Coinductive Intersection Types are Completely Unsound

Pierre VIAL IRIF, Paris 7

Rencontres GeoCal – LAC

December 8, 2016

< □ > < @ > < E > < E > E のQ@

INVARIANTS OF EXECUTION

► In the course of its execution, a program passes through different states.

- ► In the course of its execution, a program passes through different states.
- The state of a program at the beginning of the execution and at its end may be very different.

- ► In the course of its execution, a program passes through different states.
- The state of a program at the beginning of the execution and at its end may be very different.
- Finding a denotation to a program = assigning to it an invariant of execution (*i.e.* an object that must the same for all its states).

- ► In the course of its execution, a program passes through different states.
- The state of a program at the beginning of the execution and at its end may be very different.
- Finding a denotation to a program = assigning to it an invariant of execution (*i.e.* an object that must the same for all its states).
- ► The denotation of a program gives us some informations about its behaviour. Usually, **dynamical information** (related to its execution).

- ► In the course of its execution, a program passes through different states.
- The state of a program at the beginning of the execution and at its end may be very different.
- Finding a denotation to a program = assigning to it an invariant of execution (*i.e.* an object that must the same for all its states).
- ► The denotation of a program gives us some informations about its behaviour. Usually, **dynamical information** (related to its execution).
- ► Usually, the information by a denotation implies that the concerned program is **terminating**.

- ► In the course of its execution, a program passes through different states.
- The state of a program at the beginning of the execution and at its end may be very different.
- Finding a denotation to a program = assigning to it an invariant of execution (*i.e.* an object that must the same for all its states).
- ► The denotation of a program gives us some informations about its behaviour. Usually, **dynamical information** (related to its execution).
- ► Usually, the information by a denotation implies that the concerned program is **terminating**.
- Another use of denotations: equating or separating programs *i.e.* two states that have different denotations cannot be instances of the same program.

TYPES AS INVARIANTS OF EXECUTION

• λ -terms: programs, β -reduction step: execution step.

TYPES AS INVARIANTS OF EXECUTION

- λ -terms: programs, β -reduction step: execution step.
- Normalizability: termination.

Many variants: head-n, weak-n, strong-n,...

TYPES AS INVARIANTS OF EXECUTION

- λ -terms: programs, β -reduction step: execution step.
- Normalizability: termination.

Many variants: head-n, weak-n, strong-n,...

Types: check statically (without reducing) that a term is normalizable (soundness of a type system).

TYPES AS INVARIANTS OF EXECUTION

- λ -terms: programs, β -reduction step: execution step.
- Normalizability: termination.

Many variants: head-n, weak-n, strong-n,...

- Types: check statically (without reducing) that a term is normalizable (soundness of a type system).
- Typing: assigning formulas (called *types*) to variables.
 The type of a λ-term can be computed, if some *typing rules* are respected.

TYPES AS INVARIANTS OF EXECUTION

- λ -terms: programs, β -reduction step: execution step.
- Normalizability: termination.

Many variants: head-n, weak-n, strong-n,...

- Types: check statically (without reducing) that a term is normalizable (soundness of a type system).
- Typing: assigning formulas (called *types*) to variables.
 The type of a λ-term can be computed, if some *typing rules* are respected.
- When a type system enjoys subject reduction and expansion, types are execution invariants (and they usually provide us with models of λ-calculus).

NON-TERMINATING PROGRAMS

Often given an "empty" denotation (a model that equates all the non-terminating terms is said to be sensible). However:

NON-TERMINATING PROGRAMS

- Often given an "empty" denotation (a model that equates all the non-terminating terms is said to be sensible). However:
- Not all non-terminating programs are *meaningless*.
 (For instance, streams, a program keeping on printing the list of prime numbers, fixpoint combinators...)

NON-TERMINATING PROGRAMS

- Often given an "empty" denotation (a model that equates all the non-terminating terms is said to be sensible). However:
- Not all non-terminating programs are *meaningless*.
 (For instance, streams, a program keeping on printing the list of prime numbers, fixpoint combinators...)
- Some programs are non terminating but **productive**.

NON-TERMINATING PROGRAMS

- Often given an "empty" denotation (a model that equates all the non-terminating terms is said to be sensible). However:
- Not all non-terminating progams are *meaningless*.
 (For instance, streams, a program keeping on printing the list of prime numbers, fixpoint combinators...)
- ► Some programs are non terminating but **productive**.
- Many possible definitions or variants of sound non termination Klop and alii[95], Endrullis, Polonsky and alii[15]

CONTRIBUTIONS

Using type theory, we build a **completely unsound** type system and a **non-sensible model** of pure λ -calculus in which:

- Every term has a non-empty denotation (including the mute terms).
- Terms are discriminated according to their order (the maximal number of abs that prefixes a reduct).

CONTRIBUTIONS

Using type theory, we build a **completely unsound** type system and a **non-sensible model** of pure λ -calculus in which:

- Every term has a non-empty denotation (including the mute terms).
- Terms are discriminated according to their order (the maximal number of abs that prefixes a reduct).

Related works

- Jacopino[75]: easy terms (*t* is easy if it can be consistently equated to any other term)
- ► Berarducci[96]: **mute** terms ("The most undefined terms").
- ► Bucciarelli,Carraro,Favro,Salibra[15]: *Graph easy Sets of mute lambda terms*, TCS.

