A Glimpse at Intersection Types

Pierre VIAL Équipe Gallinette Inria - LS2N

September 13, 2019

 $Non\text{-}Id\underset{\text{Gardner }94\text{ - de Carvalho }07}{Mon\text{-}Idempotent}$

 ${\rm Intersection}_{{\rm \tiny Coppo-Dezani~80}}$

Type Theory

$Non\text{-}Id\underset{\text{Gardner }94\text{ - de Carvalho }07}{non\text{-}Idempotent}$

 $Intersection _{\tiny {\tt Coppo-Dezani~80}}$

Type Theory Curry-Howard correspondence

Intersection types P. Vial 0 2 / 26

Intersection types P. Vial 0 2 /26

Intersection types P. Vial 0 2 /26

Intersection types P. Vial 0 2 /26

PLAN

- 1 Overview (idempotent or not intersection types)
- 2 Non-idempotent intersection types
- 8 Extras

Intersection types

4 Perspectives

Intersection types (overview)

- Introduced by Coppo-Dezani (78-80) to "interpret more terms"
 - Charac. of Weak Norm. for λI -terms (no erasing β -step).
 - Extended later for λ -terms, head, weak or strong normalization...
 - Filter models
- Model-checking
 - Ong 06: monadic second order (MSO) logic is decidable for higher-order recursion schemes (HORS)
 - Kobayashi-Ong 09: MSO is decidable for higher-order programs + using intersection types to simplify Ong's algorithm.
 - Refined by Grellois-Melliès 14-15
- Complexity:

- Upper bounds for reduction sequences (Gardner 94, de Carvalho 07) or exact bounds (Bernadet-Lengrand 11, Accattoli-Lengrand-Kesner, ICFP'18).
- Terui 06: upper bounds for terms in a red. sequence
- De Benedetti-Ronchi della Roccha 16: characterization of FPTIME

• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

• Let $f(x) = x \times x \times x$. What is the value of f(3+4)?

Kim (smart)

$$\begin{array}{ccc} f(3+4) & \rightarrow & f(7) \\ & \rightarrow & 7 \times 7 \times 7 \\ & \rightarrow & 49 \times 7 \\ & \rightarrow & 343 \end{array}$$

Lee (not so)

$$\begin{array}{cccc} f(3+4) & \to & (3+4) \times (3+4) \times (3+4) \\ & \to & 7 \times (3+4) \times (3+4) \\ & \to & 7 \times 7 \times (3+4) \\ & \to & 7 \times 7 \times 7 \\ & \to & 49 \times 7 \\ & \to & 343 \end{array}$$

Thurston (don't be Thurston)

$$\begin{array}{cccc} f(3+4) & \rightarrow & (3+4)\times(3+4)\times(3+4) \\ & \rightarrow & 3\times(3+4)\times(3+4)+4\times(3+4)\times(3+4) \\ & \rightarrow & \text{dozens of computation steps} \\ & \cdots & \cdots & \cdots \\ & \rightarrow & 343 \end{array}$$

1 Overview (idempotent or not intersection types)

Reduction strategy

- Choice of a reduction path.
- Can be **complete** (w.r.t. termin.).
- Must be certified.

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Proof: by the "circular" implications:

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Proof: by the "circular" implications:

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Proof: by the "circular" implications:

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Proof: by the "circular" implications:

Goal

Equivalences of the form

"the program t is typable iff it can reach a terminal state"

Idea: several certificates to a same subprogram (next slides).

Proof: by the "circular" implications:

Intersection types

- Perhaps too expressive...
- ... but certify reduction strategies!

Intuitions (Syntax)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

$$\frac{I:A\to A}{I:(A\to B)\to (A\to B)} \land -\mathtt{intro} \quad (with \ I=\lambda x.x)$$

Intuitions (Syntax)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

$$\frac{I:A\to A}{I:(A\to B)\to (A\to B)} \land -\mathtt{intro} \quad (with \ I=\lambda x.x)$$

• Intersection = kind of finite polymorphism.

$$(A \to A) \land ((A \to B) \to (A \to B)) =$$
 double instance of $\forall X.X \to X$ (with $X = A$ and $X = A \to B$)

Intuitions (Syntax)

• Naively, $A \wedge B$ stands for $A \cap B$:

t is of type $A \wedge B$ if t can be typed with A as well as B.

$$\frac{I:A\to A}{I:(A\to B)\to (A\to B)} \; \land - \texttt{intro} \quad (with \; I=\lambda x.x)$$

• Intersection = kind of finite polymorphism.

$$(A \to A) \land ((A \to B) \to (A \to B)) =$$
 double instance of $\forall X.X \to X$ (with $X = A$ and $X = A \to B$)

• But less constrained:

assigning
$$x: o \land (o \rightarrow o') \land (o \rightarrow o) \rightarrow o$$
 is legal. (not an instance of a polymorphic type except $\forall X.X := \texttt{False}!$)

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR):

Typing is stable under reduction.

