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In the course of its execution, a program passes through
different states.

The state of a program at the beginning of the execution and at
its end may be very different.

Finding a denotation to a program = assigning to it an invariant
of execution (i.e. an object that must the same for all its states).

The denotation of a program gives us some informations about
its behaviour. Usually, dynamical information (related to its
execution).

Usually, the information by a denotation implies that the
concerned program is terminating.

Another use of denotations: equating or separating programs
i.e. two states that have different denotations cannot be
instances of the same program.
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TYPES AS INVARIANTS OF EXECUTION

> \-terms: programs, S-reduction step: execution step.

» Normalizability: termination.
Many variants: head-n, weak-n, strong-n,...

» Types: check statically (without reducing) that a term is
normalizable (soundness of a type system).

» Typing: assigning formulas (called types) to variables.
The type of a A-term can be computed, if some typing rules are
respected.

» When a type system enjoys subject reduction and expansion,
types are execution invariants (and they usually provide us with
models of A-calculus).
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NON-TERMINATING PROGRAMS

» Often given an “empty” denotation (a model that equates all the
non-terminating terms is said to be sensible). However:

» Not all non-terminating progams are meaningless.
(For instance, streams, a program keeping on printing the list of prime numbers,
fixpoint combinators. . .)

» Some programs are non terminating but productive.

» Many possible definitions or variants of sound non termination
Klop and alii[95], Endrullis,Polonsky and alii[15]
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CONTRIBUTIONS

Using type theory, we build a completely unsound type system and
a non-sensible model of pure A-calculus in which:

» Every term has a non-empty denotation (including the mute
terms).

» Terms are discriminated according to their order (the maximal
number of abs that prefixes a reduct).

Related works

> Jacopino[75]: easy terms (f is easy if it can be consistently
equated to any other term)

» Berarducci[96]: mute terms ("The most undefined terms”).

» Bucciarelli,Carraro,Favro,Salibra[15]: Graph easy Sets of mute
lambda terms, TCS.
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®

Variable x Abstraction \x.u Application u v
1 2
A = dx.xx @

0
0w
AX. XX

Position: finite sequence in {0,1,2}*,e..0-0-2-1-2.
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(UN)SOUNDNESS

» If a Type System is able to type a non (weakly) head-normalizing
term (e.g. © = A A), it is said here to be unsound.

» If a Type System is able to type every term, it is said to be
completely unsound.

» With SR and SE, a completely unsound type system should yield
a model for pure A-calculus.
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TYPING RULES OF %y (GARDNER/DE CARVALHO)

Types (1,09): 7,0; := 0 € O | [04]ic1 — T.

Context (I', A): assign intersection types to variables.

D, x: [ojliectFt: T

x:[T]l—x:Tax abs
' Mxt: [olies = 7
LHt: [oier =7 (Aiku: o)
app
D'+t AjHtu: 7
Examples:
—— ax — ax
x:[rlkx:7 x:[rlFx:T
abs abs

F)\xx—[T]—M' x:[rlFAyx:[]—>7
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RELEVANCE VS IRRELEVANCE

» Observation: In system %, Ax.x (resp. Ay.x) can only be typed
with a type of the form [7] — T (resp. [] — 7).

> System %, is said to be relevant: weakening is not allowed.
For instance, a type is used when it is assigned:

— ax
x:lolkx:0o

» If we replace ax by axw:

o€l

L x: [oflier F x 2 oy

axXw
... We obtain an irrelevant system, called % .

> In % ., we may derive:

axXw axXw

x:[rm,mFx:T x:[rhy:[rlFx:T

abs abs
x:[rlFAyx:[r] =7

Fxx:[rm,mn—T1
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SUBJECT REDUCTION PROPERTY FOR %
IfIIoTkHt:7andt — ¢, then3I'>T Y . 7
(\x.r)s — r[s/x]
Axiom leaves
typing x inside II,
T, /
. —————ax
§(x:[a,-]}—x: i )iel .
II; 1el
Lox: [oilier 7 0T :
abs :
T'FXxr: [oilicr = T Aibs: oo;

'+ Aik(Axr)s:

i€l

app
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SUB]ECT REDUCTION PROPERTY FOR %0
IfIIoTkHt:7andt — ¢, then3I'>T Y . 7

(\x.r)s — r[s/x]

I,
P —axX
(x: [oi] b x: o] )ig _
Hz iel
I‘,x: [Ui]iel Fr LT :
A [o] 203 A .
r x.r: |ojliecr > 7T iFs o
1jie 1 app

'+ Aik(Axr)s:
i€l
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SUB]ECT REDUCTION PROPERTY FOR %0
IfIIoTkHt:7andt — ¢, then3I'>T Y . 7

(\x.r)s — r[s/x]