Plan

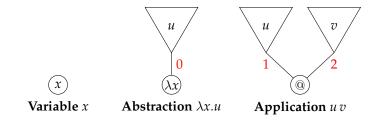
TYPES AND RELEVANCE

COINDUCTIVE TYPES

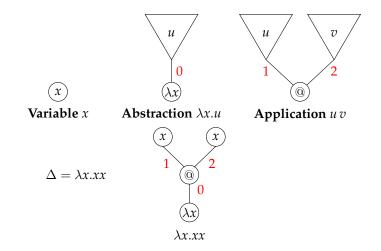
SYSTEM S (SEQUENTIAL INTERSECTION)

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

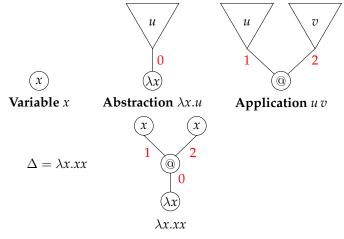
$\lambda\textsc{-terms}$ as labelled trees



$\lambda\textsc{-terms}$ as labelled trees

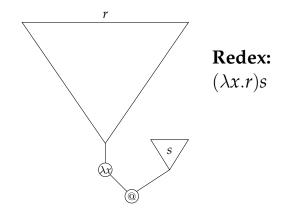


λ -terms as labelled trees



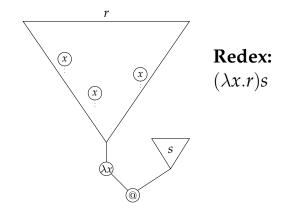
Position: finite sequence in $\{0, 1, 2\}^*$, *e.g.* $0 \cdot 0 \cdot 2 \cdot 1 \cdot 2$.

β -Reduction



< □ > < @ > < E > < E > E のQ@

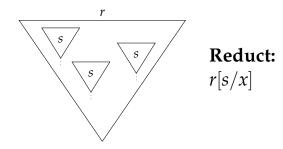
β -Reduction



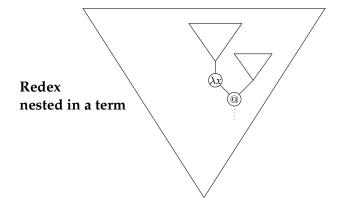
< □ > < @ > < E > < E > E のQ@

・ロト・西ト・ヨー シック・

β -Reduction



β -Reduction



< □ > < @ > < E > < E > E のQ@

(UN)SOUNDNESS

• If a Type System is able to type a non (weakly) head-normalizing term (*e.g.* $\Omega = \Delta \Delta$), it is said here to be **unsound**.

(UN)SOUNDNESS

- If a Type System is able to type a non (weakly) head-normalizing term (*e.g.* $\Omega = \Delta \Delta$), it is said here to be **unsound**.
- If a Type System is able to type every term, it is said to be completely unsound.

(UN)SOUNDNESS

- If a Type System is able to type a non (weakly) head-normalizing term (*e.g.* $\Omega = \Delta \Delta$), it is said here to be **unsound**.
- If a Type System is able to type every term, it is said to be completely unsound.
- With SR and SE, a completely unsound type system should yield a model for pure λ-calculus.

Typing Rules of \mathscr{R}_0 (Gardner/de Carvalho)

Types (
$$\tau$$
, σ_i **):** τ , σ_i := $o \in \mathscr{O} \mid [\sigma_i]_{i \in I} \to \tau$.

Context (Γ , Δ): assign *intersection* types to variables.

$$\frac{\overline{x: [\tau] \vdash x: \tau}}{x: [\tau] \vdash x: \tau} \xrightarrow{\text{ax}} \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x.t: [\sigma_i]_{i \in I} \to \tau} \xrightarrow{\text{abs}} \frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash_{i \in I} \Delta_i \vdash tu: \tau} \xrightarrow{\text{app}}$$

Examples:

$$\frac{\overline{x:[\tau] \vdash x:\tau}}{\vdash \lambda x.x:[\tau] \to \tau} \text{ abs } \frac{\overline{x:[\tau] \vdash x:\tau}}{x:[\tau] \vdash \lambda y.x:[] \to \tau} \text{ abs}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Relevance vs Irrelevance

Observation: In system *R*₀, λx.x (resp. λy.x) can only be typed with a type of the form [τ] → τ (resp. [] → τ).

Relevance vs Irrelevance

- Observation: In system *R*₀, λx.x (resp. λy.x) can only be typed with a type of the form [τ] → τ (resp. [] → τ).
- System \mathscr{R}_0 is said to be **relevant**: *weakening* is not allowed.