Subject Expansion (SE):

Typing is stable under reduction.

SE is usually not verified by simple or polymorphic type systems

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction.

Subject Expansion (SE): Typing is stable under reduction.

SE is usually not verified by simple or polymorphic type systems

Subject Reduction and Subject Expansion

A good intersection type system should enjoy:

Subject Reduction (SR): Typing is stable under reduction.

Subject Expansion (SE):

Typing is stable under reduction.

SE is usually not verified by simple or polymorphic type systems

- reducibility cand.
- non-trivial well-founded order.
- can it be simpler?

Subject Reduction (SR):

Typing is stable under reduction.

Subject Reduction (SR):

Typing is stable under reduction.

ENSURING SUBJECT EXPANSION

Subject Expansion (SE):

Typing is stable under anti-reduction.

Subject Expansion (SE):

Typing is stable under anti-reduction.

think of $(\lambda x.xx)I \rightarrow_{\beta} II$

- Left occ. of $I: (A \rightarrow A) \rightarrow (A \rightarrow A)$
- Right occ. of $I: A \rightarrow A$

Subject Expansion (SE):

Typing is stable under anti-reduction.

think of $(\lambda x.xx)I \rightarrow_{\beta} II$

- Left occ. of $I: (A \rightarrow A) \rightarrow (A \rightarrow A)$
- Right occ. of $I: A \rightarrow A$

Ensuring Subject Expansion

Solution:

• Allow several type assignments for a same variable/subterm

 $x: A_1 \wedge A_2 \wedge A_3$

Ensuring Subject Expansion

Solution:

• Allow several type assignments for a same variable/subterm

$$x: A_1 \wedge A_2 \wedge A_3 \\ \vdash x: A_i \ (i = 1, 2, 3)$$

• Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \ vs. \ \lambda z.zc: (C \to D) \to D$

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\bullet \ \lambda z.z: A \to A \ vs. \ \lambda z.zc: (C \to D) \to D$ $E = A \rightarrow A \text{ or } E = (C \rightarrow D) \rightarrow D$?

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \text{ vs. } \lambda z.z \text{ } c: (C \to D) \to D$ $E = A \to A \text{ or } E = (C \to D) \to D?$

Solution:

• Allow several type assignments for a same variable/subterm

- Consider $(y(x(\lambda z.z)))(x(\lambda z.zc))$
- We want $x: E \to F$
- $\lambda z.z: A \to A \ vs. \ \lambda z.zc: (C \to D) \to D$ $E = A \rightarrow A \text{ or } E = (C \rightarrow D) \rightarrow D$?

Solution:

- Allow several type assignments for a same variable/subterm
- Typing normal form: just structural induction (no clash).

Non-idempotency

Computation causes duplication.

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Execution

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Execution

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Execution

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Execution

Non-idempotency

Computation causes duplication.

Non-idempotent intersection types

Disallow duplication for typing certificates.

- → Possibly many certificates (subderivations) for a subprogram.
- → Size of certificates decreases.

Execution

PLAN

- OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)
- 2 Non-idempotent intersection types
- 3 Extras

• t is head normalizing (HN) if \exists reduction path from t to a HNF.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

- t is head normalizing (HN) if \exists reduction path from t to a HNF.
- The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.

• The head reduction strategy: reducing head redexes while it is possible.

• Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \leadsto no intro/elim. rules for \land

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightarrow no intro/elim. rules for \land

Assoc.: $(A \wedge B) \wedge C \sim A \wedge (B \wedge C)$

Comm.: $A \wedge B \sim B \wedge A$

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

Assoc.: $(A \wedge B) \wedge C \sim A \wedge (B \wedge C)$

Comm.: $A \wedge B \sim B \wedge A$

Idempotency? $A \wedge A \sim A$

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types:

no inter. on the right h.s. of \rightarrow , e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$ \rightsquigarrow no intro/elim. rules for \land

Assoc.: $(A \wedge B) \wedge C \sim A \wedge (B \wedge C)$

Comm.: $A \wedge B \sim B \wedge A$

- Type constructors: $o \in \mathcal{O}$, \rightarrow and \land (intersection).
- Strict types:

no inter. on the right h.s. of
$$\rightarrow$$
, e.g., $(A \land B) \rightarrow A$, not $A \rightarrow (B \land C)$
 \rightarrow no intro/elim. rules for \land

Assoc.: $(A \wedge B) \wedge C \sim A \wedge (B \wedge C)$

Comm.: $A \wedge B \sim B \wedge A$

• Collapsing $A \wedge B \wedge C$ into [A, B, C] (multiset) \leadsto no need for perm rules etc.

$$A \land B \land A := [A, B, A] = [A, A, B] \neq [A, B]$$
 $[A, B, A] = [A, B] + [A]$

$$[A, B, A] = [A, B] + [A]$$

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underbrace{\iota_i \Gamma_i \vdash tu: \tau}} \text{ app}$$

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; \, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underset{i \in I}{\longleftarrow} \Gamma_i \vdash tu: \tau} \text{ app }$$

Remark

Intersection types

• Relevant system (no weakening, cf. ax-rule)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{x: [\tau] \vdash x: \tau}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \Gamma_i \vdash tu: \tau} \text{ app}$$

Remark

- Relevant system (no weakening, cf. ax-rule)
- Non-idempotency $(\sigma \land \sigma \neq \sigma)$: in app-rule, pointwise multiset sum e.g.,

$$(x: [\sigma]; y: [\tau]) + (x: [\sigma, \tau]) = x: [\sigma, \sigma, \tau]; y: [\tau]$$

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: \, [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; \, x: \, [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: \, [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: \, [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \, \Gamma_i \vdash tu: \tau} \text{ app }$$

Example

$$\frac{f:[o] \to o}{f:[o] \to o} \text{ax} \qquad \frac{f:[o] \to o}{x:o} \text{app}$$

$$f(fx):o \qquad \text{app}$$

$$\text{Types:} \quad \tau, \ \sigma \quad ::= \quad o \quad | \quad [\sigma_i]_{i \in I} \to \tau$$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{x: [\tau] \vdash x: \tau}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \Gamma_i \vdash t u: \tau} \text{ app}$$

Example

$$\frac{f:[o] \rightarrow o}{f:[o] \rightarrow o} \text{ax} \qquad \frac{f:[o] \rightarrow o}{x:o} \text{app}$$

$$f:[[o] \rightarrow o,[o] \rightarrow o], x:[o] \vdash f(fx):o$$

System \mathcal{R}_0 (Gardner 94-de Carvalho 07)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{x: [\tau] \vdash x: \tau}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \Gamma_i \vdash tu: \tau} \text{ app}$$

System \mathcal{R}_0 (Gardner 94-de Carvalho 07)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau} \text{ (}\Gamma_i \vdash u: \sigma_i)_{i \in I} \text{ app}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash t: \Gamma_i \vdash t: \tau} \text{ app}$$

Head redexes always typed!

System \mathcal{R}_0 (Gardner 94-de Carvalho 07)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau} \text{ (}\Gamma_i \vdash u: \sigma_i)_{i \in I} \text{ app}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau}{\Gamma \vdash t: \Gamma_i \vdash t: \tau} \text{ app}$$

Head redexes always typed!

> but an arg. may be typed 0 time

Properties (\mathcal{R}_0)

- Weighted Subject Reduction
 - Reduction preserves types and environments, and...
 - ... head reduction strictly decreases the number of nodes of the deriv. tree (size). (actually, holds for any typed redex)
- Subject Expansion
 - Anti-reduction preserves types and environments.

Theorem (de Carvalho)

Let t be a λ -term. Then equivalence between:

- t is typable (in \mathcal{R}_0)
- 2 t is HN
- \bullet the head reduction strategy terminates on t (\leadsto certification!)

Bonus (quantitative information)

If Π types t, then $size(\Pi)$ bounds the number of steps of the head red. strategy on t

HEAD VS WEAK AND STRONG NORMALIZATION

Let t be a λ -term.

• Head normalization (HN):

there is a path from t to a head normal form.

