, if every term is typable in S, then
every term is typable in R.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

Question: what is the set of typable terms in R ?

I In the finite case: type Normal Forms and proceed by expansion.

I Problem for coinductive Types: no form of normalization is granted (e.g. Ω

typable in R).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.
System S collapses on R. Thus, if every term is typable in S, then
every term is typable in R.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

Question: what is the set of typable terms in R ?

I In the finite case: type Normal Forms and proceed by expansion.

I Problem for coinductive Types: no form of normalization is granted (e.g. Ω

typable in R).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.
System S collapses on R. Thus, if every term is typable in S, then
every term is typable in R.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

Question: what is the set of typable terms in R ?

I In the finite case: type Normal Forms and proceed by expansion.

I Problem for coinductive Types: no form of normalization is granted (e.g. Ω

typable in R).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.

System S collapses on R. Thus, if every term is typable in S, then
every term is typable in R.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

Question: what is the set of typable terms in R ?

I In the finite case: type Normal Forms and proceed by expansion.

I Problem for coinductive Types: no form of normalization is granted (e.g. Ω

typable in R).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.
System S collapses on R. Thus, if every term is typable in S, then
every term is typable in R.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

PLAN

TYPES AND RELEVANCE

COINDUCTIVE TYPES

SYSTEM S (SEQUENTIAL INTERSECTION)



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

SEQUENTIAL INTERSECTION

I Types:
Sk,T ::= o ∈ O | (Sk)k∈K → T

I Sequence Type:

I Intersection type replacing multiset types.
I F = (Tk)k∈K where Tk types and K ⊂ N− {0, 1}.
I The integer indexes k are called tracks.
I We also write (Sk)k∈K = (k · Sk)k∈K.

I Example: (7 · o1, 3 · o2, 2 · o1)→ o

→
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DERIVATIONS OF S

The set Deriv of rigid derivations is coinductively generated by:

ax
x : (k · T) ` x : T

C; x : (Sk)k∈K ` t : T
abs

(Sk)k∈K ` λx.t : C(x)→ T

C ` t : (Sk)k∈K → T (Dk ` u : Sk )k∈K
app

C ]k∈K Dk ` t u : T

I If Rt(C) and the Rt(Dk) are not pairwise disjoint, contexts are
incompatible.

I Forget about the indexes: S collapses onto R.

I S features pointers called bipositions.
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CANDIDATE SUPPORTS

What is a correct type ?

14

138

Support:
{ε, 1, 4, 4 · 1, 4 · 3, 4 · 8}

14

3

Support:
{ε, 1, 4, 4 · 3}

Candidate Support: a set of positions that is the support of a type
I c→t1 c · k (a candidate supp is a tree)
I c · 1→t2 c · k (if a node does not have a 1-son, it is a leaf)
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CANDIDATE BISUPPORTS

I We want to show that every term t is typable in S.

I Idea: we try to capture the notion of candidate bisupport: a set
of pointers that is the bisupport of a S-derivation typing t.

I We must find suitable stability conditions.

I Then, we show that there is a non-empty set that satisfies them.
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CANDIDATE BISUPPORTS

I (a, c)→asc (a · 1, 1 · c) if t(a) = @.

I (a, 1 · c)→ (a · 0, c) if t(a) = λx.

I (a, k · c)→pi (pos(k), c) if t(a) = λx and k ∈ Trl(a).

I (a, k · c)→pi b⊥ if t(a) = λx and k /∈ Trl(a), k > 2.

I (a · 1, k · c) a→ (a · k, c) if t(a) = @.

I (a, c)→t1 (a, c · k).

I (a, c · 1)→t2 (a, c · k) for any k > 2.

I (a, 1)→rt (a, ε) if t(a) = λx.

I (a, ε)→up b⊥.

I (a, ε)→up (a′, c) if a 6 a′
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GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type
of t must be empty.
In that case, we can build a derivation whose bisupport is minimal.

I Ad absurbum, we consider P , a proof showing that the type of t is empty.