Relevance vs Irrelevance

- Observation: In system *R*₀, λx.x (resp. λy.x) can only be typed with a type of the form [τ] → τ (resp. [] → τ).
- ► System *R*₀ is said to be **relevant**: *weakening* is not allowed. For instance, a type is used when it is assigned:

 $\overline{x:[\sigma]\vdash x:\sigma}$ ax

Relevance vs Irrelevance

- Observation: In system *R*₀, λx.x (resp. λy.x) can only be typed with a type of the form [τ] → τ (resp. [] → τ).
- ► System \mathscr{R}_0 is said to be **relevant**: *weakening* is not allowed. For instance, a type is used when it is assigned:

$$\overline{x:[\sigma] \vdash x:\sigma}$$
 ax

► If we replace ax by axw:

$$\frac{i_0 \in I}{\Gamma; \, x: [\sigma_i]_{i \in I} \vdash x: \sigma_{i_0}} \text{ axw}$$

... we obtain an irrelevant system, called $\mathscr{R}_{0,w}$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

Relevance vs Irrelevance

- Observation: In system *R*₀, λx.x (resp. λy.x) can only be typed with a type of the form [τ] → τ (resp. [] → τ).
- ► System *R*₀ is said to be **relevant**: *weakening* is not allowed. For instance, a type is used when it is assigned:

$$\overline{x:[\sigma] \vdash x:\sigma}$$
 ax

► If we replace ax by axw:

$$\frac{i_0 \in I}{\Gamma; \ x : [\sigma_i]_{i \in I} \vdash x : \sigma_{i_0}} \text{ axw}$$

... we obtain an irrelevant system, called $\mathscr{R}_{0,w}$.

• In $\mathscr{R}_{0,w}$, we may derive:

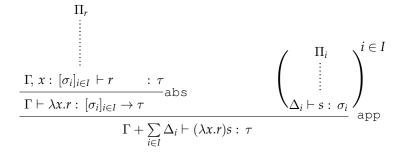
$$\frac{\overline{x:[\tau,\tau_1,\tau_1] \vdash x:\tau}}{\vdash \lambda x.x:[\tau,\tau_1,\tau_2] \to \tau} \text{ abs } \qquad \frac{\overline{x:[\tau],y:[\tau] \vdash x:\tau}}{x:[\tau] \vdash \lambda y.x:[\tau] \to \tau} \text{ abs }$$

SUBJECT REDUCTION PROPERTY FOR \mathscr{R}_0

If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

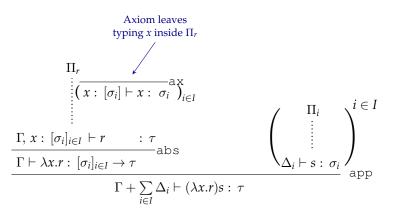
If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$



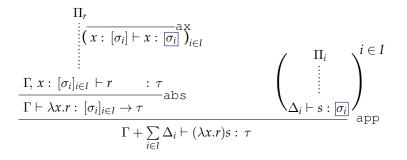
If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

$(\lambda x.r)s \to r[s/x]$



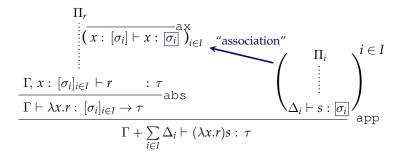
If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$



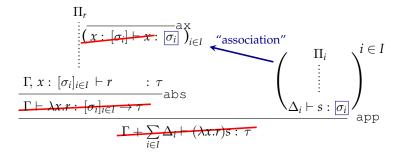
If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$



If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

 $(\lambda x.r)s \to r[s/x]$



If $\Pi \rhd \Gamma \vdash t : \tau$ and $t \to t'$, then $\exists \Pi' \rhd \Gamma \vdash t' : \tau$

$$(\lambda x.r)s \to r[s/x]$$

$$\Gamma + \sum_{i \in I} \Delta_i \quad \vdash r \; [s/x] : \; \tau$$

Plan

TYPES AND RELEVANCE

COINDUCTIVE TYPES

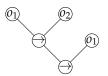
SYSTEM S (SEQUENTIAL INTERSECTION)

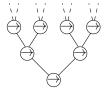
INDUCTIVE VS COINDUCTIVE TYPES

Examples with Simple Types

Inductive type: $o_1 \rightarrow o_2 \rightarrow o_1$

Coinductive type: $A_{ref} = A_{ref} \rightarrow A_{ref}$





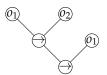
◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

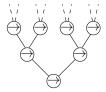
INDUCTIVE VS COINDUCTIVE TYPES

Examples with Simple Types

Inductive type: $o_1 \rightarrow o_2 \rightarrow o_1$

Coinductive type: $A_{ref} = A_{ref} \rightarrow A_{ref}$





 A_{ref} is a **reflexive type**.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆日 ▶

COINDUCTIVE TYPE SYSTEMS

► We consider two new type systems *R* and *R*_w, having the same rules as *R*₀ and *R*_{0,w}, but using coinductive types.

COINDUCTIVE TYPE SYSTEMS

- ► We consider two new type systems *R* and *R_w*, having the same rules as *R*₀ and *R_{0,w}*, but using coinductive types.
- We define (coinductively) ρ by $\rho = [\rho]_{\omega} \rightarrow \rho$.

COINDUCTIVE TYPE SYSTEMS

- ► We consider two new type systems *R* and *R_w*, having the same rules as *R*₀ and *R_{0,w}*, but using coinductive types.
- We define (coinductively) ρ by $\rho = [\rho]_{\omega} \rightarrow \rho$.
- ► Due to irrelevancy, every term is typable in *R_w* (complete unsoundness of *R_w*).