• Weak normalization (WN):

there is at least one path from t to a β -Normal Form (NF)

• Strong normalization (SN):

there is no infinite path starting at t.

$$SN \Rightarrow WN \Rightarrow HN$$

 $y \Omega$ HNF but not WN

 $(\lambda x.y)\Omega$ WN but not SN

CHARACTERIZING WEAK AND STRONG NORMALIZATION

HN	System \mathcal{R}_0 $\begin{bmatrix} any \text{ arg. can be left } untyped \end{bmatrix}$	$\mathbf{sz}(\Pi)$ bounds the number of head reduction steps
WN	$\mathcal{R}_0 + ext{unforgetfulness criterion} \ \left(egin{align*} non-erasable ext{ args must be typed} \end{array} ight)$	$\mathbf{sz}(\Pi)$ bounds the number of leftmost-outermost red. steps (and more)
SN	\mathcal{R}_0 with choice operator $all ext{ args must be typed}$	$\mathbf{sz}(\Pi)$ bounds the length of any reduction path

From a typing of $(\lambda x.r)s$... to a typing of r[s/x]

From a typing of $(\lambda x.r)s$... to a typing of r[s/x]

From a typing of $(\lambda x.r)s$... to a typing of r[s/x]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

From a typing of $(\lambda x.r)s$... to a typing of r[s/x]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

$$\Gamma + \Delta_1^a + \Delta_1^b + \Delta_2 \vdash r[s/x] : \tau$$

P. Vial

[Non-determinism of SR]

From a typing of $(\lambda x.r)s...$ to a typing of r[s/x]

[Non-determinism of SR]

PLAN

- ① OVERVIEW (IDEMPOTENT OR NOT INTERSECTION TYPES)
- 2 Non-idempotent intersection types
- 3 Extras
- 4 Perspectives

Intersection types P. Vial 3 EXTRAS 20 /26

Non-strictness

Non-strictness

gives

• Two possibles applications rules:

$$\frac{\Gamma \vdash t: \{A_i\}_{i \in I} \rightarrow B \quad (\Delta_i \vdash u: A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u: B} \text{ app}$$

Arg. redundancy allowed

• Two possibles applications rules:

$$\frac{\Gamma \vdash t: \{A_i\}_{i \in I} \rightarrow B \quad (\Delta_i \vdash u: A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u: B} \text{ app}$$

Arg. redundancy allowed

• Leads to:

How do we reduce this?

• Two possibles applications rules:

$$\frac{\Gamma \vdash t : \{A_i\}_{i \in I} \rightarrow B \quad (\Delta_i \vdash u : A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u : B} \text{ app } \qquad \frac{\Gamma \vdash t : \{A_i\}_{i \in I}^{\not=} \rightarrow B \quad (\Delta_i \vdash u : A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u : B} \text{ app}_{\not=}$$

Arg. redundancy allowed

..... disallowed

• Leads to:

How do we reduce this?

Intersection types

P. Vial

• Two possibles applications rules:

$$\frac{\Gamma \vdash t : \{A_i\}_{i \in I} \rightarrow B \quad (\Delta_i \vdash u : A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u : B} \text{ app } \qquad \frac{\Gamma \vdash t : \{A_i\}_{i \in I}^{\not=} \rightarrow B \quad (\Delta_i \vdash u : A_i)_{i \in I}}{\Gamma \cup (\cup_{i \in I} \Delta_i) \vdash t \, u : B} \text{ app}_{\not=}$$

Arg. redundancy allowed

 \dots disallowed

• Leads to:

How do we reduce this?

. , ,

How do we expand this?

Intersection types

P. Vial

3 Extras

PLAN

- 1 Overview (idempotent or not intersection types)
- 2 Non-idempotent intersection types
- 3 Extras
- 4 Perspectives

Intersection types via Grothendieck construction [Mazza,Pellissier,V., POPL2018]

- \bullet Categorical generalization of ITS. à la Melliès-Zeilberger.
- Type systems = 2-operads (see below).