I,
P—————————ax
é(x3 [oi] Fx: )iez “association” )
Hi iel
I‘,x: [(T,‘]iell—r LT :
[ ] abs ’
'k Xxr: [ojlier — T Aiks:lo;
= : app

'+ Aik(Axr)s:
i€l
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SUBJECT REDUCTION PROPERTY FOR %
IfIIoTkHt:7andt — ¢, then3I'>T Y . 7
(\x.r)s — r[s/x]
I,
i —————ax
M"H— : )iez “association” )
: \ nf iel
Lox: [oilier 7 0T :
abs :
L= A [Vz]zel T AiFS: app
L > A5 7
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SUBJECT REDUCTION PROPERTY FOR %,

IfIIoTkHt:7andt — ¢, then3I'>T Y . 7

(\x.r)s — r[s/x]

II; iel
I,

Ail—S'

s

L +> A bFris/x]:7
il
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INDUCTIVE VS COINDUCTIVE TYPES

Examples with Simple Types

Inductive type: Coinductive type:
01 — 02 — 01 Arer = Arer — Arer

Q0 QO
Q >
&

A is a reflexive type.
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COINDUCTIVE TYPE SYSTEMS

» We consider two new type systems % and %, having the same
rules as %y and %, ., but using coinductive types.

» We define (coinductively) p by p = [p]., — p.

» Due to irrelevancy, every term is typable in %, (complete
unsoundness of %,,).

» Claim: Let t be a term. If T'(x) = [p],, for all free variable x of ¢,
then T+ t: pis derivable in Z,.

Proof.
Dix:[plubt:p
DEXMxt:[plo—p (=p)

Petip (=[plo—=p)  Thu:pl
ThHtu:p

abs

app
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» In Z (relevant), A\y.x can still be typed only with types of the
form [] — 7.

» More generally, if x not freeinfand >I'F t: 7, then 7 =[] = 7
for some 7.

» In Z, the typing rules constrain [] to appear.
Failure of the previous argument.

» Question: what is the set of typable terms in % ?
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Question: what is the set of typable terms in % ?
» In the finite case: type Normal Forms and proceed by expansion.

» Problem for coinductive Types: no form of normalization is granted (e.g. €
typable in Z).

We study then typability as a first order theory. For that, we resort to
another type system S, in which features pointers.

System S collapses on Z. Thus, if every term is typable in s, then
every term is typable in Z.
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» Sequence Type:

» Intersection type replacing multiset types.
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» Sequence Type:
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F = (Ti)kex where T types and K ¢ N — {0, 1}.
The integer indexes k are called tracks.

We also write (Si)rex = (k - Sk)kek-
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SEQUENTIAL INTERSECTION

» Types:
S, T .= 0€ 0 | (Sk)keK —T

» Sequence Type:

» Intersection type replacing multiset types.

F = (Ti)kex where T types and K ¢ N — {0, 1}.
The integer indexes k are called tracks.

We also write (Si)rex = (k - Sk)kek-

v vyy

» Example: (7-01,3-02,2-01) >0
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The set Deriv of rigid derivations is coinductively generated by:
— Y ax
x: (k-T)Fx:T

C; X : (Sk)keK Ft: T
(Sk)kex F Mxt: Cx) =T
Ckt: (Sk)keK — T

abs

(Dk Fu: Sk)keK
CL‘erKDkl—fu: T

app
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C; x:(Sk)keK}_t: T

x:(k-T)Fx:Tax abs
(Sk)kex F Mxt: Cx) =T

Ckt: (Sk)keK_)T (Dkl—u: Sk)keK
app
CL‘erKDkl—fu: T

» If Rt(C) and the Rt(Dy) are not pairwise disjoint, contexts are
incompatible.
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app
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DERIVATIONS OF S

The set Deriv of rigid derivations is coinductively generated by:

C; x:(sk)keK Ft: T

x:(k~T)Fx:Tax abs
(Sk)kex F Mxt: Cx) =T

Chkt: (Sk)keK_)T (Dkl—u: Sk)keK
app
CL‘erKDkl—fu: T

» If Rt(C) and the Rt(Dy) are not pairwise disjoint, contexts are
incompatible.

» Forget about the indexes: S collapses onto Z.

» S features pointers called bipositions.
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What is a correct type ?

3
4 1
Wrong Support
Support: Support:
{e,1,4,4-1,4-3,4-8}

{e,1,4,4-3}
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CANDIDATE SUPPORTS

What is a correct type ?