COINDUCTIVE TYPE SYSTEMS

- ► We consider two new type systems *R* and *R*_w, having the same rules as *R*₀ and *R*_{0,w}, but using coinductive types.
- We define (coinductively) ρ by $\rho = [\rho]_{\omega} \rightarrow \rho$.
- ► Due to irrelevancy, every term is typable in *R_w* (complete unsoundness of *R_w*).
- ► **Claim:** Let *t* be a term. If $\Gamma(x) = [\rho]_{\omega}$ for all free variable *x* of *t*, then $\Gamma \vdash t : \rho$ is derivable in \mathscr{R}_{w} .

COINDUCTIVE TYPE SYSTEMS

- ► We consider two new type systems *R* and *R_w*, having the same rules as *R*₀ and *R_{0,w}*, but using coinductive types.
- We define (coinductively) ρ by $\rho = [\rho]_{\omega} \rightarrow \rho$.
- ► Due to irrelevancy, every term is typable in *R_w* (complete unsoundness of *R_w*).
- ► **Claim:** Let *t* be a term. If $\Gamma(x) = [\rho]_{\omega}$ for all free variable *x* of *t*, then $\Gamma \vdash t : \rho$ is derivable in \mathscr{R}_{w} .

Proof.

$$\frac{\Gamma; x: [\rho]_{\omega} \vdash t: \rho}{\Gamma \vdash \lambda x.t: [\rho]_{\omega} \rightarrow \rho \ (=\rho)}^{\text{abs}}$$
$$\frac{\Gamma \vdash t: \rho \ (= [\rho]_{\omega} \rightarrow \rho) \qquad (\Gamma \vdash u: \rho)_{\omega}}{\Gamma \vdash tu: \rho}$$

Relevant coinductive types

► In \mathscr{R} (relevant), $\lambda y.x$ can still be typed only with types of the form $[] \rightarrow \tau$.

Relevant coinductive types

- ► In \mathscr{R} (relevant), $\lambda y.x$ can still be typed only with types of the form $[] \rightarrow \tau$.
- More generally, if *x* not free in *t* and $\triangleright \Gamma \vdash t : \tau$, then $\tau = [] \rightarrow \tau_0$ for some τ_0 .

Relevant coinductive types

- ► In \mathscr{R} (relevant), $\lambda y.x$ can still be typed only with types of the form $[] \rightarrow \tau$.
- More generally, if *x* not free in *t* and $\triangleright \Gamma \vdash t : \tau$, then $\tau = [] \rightarrow \tau_0$ for some τ_0 .
- ► In *ℛ*, the typing rules constrain [] to appear. Failure of the previous argument.

Relevant coinductive types

- ► In \mathscr{R} (relevant), $\lambda y.x$ can still be typed only with types of the form $[] \rightarrow \tau$.
- More generally, if *x* not free in *t* and $\triangleright \Gamma \vdash t : \tau$, then $\tau = [] \rightarrow \tau_0$ for some τ_0 .
- ► In *ℛ*, the typing rules constrain [] to appear. Failure of the previous argument.
- ► **Question:** what is the set of typable terms in *R* ?

< □ > < @ > < E > < E > E のQ@

Question: what is the set of typable terms in \mathcal{R} ?

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Question: what is the set of typable terms in \mathcal{R} ?

► *In the finite case:* type Normal Forms and proceed by expansion.

Question: what is the set of typable terms in \mathcal{R} ?

- ► *In the finite case:* type Normal Forms and proceed by expansion.
- Problem for coinductive Types: no form of normalization is granted (e.g. Ω typable in *R*).

Question: what is the set of typable terms in \mathcal{R} ?

- ► *In the finite case:* type Normal Forms and proceed by expansion.
- Problem for coinductive Types: no form of normalization is granted (e.g. Ω typable in *R*).

We study then **typability** as a first order theory. For that, we resort to another type system S, in which features *pointers*.

Question: what is the set of typable terms in \mathcal{R} ?

- ► *In the finite case:* type Normal Forms and proceed by expansion.
- Problem for coinductive Types: no form of normalization is granted (e.g. Ω typable in *R*).

We study then **typability** as a first order theory. For that, we resort to another type system S, in which features *pointers*. System S collapses on \mathscr{R} . Thus, if every term is typable in S, then every term is typable in \mathscr{R} .

Plan

TYPES AND RELEVANCE

COINDUCTIVE TYPES

SYSTEM S (SEQUENTIAL INTERSECTION)

SEQUENTIAL INTERSECTION

► Types:

 $S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$

SEQUENTIAL INTERSECTION

► Types:

$$S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.

SEQUENTIAL INTERSECTION

► Types:

$$S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where \overline{T}_k types and $K \subset \mathbb{N} \{0, 1\}$.

SEQUENTIAL INTERSECTION

► Types:

$$S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$$

- Sequence Type:
 - Intersection type replacing multiset types.
 - $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
 - The integer indexes *k* are called **tracks**.

SEQUENTIAL INTERSECTION

$$S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$$

Sequence Type:

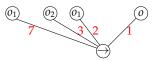
- Intersection type replacing multiset types.
- $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- The integer indexes *k* are called **tracks**.
- We also write $(S_k)_{k \in K} = (k \cdot S_k)_{k \in K}$.