Type systems as 2-operads

- Level 1: $\Gamma \vdash t : B$ $t = multimorphism \text{ from } \Gamma \text{ to } B.$
- Level 2: if $\Gamma \vdash t : B \stackrel{\text{SR}}{\leadsto} \Gamma \vdash t' : B$, $t \leadsto t' = \text{$2$-morphism from t to t'}.$
 - Construction of an i.t.s. via a Grothendieck construction (pullbacks).
 - Modularity: retrieving automatically e.g., e.g., Coppo-Dezani, Gardner, \mathcal{R}_0 , call-by-value + $\mathcal{H}_{\lambda\mu}$ (use cyclic 2-operads)

Intersection types P. Vial 4 Perspectives 24 /26

DOGGY BAG

Intersection types characterize various semantic properties

+ bring info. on operational semantics!

Intersection types characterize various semantic properties

+ bring info. on operational semantics!

Non-idempotency:

forbid duplication of typing deriv.

Intersection types P. Vial 4 Perspectives 25 /26

Intersection types characterize
various semantic properties

+ bring info. on operational semantics!

Non-idempotency:
forbid duplication of typing deriv.

Simple proof of termination.

typing brings quali. and quanti. info.

DOGGY BAG

Adapts to other higher-order calculi

e.g., feat. classical logic

Kesner-V., FSCD'17

Intersection types P. Vial 4 Perspectives 25 /26

THANK YOU

Thank you for your attention!

THE LAMBDA-MU CALCULUS

• Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.

THE LAMBDA-MU CALCULUS

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call—cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$

 \leadsto the Curry-Howard iso extends to classical logic

THE LAMBDA-MU CALCULUS

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call—cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$

 \leadsto the $\mathbf{Curry\text{-}Howard}$ iso extends to classical logic

• Parigot 92: $\lambda \mu$ -calculus = computational interpretation of classical natural deduction (e.g., vs. $\bar{\lambda}\mu\tilde{\mu}$).

judg. of the form $A, A \to B \vdash A \mid B, C$

$$\frac{(A \to B) \to A \vdash (A \to B) \to A}{(A \to B) \to A \vdash (A \to B, A)} \qquad \frac{A \vdash A, B}{\vdash A \to B, A}$$

$$\frac{(A \to B) \to A \vdash A, A}{(A \to B) \to A \vdash A}$$

$$\vdash ((A \to B) \to A) \to A$$

$$\frac{(A \to B) \to A \vdash (A \to B) \to A}{(A \to B) \to A \vdash (A \to B, A)} \vdash A \to B, A$$

$$\frac{(A \to B) \to A \vdash A, A}{(A \to B) \to A \vdash A}$$

$$\frac{(A \to B) \to A \vdash A}{\vdash ((A \to B) \to A) \to A}$$

Standard Style

Peirce's Law in Classical Natural Deduction

$$\frac{A \vdash A \mid B}{A \vdash B \mid A} \xrightarrow{\text{act}}$$

$$\frac{A \vdash A \mid B}{A \vdash B \mid A} \xrightarrow{\text{act}}$$

$$\frac{(A \to B) \to A \vdash (A \to B) \to A \mid A}{(A \to B) \to A \vdash A \mid A}$$

$$\frac{(A \to B) \to A \vdash A \mid A}{(A \to B) \to A \vdash A \mid}$$

$$\vdash ((A \to B) \to A) \to A \mid$$

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

- 1 active formula F
- inactive formulas Δ

$$\cfrac{\cfrac{A \vdash A \mid B}{A \vdash B \mid A} \text{ act}}{\cfrac{(A \to B) \to A \vdash (A \to B) \to A \mid}{\cfrac{(A \to B) \to A \vdash A \mid A}{\cfrac{(A \to B) \to A \vdash A \mid}{\cfrac{(A \to B) \to A \vdash A \mid}{\cfrac{(A \to B) \to A}{\cfrac{(A \to B)}{\cfrac{(A \to B) \to A}{\cfrac{(A \to B)}{\cfrac{(A \to B) \to A}{\cfrac{(A \to B)}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

- 1 active formula F
- inactive formulas Δ

• Syntax: λ -calculus

• Syntax: λ -calculus + names α, β, γ (store inactive formulas) $x_1:D,y:E\vdash t:C\mid \alpha:A,\beta:B$

• Syntax: λ -calculus + names α, β, γ (store inactive formulas) $x_1:D,y:E\vdash t:C\mid \alpha:A,\beta:B$ + two constructors αt (naming) and $\mu \alpha$ (μ -abs.) de/activation

• Syntax: λ-calculus

```
+ names \alpha, \beta, \gamma (store inactive formulas)

x_1: D, y: E \vdash t: C \mid \alpha: A, \beta: B

+ two constructors [\alpha]t (naming) and \mu\alpha (\mu-abs.)

\frac{de}{activation}
```