3
4 1
Support: Support:
{e,1,4,4-1,4-3,4-8} {e,1,4,4-3}

Candidate Support: a set of positions that is the support of a type
» ¢ —¢1 -k (a candidate supp is a tree)

» ¢-1 —, ¢k (if a node does not have a 1-son, it is a leaf)
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CANDIDATE BISUPPORTS

» We want to show that every term ¢ is typable in S.

v

Idea: we try to capture the notion of candidate bisupport: a set
of pointers that is the bisupport of a S-derivation typing ¢.

v

We must find suitable stability conditions.

v

Then, we show that there is a non-empty set that satisfies them.
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CANDIDATE BISUPPORTS

> (4, ¢) asc (@-1,1-¢)if t(a) = Q.

> (a,1-c) = (a-0,c)if t(a) = Ax.

> (a,k-c) —pi (pos(k),c)ift(a) = Axand k € Tr;(a).

v

(a,k-c) =pi by ift(@) = Mxand k ¢ Tri(a), k > 2.
» (a-1,k-¢c) 5 (a-kc) if t(a) = Q.

> (a,c) =1 (a,c-k).

v

(a,c-1) =, (a,c-k) forany k > 2.

v

(a,1) = (a,¢) if t(a) = Ax.
> (ﬂ,é‘) —up b.

> (a,e) =y (@' 0)ifa < a



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)
! !

CANDIDATE BISUPPORTS

> (4, ¢) asc (@-1,1-¢)if t(a) = Q.

> (a,1-c) = (a-0,c)if t(a) = Ax.

(
> (a,k-c) —pi (pos(k),c)ift(a) = Axand k € Tr;(a).

v

(a,k-c) —pi by ift(@) = Axand k ¢ Tri(a), k > 2.
» (a-1,k-¢c) 5 (a-kc) if t(a) = Q.

> (a,c) =1 (a,c-k).

v

(a,c-1) =, (a,c-k) forany k > 2.

v

(a,1) = (a,¢) if t(a) = Ax.
> (ﬂ,é‘) —up b.

> (a,e) =y (@' 0)ifa < a

u]
]
I
w
i
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GUIDELINES OF THE PROOF

Goal: checking that the former conditions cannot prove that the type
of t must be empty.
In that case, we can build a derivation whose bisupport is minimal.

» Ad absurbum, we consider &, a proof showing that the type of t is empty.
» The presence of redex is still problematic. A finite reduction strategy (the
collapsing strategy) allows us to reduce & to a proof #’, in which redexes are

not a problem.

» In 2/, commutations and nice interactions occur. Considering a minimal case,

we show that &’ cannot prove that t has an empty type. Contradiction.

This works for the infinitary A-calculus.



TYPES AND RELEVANCE

COINDUCTIVE TYPES
ORDER

SYSTEM S (SEQUENTIAL INTERSECTION)

Theorem (complete unsoundness): in %, every term is typable.




TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

ORDER

Theorem (complete unsoundness): in %, every term is typable.

Definition: The order of a A-term £ is the maximal n € NU {o0} s.t.
E=" 1t = Xxq .. A .
A zero term is a term of order 0.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

ORDER

Theorem (complete unsoundness): in %, every term is typable.
Definition: The order of a A-term £ is the maximal n € NU {o0} s.t.
E=" 1t = Xxq .. A .

A zero term is a term of order 0.

Proposition: if t is a zero-term, then, t is typable with o.



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

ORDER

Theorem (complete unsoundness): in %, every term is typable.
Definition: The order of a A-term £ is the maximal n € NU {o0} s.t.
E=" 1t = Xxq .. A .

A zero term is a term of order 0.

Proposition: if t is a zero-term, then, t is typable with o.

Definition (relational model): For all closed \-term ¢, we set

[t] = {7 |+ t: 7 is derivable}



TYPES AND RELEVANCE COINDUCTIVE TYPES SYSTEM S (SEQUENTIAL INTERSECTION)

ORDER

Theorem (complete unsoundness): in %, every term is typable.
Definition: The order of a A-term £ is the maximal n € NU {o0} s.t.
E=" 1t = Xxq .. A .

A zero term is a term of order 0.

Proposition: if t is a zero-term, then, t is typable with o.

Definition (relational model): For all closed \-term ¢, we set

[t] = {7 |+t : 7 is derivable}

Theorem: This yields a non-sensible model that discriminates terms
according to their order.
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RELATED AND FUTURE WORK

» The collapse of Type System S on type System & (Gardner/de
Carvalho) is surjective [V,2015].

» Equational theory of the Model.

» Is the collapse of # onto Z (idempotent intersection) surjective ?



TYPES AND RELEVANCE
!