SEQUENTIAL INTERSECTION

$$S_k, T ::= o \in \mathscr{O} \mid (S_k)_{k \in K} \to T$$

Sequence Type:

- Intersection type replacing multiset types.
- $F = (T_k)_{k \in K}$ where T_k types and $K \subset \mathbb{N} \{0, 1\}$.
- The integer indexes *k* are called **tracks**.
- We also write $(S_k)_{k \in K} = (k \cdot S_k)_{k \in K}$.
- *Example:* $(7 \cdot o_1, 3 \cdot o_2, 2 \cdot o_1) \rightarrow o$



< □ > < @ > < E > < E > E のQ@

DERIVATIONS OF S

The set Deriv of rigid derivations is *coinductively* generated by:

$$\overline{x: (k \cdot T) \vdash x: T} \stackrel{\text{ax}}{=} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{(S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus_{k \in K} D_k \vdash tu: T} \frac{(D_k \vdash u: S_k)_{k \in K}}{\text{app}}$$

DERIVATIONS OF S

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{1}{x: (k \cdot T) \vdash x: T} \xrightarrow{\text{ax}} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{(S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus_{k \in K} D_k \vdash tu: T} \xrightarrow{(D_k \vdash u: S_k)_{k \in K}} \text{app}$$

► If Rt(C) and the Rt(D_k) are not pairwise disjoint, contexts are incompatible.

DERIVATIONS OF S

The set Deriv of rigid derivations is *coinductively* generated by:

$$\frac{1}{x: (k \cdot T) \vdash x: T} \xrightarrow{\text{ax}} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{(S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus_{k \in K} D_k \vdash tu: T} \xrightarrow{(D_k \vdash u: S_k)_{k \in K}} \xrightarrow{\text{app}}$$

- ► If Rt(C) and the Rt(D_k) are not pairwise disjoint, contexts are incompatible.
- ► Forget about the indexes: S collapses onto *R*.

DERIVATIONS OF S

The set Deriv of rigid derivations is *coinductively* generated by:

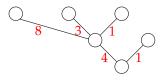
$$\frac{1}{x: (k \cdot T) \vdash x: T} \xrightarrow{\text{ax}} \frac{C; x: (S_k)_{k \in K} \vdash t: T}{(S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

$$\frac{C \vdash t: (S_k)_{k \in K} \to T}{C \uplus_{k \in K} D_k \vdash tu: T} \xrightarrow{(D_k \vdash u: S_k)_{k \in K}} \xrightarrow{\text{app}}$$

- ► If Rt(C) and the Rt(D_k) are not pairwise disjoint, contexts are incompatible.
- ► Forget about the indexes: S collapses onto *R*.
- ► S features **pointers** called **bipositions**.

CANDIDATE SUPPORTS

What is a correct type ?

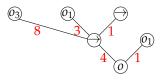


Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

CANDIDATE SUPPORTS

What is a correct type ?



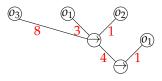
Wrong Labels

Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

CANDIDATE SUPPORTS

What is a correct type ?



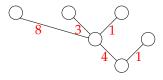
Correct Labels

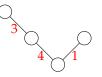
Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

CANDIDATE SUPPORTS

What is a correct type ?





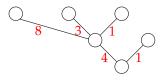
Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

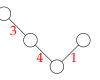
Support: $\{\varepsilon, 1, 4, 4 \cdot 3\}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

CANDIDATE SUPPORTS

What is a correct type ?





Wrong Support

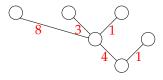
Support: $\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$

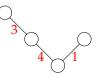
Support: $\{\varepsilon, 1, 4, 4 \cdot 3\}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ����

CANDIDATE SUPPORTS

What is a correct type ?





Support:	Support:
$\{\varepsilon, 1, 4, 4 \cdot 1, 4 \cdot 3, 4 \cdot 8\}$	$\{arepsilon,1,4,4\cdot3\}$

Candidate Support: a set of positions that is the support of a type

- $c \rightarrow_{t1} c \cdot k$ (a candidate supp is a tree)
- $c \cdot 1 \rightarrow_{t^2} c \cdot k$ (if a node does not have a 1-son, it is a leaf)

< □ > < @ > < E > < E > E のQ@

CANDIDATE BISUPPORTS

• We want to show that every term *t* is typable in S.

- We want to show that every term *t* is typable in S.
- Idea: we try to capture the notion of candidate bisupport: a set of pointers that is the bisupport of a S-derivation typing t.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- ▶ We want to show that every term *t* is typable in S.
- Idea: we try to capture the notion of candidate bisupport: a set of pointers that is the bisupport of a S-derivation typing t.
- We must find suitable stability conditions.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- ▶ We want to show that every term *t* is typable in S.
- Idea: we try to capture the notion of candidate bisupport: a set of pointers that is the bisupport of a S-derivation typing t.
- We must find suitable stability conditions.
- Then, we show that there is a *non-empty* set that satisfies them.

►
$$(a, c) \rightarrow_{asc} (a \cdot 1, 1 \cdot c)$$
 if $t(a) = @$.

•
$$(a, 1 \cdot c) \rightarrow (a \cdot 0, c)$$
 if $t(a) = \lambda x$.