• Typed and untyped version

$$Simply\ typable \Rightarrow SN$$

• Syntax: λ -calculus

+ names
$$\alpha, \beta, \gamma$$
 (store inactive formulas)
$$x_1: D, y: E \vdash t: C \mid \alpha: A, \beta: B$$
+ two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.)
$$\frac{de}{activation}$$

Typed and untyped version

$$Simply \ typable \Rightarrow SN$$

• call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x)$:

• Syntax: λ -calculus

+ names
$$\alpha, \beta, \gamma$$
 (store inactive formulas)
$$x_1:D,y:E \vdash t:C \mid \alpha:A,\beta:B$$
 + two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.)
$$\frac{de}{activation}$$

Typed and untyped version

$$Simply \ typable \Rightarrow SN$$

• call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x):((A \to B) \to A) \to A$

• Syntax: λ -calculus

+ names
$$\alpha, \beta, \gamma$$
 (store inactive formulas)
$$x_1: D, y: E \vdash t: C \mid \alpha: A, \beta: B$$
+ two constructors $[\alpha]t$ (naming) and $\mu\alpha$ (μ -abs.)
$$\frac{de}{activation}$$

Typed and untyped version

$$Simply\ typable \Rightarrow SN$$

• call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x):((A \to B) \to A) \to A$

How do we adapt the non-idempotent machinery to $\lambda \mu$?

Intersection: $\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$

 $\mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}$: Union

Features

Intersection types

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Intersection types

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

• app-rule based upon the admissible rule of ND:

$$\frac{A_1 \to B_1 \lor \dots \lor A_k \to B_k}{B_1 \lor \dots \lor B_k} \qquad A_1 \land \dots \land A_k \qquad \left(vs. \frac{*}{A \to B} A\right)$$

Features

Intersection types

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

• app-rule based upon the admissible rule of ND:

$$\frac{A_1 \to B_1 \lor \dots \lor A_k \to B_k}{B_1 \lor \dots \lor B_k} \qquad A_1 \land \dots \land A_k \qquad \left(vs. \frac{*}{A \to B \quad A} B\right)$$

$$\Big[\mathtt{call-cc} : [[[A] { o} B] { o} A] o \langle A, A
angle \qquad \mathrm{vs.} \qquad ((A o B) o A) o A \Big]$$

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

• app-rule based upon the admissible rule of ND:

$$\frac{A_1 \to B_1 \lor \dots \lor A_k \to B_k}{B_1 \lor \dots \lor B_k} \qquad A_1 \land \dots \land A_k \qquad \left(vs. \frac{*}{A \to B \quad A} B\right)$$

$$\left[\mathtt{call-cc} : \left[\left[\left[A \right] \to B \right] \to A \right] \to \left\langle A, A \right\rangle \qquad \text{vs.} \qquad \left(\left(A \to B \right) \to A \right) \to A \right]$$

System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

$$\mathtt{size}(\Pi) = \left\{ \begin{array}{l} \text{number of nodes of } \Pi \ + \\ \text{size of the type arities of all the names of commands} \ + \\ \text{multiplicities of arguments in all the app. nodes} \end{array} \right.$$

Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner, V., FSCD17]:

Let t be a $\lambda \mu$ -term. Equiv. between:

• t is $\mathcal{H}_{\lambda \mu}$ -typable

• t is HN

- \bullet The head red. strategy terminates on t
 - + quantitative info.

System $\mathcal{H}_{\lambda\mu}$ (Head Normalization)

• Weighted Subject Reduction + Subject Expansion

$$\mathtt{size}(\Pi) = \left\{ \begin{array}{l} \text{number of nodes of } \Pi \ + \\ \text{size of the type arities of all the names of commands} \ + \\ \text{multiplicities of arguments in all the app. nodes} \end{array} \right.$$

Characterizes Head Normalization

adaptable to Strong Normalization

Theorem [Kesner, V., FSCD17]:

Let t be a $\lambda \mu$ -term. Equiv. between:

• t is $\mathcal{H}_{\lambda \mu}$ -typable

• t is HN

- \bullet The head red. strategy terminates on t
 - + quantitative info.

• Small-step version.

Infinitary calculi

• Infinitary λ -trees provide various semantics to the λ -calculus. Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

Infinitary calculi

• Infinitary λ -trees provide various semantics to the λ -calculus.

Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

• Infinite λ -calculi

Kennaway, Klop, Sleep and de Vries [97]

- 7 variants
- only 3 have a good behavior (partial infinitary confluence), respectively recovering Böhm, L-L and Berar. trees as infinite NF.

Infinitary calculi

• Infinitary λ -trees provide various semantics to the λ -calculus.

Böhm t. [68 or later], Lévy-Longo t. [77,83], Berarducci t. [96].

• Infinite λ -calculi

Kennaway, Klop, Sleep and de Vries [97]

- 7 variants
- only 3 have a good behavior (partial infinitary confluence), respectively recovering Böhm, L-L and Berar. trees as infinite NF.
- Main idea:

Intersection types

Productive terms

- may not terminate...
- \bullet . . . but keep on outputting info. $(\textit{e.g.}, \, \text{sub-HNF})$
- sound infinite red. sequence

Meaningless terms

- do not output any info. ever (even a head variable)
- unsound infinite red. sequences

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f" $\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to^{\infty} f^{\omega}$

Productive reduction:
$$\Delta_f := \lambda x. f(xx)$$
 $\mathbf{Y}_f := \Delta_f \Delta_f$ "Curry f "
$$\mathbf{Y}_f \to \mathbf{f}(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to^{\infty} f^{\omega}$$

Productive reduction:
$$\Delta_f := \lambda x. f(xx)$$
 $Y_f := \Delta_f \Delta_f$ "Curry f "
$$Y_f \to f(Y_f) \to f^2(Y_f) \to f^3(Y_f) \to f^4(Y_f) \to \dots \to f^n(Y_f) \to \dots \to^{\infty} f^{\omega}$$

Productive reduction:
$$\Delta_f := \lambda x. f(xx)$$
 $\mathbf{Y}_f := \Delta_f \Delta_f$ "Curry f "
$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to \mathbf{f}^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to^{\infty} f^{\omega}$$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to \mathbf{f}^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to^{\infty} f^{\omega}$$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to^{\infty} f^{\omega}$$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f"

$$\mathbf{Y}_f \to f(\mathbf{Y}_f) \to f^2(\mathbf{Y}_f) \to f^3(\mathbf{Y}_f) \to f^4(\mathbf{Y}_f) \to \dots \to f^n(\mathbf{Y}_f) \to \dots \to \mathbf{Y}_f$$

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f" $Y_f \to f(Y_f) \to f^2(Y_f) \to f^3(Y_f) \to f^4(Y_f) \to \dots \to f^n(Y_f) \to \dots \to f^\infty$

- Y_f not WN
- Y_f is ∞ -WN
- ∞ -NF: $f^{\omega} = f(f^{\omega})$ (Böhm tree)

Productive reduction: $\Delta_f := \lambda x. f(xx)$ $Y_f := \Delta_f \Delta_f$ "Curry f" $Y_f \to f(Y_f) \to f^2(Y_f) \to f^3(Y_f) \to f^4(Y_f) \to \dots \to f^n(Y_f) \to \dots \to \infty$ f^ω

Unproductive reduction: let
$$\Delta = \lambda x.xx$$
, $\Omega = \Delta \Delta$
 $\Omega \to \Omega \to \Omega \to \Omega \to \Omega \to \Omega \to \dots$

• Klop's Problem: characterizing ∞-WN with inter. types

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞-WN terms?

Multiset intersection:

- syntax-direction
- ⊖ non-determinism of proof red.
- ⊖ lack tracking:

$$[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma].$$

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞-WN terms?

Multiset intersection:

- syntax-direction
- ⊖ non-determinism of proof red.
- ⊖ lack tracking: $[\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma].$

Retrieving soundness

- coind. type grammars \rightsquigarrow unsoundness (Ω typable)
- using a validity criterion → Need for tracking

- Klop's Problem: characterizing ∞ -WN with inter. types
 - Tatsuta [07]: an inductive ITS cannot do it.
 - Can a coinductive ITS characterize the set of ∞ -WN terms?