I The presence of redex is still problematic. A finite reduction strategy (the
collapsing strategy) allows us to reduce P to a proof P′, in which redexes are
not a problem.

I In P′, commutations and nice interactions occur. Considering a minimal case,
we show that P′ cannot prove that t has an empty type. Contradiction.

This works for the infinitary λ-calculus.
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ORDER

Theorem (complete unsoundness): in R, every term is typable.

Definition: The order of a λ-term t is the maximal n ∈ N ∪ {∞} s.t.
t→∗ t′ = λx1 . . . λxn.t′0.
A zero term is a term of order 0.

Proposition: if t is a zero-term, then, t is typable with o.

Definition (relational model): For all closed λ-term t, we set

[[t]] = {τ | ` t : τ is derivable}

Theorem: This yields a non-sensible model that discriminates terms
according to their order.
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Theorem: This yields a non-sensible model that discriminates terms
according to their order.
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Thank you for your attention !
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POINTERS

P

(pos. a) C ` t : T

For instance
a = 0 · 1 · 3 · 0 · 8 · 1
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POINTERS

P

(pos. a) C ` t : T
Inside T,
nested pos. c

For instance
c = 1 · 5 · 3 · 1 · 4
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POINTERS

P

(pos. a) C ` t : T
Inside T,
nested pos. c

Biposition (right h.s.):
pair (a, c)
(almost no need for left biposi-
tions due to relevance)

Bisupport of P: the set of (right or left) bipositions
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C ` t : (Sk)k∈K → T (pos. a · 1) (Dk ` u : Sk (pos. a · k) )k∈K

C ∪k∈K Dk ` tu : T (pos. a)

Two occurrences of the
same type
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ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

C ` t : (Sk)k∈K → T (pos. a · 1) (Dk ` u : Sk (pos. a · k) )k∈K

C ∪k∈K Dk ` tu : T (pos. a)

Nested position c here
corresponds to. . .

nested position 1 · c there.

We then set:
(a, c)→asc (a · 1, 1 · c) when t(a) = @
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ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

C; x : (Sk)k∈K ` t : T (pos. a · 0)

C ` λx.t : (Sk)k∈K → T (pos. a)

We then set:
(a, 1 · c)→asc (a · 0, 1 · c) when t(a) = λx
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ax
x : (k · T) ` x : T

C ` t : T
abs
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POLAR INVERSION
Let us remind rules ax and abs:

ax
x : (k · T) ` x : T

C ` t : T
abs

C; (Sk)k∈K ` λx.t : C(x)→ T

Let k > 2. We have two cases :

• First case :

C; x : (Sk)k∈K ` t : T (pos. a · 0)

C ` λx.t : (Sk)k∈K → T (pos. a)

Look at S7
inside this seq. type.

x : 7 · S7 ` x : S7 (pos. a′)
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TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

POLAR INVERSION
Let us remind rules ax and abs:

ax
x : (k · T) ` x : T

C ` t : T
abs

C; (Sk)k∈K ` λx.t : C(x)→ T

Let k > 2. We have two cases :

Second case :

C; x : (Sk)k∈K ` t : T (pos. a · 0)

C ` λx.t : (Sk)k∈K → T (pos. a)

Look at S7
inside this seq. type.
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No ax-rule typing x with track 7.
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POLAR INVERSION
Let us remind rules ax and abs:

ax
x : (k · T) ` x : T

C ` t : T
abs

C; (Sk)k∈K ` λx.t : C(x)→ T

Let k > 2. We have two cases :

C; x : (Sk)k∈K ` t : T (pos. a · 0)

C ` λx.t : (Sk)k∈K → T (pos. a)

Look at S7
inside this seq. type.

No ax-rule typing x with track 7.

We then set: (a, 7 · c)→pi b⊥ when t(a) = λx
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We write b : r or r : b.
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CONSUMPTION

C ` t : (Sk)k∈K → T (pos. a · 1) (Dk ` u : Sk (pos. a · k) )k∈K

C ∪k∈K Dk ` tu : T (pos. a)

We then set:
(a · 1, k · c) a→ (a · k, c) when t(a) = @
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