- ► $(a, k \cdot c) \rightarrow_{pi} (pos(k), c)$ if $t(a) = \lambda x$ and $k \in Tr_1(a)$.
- ► $(a, k \cdot c) \rightarrow_{pi} b_{\perp}$ if $t(\overline{a}) = \lambda x$ and $k \notin Tr_1(a), k \ge 2$.

►
$$(a \cdot 1, k \cdot c) \xrightarrow{a} (a \cdot k, c)$$
 if $t(a) = @$.

►
$$(a,c) \rightarrow_{t1} (a, c \cdot k).$$

- ► $(a, c \cdot 1) \rightarrow_{t^2} (a, c \cdot k)$ for any $k \ge 2$.
- ► $(a,1) \rightarrow_{rt} (a,\varepsilon)$ if $t(a) = \lambda x$.
- ► $(a, \varepsilon) \rightarrow_{up} b_{\perp}$.
- ► $(a, \varepsilon) \rightarrow_{up} (a', c)$ if $a \leqslant a'$

CANDIDATE BISUPPORTS

►
$$(a, c) \rightarrow_{asc} (a \cdot 1, 1 \cdot c)$$
 if $t(a) = @$.

•
$$(a, 1 \cdot c) \rightarrow (a \cdot 0, c)$$
 if $t(a) = \lambda x$.

- ► $(a, k \cdot c) \rightarrow_{pi} (pos(k), c)$ if $t(a) = \lambda x$ and $k \in Tr_1(a)$.
- ► $(a, k \cdot c) \rightarrow_{pi} b_{\perp}$ if $t(\overline{a}) = \lambda x$ and $k \notin Tr_1(a), k \ge 2$.

•
$$(a \cdot 1, k \cdot c) \xrightarrow{a} (a \cdot k, c)$$
 if $t(a) = @$.

►
$$(a,c) \rightarrow_{t1} (a, c \cdot k).$$

• $(a, c \cdot 1) \rightarrow_{t^2} (a, c \cdot k)$ for any $k \ge 2$.

►
$$(a,1) \rightarrow_{rt} (a,\varepsilon)$$
 if $t(a) = \lambda x$.

- ► $(a, \varepsilon) \rightarrow_{up} b_{\perp}$.
- ► $(a, \varepsilon) \rightarrow_{up} (a', c)$ if $a \leqslant a'$

GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type of *t* must be empty.

In that case, we can build a derivation whose bisupport is minimal.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type of *t* must be empty.

In that case, we can build a derivation whose bisupport is minimal.

► *Ad absurbum*, we consider *P*, a proof showing that the type of *t* is empty.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type of *t* must be empty.

In that case, we can build a derivation whose bisupport is minimal.

- ► *Ad absurbum*, we consider *P*, a proof showing that the type of *t* is empty.
- ► The presence of redex is still problematic. A finite reduction strategy (the collapsing strategy) allows us to reduce 𝒫 to a proof 𝒫', in which redexes are not a problem.

GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type of *t* must be empty.

In that case, we can build a derivation whose bisupport is minimal.

- ► *Ad absurbum*, we consider *P*, a proof showing that the type of *t* is empty.
- ► The presence of redex is still problematic. A finite reduction strategy (the collapsing strategy) allows us to reduce 𝒫 to a proof 𝒫', in which redexes are not a problem.
- ► In 𝒫', commutations and nice interactions occur. Considering a minimal case, we show that 𝒫' cannot prove that t has an empty type. Contradiction.

GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type of *t* must be empty.

In that case, we can build a derivation whose bisupport is minimal.

- ► *Ad absurbum*, we consider *P*, a proof showing that the type of *t* is empty.
- ► The presence of redex is still problematic. A finite reduction strategy (the collapsing strategy) allows us to reduce 𝒫 to a proof 𝒫', in which redexes are not a problem.
- ► In 𝒫', commutations and nice interactions occur. Considering a minimal case, we show that 𝒫' cannot prove that t has an empty type. Contradiction.

This works for the infinitary λ -calculus.

・ロト・日本・日本・日本・日本・日本

Order

Theorem (complete unsoundness): in *R*, every term is typable.

Order

Theorem (complete unsoundness): in \mathcal{R} , every term is typable.

Definition: The **order** of a λ -term t is the maximal $n \in \mathbb{N} \cup \{\infty\}$ s.t. $t \to^* t' = \lambda x_1 \dots \lambda x_n . t'_0$. A **zero term** is a term of order 0.

Order

Theorem (complete unsoundness): in \mathcal{R} , every term is typable.

Definition: The **order** of a λ -term t is the maximal $n \in \mathbb{N} \cup \{\infty\}$ s.t. $t \to^* t' = \lambda x_1 \dots \lambda x_n . t'_0$. A **zero term** is a term of order 0.

Proposition: if *t* is a zero-term, then, *t* is typable with *o*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Order

Theorem (complete unsoundness): in \mathcal{R} , every term is typable.

Definition: The **order** of a λ -term t is the maximal $n \in \mathbb{N} \cup \{\infty\}$ s.t. $t \to^* t' = \lambda x_1 \dots \lambda x_n . t'_0$. A **zero term** is a term of order 0.

Proposition: if *t* is a zero-term, then, *t* is typable with *o*.

Definition (relational model): For all closed λ -term *t*, we set

 $\llbracket t \rrbracket = \{ \tau \mid \vdash t : \tau \text{ is derivable} \}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Order

Theorem (complete unsoundness): in \mathcal{R} , every term is typable.