Multiset intersection:

- ⊕ syntax-direction
- ⊖ non-determinism of proof red.
- $\begin{array}{l}
 \text{lack tracking:} \\
 [\sigma, \tau, \sigma] = [\sigma, \tau] + [\sigma].
 \end{array}$

Retrieving soundness

- coind. type grammars \rightsquigarrow unsoundness (Ω typable)

• Solution: sequential intersection

System S

 \rightsquigarrow replace $[\sigma_i]_{i\in I}$ with $(k\cdot\sigma_k)_{k\in K}$

• Tracking: $(3 \cdot \sigma, 5 \cdot \tau, 9 \cdot \sigma) = (3 \cdot \sigma, 5 \cdot \tau) \uplus (9 \cdot \sigma)$

CHARACTERIZATION OF INFINITARY WN

Proposition

In System S:

- Validity (aka approximability) can be defined.
- SR: typing is stable by productive ∞ -reduction.
- SE: approximable typing stable by productive ∞ -expansion.

Theorem (V,LiCS'17)

- A ∞ -term t is ∞ -WN iff t is unforgetfully typable by means of an approximable derivation→ Klop's Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

CHARACTERIZATION OF INFINITARY WN

Proposition

In System S:

- Validity (aka approximability) can be defined.
- SR: typing is stable by productive ∞ -reduction.
- \bullet SE: approximable typing stable by productive $\infty\text{-expansion}.$

Theorem (V,LiCS'17)

- $A \infty$ -term t is ∞ -WN iff t is unforgetfully typable by means of an approximable derivation $\leadsto Klop$'s Problem solved
- The hereditary head reduction strategy is complete for infinitary weak normalization.

Bonus: positive answer to TLCA Problem #20

System S also provides a type-theoretic characterization of the **hereditary permutations** (not possible in the inductive case, Tatsuta [LiCS'07]).

CONFLUENCE IN THE INFINITARY CALCULI

• In the infinitary calculi:

confluence

only up to the collapsing of the meaningless terms

• In the infinitary calculi:

confluence

confluence only up to the collapsing of the meaningless terms

• Let
$$Y_I = (\lambda x. I(x x))(\lambda x. I(x x))$$

$$Y_I \rightarrow I(Y_I) \rightarrow \dots \rightarrow I^n(Y_I) \rightarrow^{\infty} I^{\omega}$$

$$\downarrow_2$$

$$\Omega$$

• In the infinitary calculi:

confluence

 ${\bf confluence}$ only up to the collapsing of the meaningless terms

• Let
$$Y_I = (\lambda x. I(x x))(\lambda x. I(x x))$$

$$Y_I \rightarrow I(Y_I) \rightarrow \dots \rightarrow I^n(Y_I) \rightarrow^{\infty} I^{\omega}$$

$$\downarrow_2$$

$$\Omega$$

• Structure of proofs

- Kennaway et al. 96, Czjaka 14
- Using an intermediary calculi ε satisfying confluence.

• In the infinitary calculi:

 ${\bf confluence} \\ {\bf only} \ {\bf up} \ {\bf to} \ {\bf the} \ {\bf collapsing} \ {\bf of} \ {\bf the} \ {\bf meaningless} \ {\bf terms} \\$

- Let $Y_I = (\lambda x. I(x x))(\lambda x. I(x x))$ $\mathbf{Y}_I \rightarrow I(\mathbf{Y}_I) \rightarrow \dots \rightarrow I^n(\mathbf{Y}_I) \rightarrow^{\infty} I^{\boldsymbol{\omega}}$
- Structure of proofs

Kennaway et al. 96, Czjaka 14

- Using an intermediary calculi ε satisfying confluence.
- Translating the red. sequences of the ∞ -calculi into the ε -calc via technical lemmas of the form:

Lemma: if $t \to_{\infty} t'$ HNF, then $t \to_{\mathbf{h}}^* t'_0$ HNF (finite sequence)

• In the infinitary calculi:

confluence

• Let
$$Y_I = (\lambda x. I(x x))(\lambda x. I(x x))$$

$$Y_I \rightarrow I(Y_I) \rightarrow \dots \rightarrow I^n(Y_I) \rightarrow^{\infty} I^{\omega}$$

$$\downarrow_2$$

$$\Omega$$

• Structure of proofs

Kennaway et al. 96, Czjaka 14

- Using an intermediary calculi ε satisfying confluence.
- Translating the red. sequences of the ∞ -calculi into the ε -calc via technical lemmas of the form:

Lemma: if $t \to_{\infty} t'$ HNF, then $t \to_{\mathbf{h}}^* t'_0$ HNF (finite sequence)

Can *inductive* non-idem. inter. type systems help simplify proofs of infinitary confluence?