COINDUCTIVE TYPES
QUESTIONS

SYSTEM S (SEQUENTIAL INTERSECTION)

Thank you for your attention !
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P

(pos.a)CHt: T

For instance

1=0-1-3-0-8-1

N
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POINTERS
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(pos.a)C}—t:

Inside T,
nested pos. ¢

For instance

c=1-5-3-1-4

N
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SYSTEM S (SEQUENTIAL INTERSECTION)

POINTERS

(pos. a) C+t :|T|

Inside T,
nested pos. ¢

Biposition (right h.s.):

pair (a, c)

(almost no need for left biposi-
tions due to relevance)

Bisupport of P: the set of (right or left) bipositions
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Some bipositions can be intuitively identified in a derivation.

ChHt:(Sk)kek — T\ (pos. a-1)
CUkex Dy Ftu: T

(Dk Fu: Sk (pOS. a- k) )keK
(pos. a)

Two occurrences of the
same type
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Some bipositions can be intuitively identified in a derivation.

nested position 1 - c there.
CHt:(Spkex =T

(pos. a-1)
CUkex Dy Ftu: T

(Dk Fuc Sk (pOS. a- k) )keK
\(I)OS. a)

Nested position ¢ here
corresponds to. ..
We then set:

(a,c) =asc (@-1,1-c) whent(a) = Q
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(pos. a - 0)
CkMxt: (Sikex = T

(pos. a)
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Some bipositions can be intuitively identified in a derivation

C;x: (Sk)keK'_ t: T

(pos. a - 0)
CkMxt: (Sikex = T

(pos. a)

We then set:

(a,1-¢) »asc (a-0,1-c)whent(a) = Ax
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Let us remind rules ax and abs

ax
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POLAR INVERSION

Let us remind rules ax and abs

ax
x: (k-T)Ybx:T

SYSTEM S (SEQUENTIAL INTERSECTION)

CHt: T
C; (Sk)keK = Ax.t: C(x) —T
Let k > 2. We have two cases :
e First case :

abs

x:7-SFx: Sy (pos.a’)
Cyx:(Spkex Ht:T

(pos. a - 0)
Chk Ax.t: (Sk)keK —T
AN

(pos. a)
Look at Sy

inside this seq. type.
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POLAR INVERSION

Let us remind rules ax and abs

ax
x: (k-T)Fx:T

SYSTEM S (SEQUENTIAL INTERSECTION)

CHt: T
C; (Sk)keK = Ax.t: C(x) —T
Let k > 2. We have two cases :
e First case :

abs

x:7-SFx: Sy (pos.a’)
Cyx:(Spkex Ht:T

(pos. a - 0)
Chk Ax.t: (Sk)keK —T
AN

(pos. a)
Look at Sy

inside this seq. type.
We then set: (2,7 - ¢) =1 (@',c) when t(a) = \x
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POLAR INVERSION

Let us remind rules ax and abs

ax
x: (k-T)Ybx:T

SYSTEM S (SEQUENTIAL INTERSECTION)

CHt: T
C; (Sk)keK = Ax.t: C(x) —T
Let k > 2. We have two cases :
Second case :

abs

Cyx:(Spkex Ht:T

(pos. a - 0)
Chk Ax.t: (Sk)keK —T
AN

(pos. a)
Look at Sy

inside this seq. type.
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POLAR INVERSION

Let us remind rules ax and abs

ax
x: (k-T)Ybx:T

SYSTEM S (SEQUENTIAL INTERSECTION)

Ckt: T

Let k > 2. We have two cases :
Second case :

No ax-rule typing x with track 7.
Cyx:(Spkex Ht:T

(pos. a - 0)
Chk Ax.t: (Sk)keK —T
AN

(pos. a)
Look at Sy

inside this seq. type.

C; (Sk)keK = Ax.t: C(x) —T

abs
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POLAR INVERSION

Let us remind rules ax and abs

ax
x: (k-T)Fx:T

SYSTEM S (SEQUENTIAL INTERSECTION)

Ckt: T
C; (Sk)keK = Ax.t: C(x) —T

Let k > 2. We have two cases :

abs

No ax-rule typing x with track 7.
Cyx:(Spkex Ht:T

(pos. a - 0)
Chk Ax.t: (Sk)keK —T
AN

(pos. a)
Look at Sy

inside this seq. type.
We then set: (2,7 - ¢) =, by when t(a) = \x
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REFERENTS

> Let = be the reflexive, transitive, symmetric closure of
—ase U —pi.

» Assume by = bs.
Then a derivation P typing t holds b iff it holds b,.

» Moreover, P cannothold b .
» An equivalence class of = is called a referent.

Let Re £ be the quotient set defined by =.
Wewriteb: rorr: b.
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COINDUCTIVE TYPES

CONSUMPTION

SYSTEM S (SEQUENTIAL INTERSECTION)

CHt: (Sokexk = T  (pos.a-1) (Dx Fu: S (pos. a-k) ek
CUkex Dy Ftu: T (pos. a)

We then set:

(a-1,k-c) > (a-k, c) when t(a) = @
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