Definition: The **order** of a λ -term t is the maximal $n \in \mathbb{N} \cup \{\infty\}$ s.t. $t \to^* t' = \lambda x_1 \dots \lambda x_n . t'_0$. A **zero term** is a term of order 0.

Proposition: if *t* is a zero-term, then, *t* is typable with *o*.

Definition (relational model): For all closed λ -term *t*, we set

 $\llbracket t \rrbracket = \{ \tau \mid \vdash t : \tau \text{ is derivable} \}$

Theorem: This yields a non-sensible model that discriminates terms according to their order.

Related and Future Work

► The collapse of Type System S on type System *R* (Gardner/de Carvalho) is surjective [V,2015].

Related and Future Work

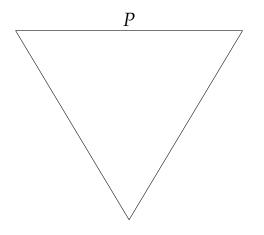
- ► The collapse of Type System S on type System *R* (Gardner/de Carvalho) is surjective [V,2015].
- Equational theory of the Model.

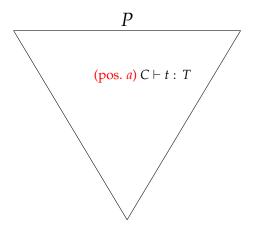
Related and Future Work

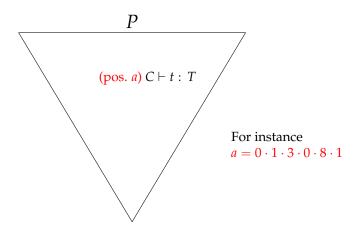
- ► The collapse of Type System S on type System *ℛ* (Gardner/de Carvalho) is surjective [V,2015].
- Equational theory of the Model.
- ► Is the collapse of *R* onto *D* (idempotent intersection) surjective ?

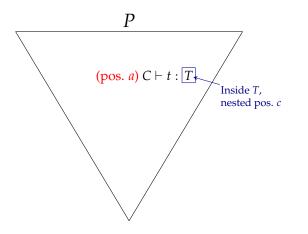
Thank you for your attention !

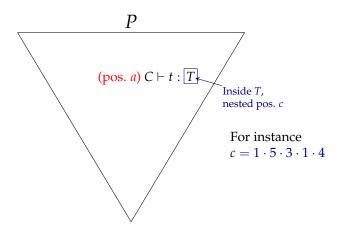
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シベ⊙







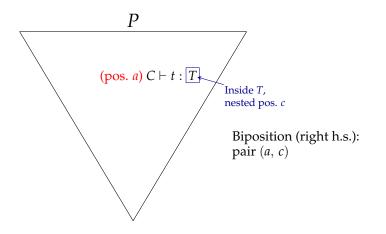




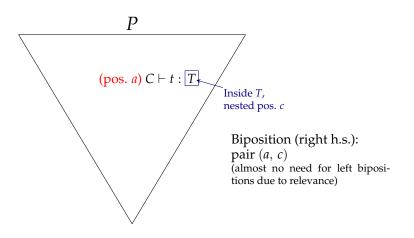
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < @ > < E > < E > E のQ@

POINTERS



POINTERS



Bisupport of *P*: the set of (right or left) bipositions

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

-

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

$$C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \qquad (D_k \vdash u : S_k (\text{pos. } a \cdot k))_{k \in K}$$
$$C \cup_{k \in K} D_k \vdash tu : T \quad (\text{pos. } a)$$

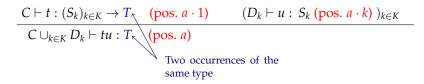
-

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

$$C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \qquad (D_k \vdash u : S_k (\text{pos. } a \cdot k))_{k \in K}$$
$$C \cup_{k \in K} D_k \vdash tu : T \quad (\text{pos. } a)$$

ASCENDANCE



-

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

$$C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \qquad (D_k \vdash u : S_k (\text{pos. } a \cdot k))_{k \in K}$$
$$C \cup_{k \in K} D_k \vdash tu : T \quad (\text{pos. } a)$$

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

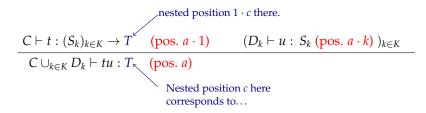
Some bipositions can be intuitively identified in a derivation.

$$\frac{C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \quad (D_k \vdash u : S_k \text{ (pos. } a \cdot k))_{k \in K}}{C \cup_{k \in K} D_k \vdash tu : T_r \quad (\text{pos. } a)}$$
Nested position *c* here corresponds to...

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

ASCENDANCE

Some bipositions can be intuitively identified in a derivation.



▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

nested position $1 \cdot c$ there. $C \vdash t : (S_k)_{k \in K} \to T'$ (pos. $a \cdot 1$) $(D_k \vdash u : S_k \text{ (pos. } a \cdot k))_{k \in K}$ $C \cup_{k \in K} D_k \vdash tu : T_{r}$ (pos. a) Nested position c here corresponds to... We then set: $(a, c) \to_{a \in C} (a \cdot 1, 1 \cdot c)$ when t(a) = @

< □ > < @ > < E > < E > E のQ@

ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ASCENDANCE

Some bipositions can be intuitively identified in a derivation.

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

We then set: $(a, 1 \cdot c) \rightarrow_{asc} (a \cdot 0, 1 \cdot c)$ when $t(a) = \lambda x$

・ロト・日本・日本・日本・日本・日本・日本

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

POLAR INVERSION

Let us remind rules ax and abs:

$$\overline{x: (k \cdot T) \vdash x: T}$$
 ax

$$\frac{C \vdash t: T}{C; (S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

Let us remind rules ax and abs:

$$\overline{x:\,(k\cdot T)\vdash x:\,T}$$
 ax

$$\frac{C \vdash t: T}{C; (S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

In a derivation:

$$\frac{C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)}{C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)}$$

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Let us remind rules ax and abs:

$$\overline{x:\; (k\cdot T)\vdash x:\; T}$$
 ax

$$\frac{C \vdash t: T}{C; (S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases :

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

Look at S_7 inside this seq. type.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

Let us remind rules ax and abs:

$$\overline{x: (k \cdot T) \vdash x: T}$$
 ax

$$\frac{C \vdash t : T}{C; (S_k)_{k \in K} \vdash \lambda x.t : C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases :

• First case :

 $x: 7 \cdot S_7 \vdash x: S_7 \text{ (pos. } a')$

$$\frac{C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)}{C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)}$$

Look at S_7 inside this seq. type.

(日)

Let us remind rules ax and abs:

$$\overline{x:(k\cdot T)\vdash x:T}$$
 ax

$$\frac{C \vdash t : T}{C; (S_k)_{k \in K} \vdash \lambda x.t : C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases :

• First case :

 $x: 7 \cdot S_7 \vdash x: S_7 \text{ (pos. } a')$

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

Look at S_7 inside this seq. type.

We then set: $(a, 7 \cdot c) \rightarrow_{pi} (a', c)$ when $t(a) = \lambda x$

POLAR INVERSION

Let us remind rules ax and abs:

 $\overline{x:\,(k\cdot T)\vdash x:\,T}$ ax

$$\frac{C \vdash t: T}{C; (S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases : Second case :

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$

$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

$$Lecket S$$

Look at S_7 inside this seq. type.

Let us remind rules ax and abs:

$$\overline{x: (k \cdot T) \vdash x: T}$$
 ax

$$\frac{C \vdash t : T}{C; (S_k)_{k \in K} \vdash \lambda x.t : C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases : Second case :

No ax-rule typing *x* with track 7.

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

Look at S_7 inside this seq. type.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

Let us remind rules ax and abs:

$$\overline{x:\;(k\cdot T)\vdash x:\;T}$$
 ax

$$\frac{C \vdash t: T}{C; (S_k)_{k \in K} \vdash \lambda x.t: C(x) \to T} \text{ abs}$$

Let $k \ge 2$. We have two cases :

No ax-rule typing *x* with track 7.

$$C; x: (S_k)_{k \in K} \vdash t: T \quad (\text{pos. } a \cdot 0)$$
$$C \vdash \lambda x.t: (S_k)_{k \in K} \to T \quad (\text{pos. } a)$$

Look at S_7 inside this seq. type.

We then set: $(a, 7 \cdot c) \rightarrow_{pi} b_{\perp}$ when $t(a) = \lambda x$

< □ > < @ > < E > < E > E のQ@

Referents

Let ≡ be the reflexive, transitive, symmetric closure of
 →_{asc} ∪ →_{pi}.

Referents

- Let ≡ be the reflexive, transitive, symmetric closure of
 →_{asc} ∪ →_{pi}.
- Assume b₁ ≡ b₂. Then a derivation *P* typing *t* holds b₁ iff it holds b₂.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Referents

- Let ≡ be the reflexive, transitive, symmetric closure of
 →_{asc} ∪ →_{pi}.
- Assume b₁ ≡ b₂.
 Then a derivation *P* typing *t* holds b₁ iff it holds b₂.
- ► Moreover, *P* cannot hold b_⊥.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Referents

- Let ≡ be the reflexive, transitive, symmetric closure of
 →_{asc} ∪ →_{pi}.
- Assume b₁ ≡ b₂. Then a derivation *P* typing *t* holds b₁ iff it holds b₂.
- ► Moreover, *P* cannot hold b_⊥.
- An equivalence class of ≡ is called a referent. Let Ref be the quotient set defined by ≡.
 We write b : r or r : b.

CONSUMPTION

・ロト・西ト・ヨー シック・ロト

CONSUMPTION

$$\frac{C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \qquad (D_k \vdash u : S_k (\text{pos. } a \cdot k))_{k \in K}}{C \cup_{k \in K} D_k \vdash tu : T \quad (\text{pos. } a)}$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

CONSUMPTION

$$\frac{C \vdash t : (S_k)_{k \in K} \to T \quad (\text{pos. } a \cdot 1) \qquad (D_k \vdash u : S_k (\text{pos. } a \cdot k))_{k \in K}}{C \cup_{k \in K} D_k \vdash tu : T \quad (\text{pos. } a)}$$

We then set: $(a \cdot 1, k \cdot c) \xrightarrow{a} (a \cdot k, c)$ when t(a) = @